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Abstract: The rapid emergence of antibiotic resistance demands new antimicrobial strategies that
are less likely to develop resistance. Augmenting the synthesis of endogenous host defense peptides
(HDPs) has been proven to be an effective host-directed therapeutic approach. This study aimed to
identify small-molecule compounds with a strong ability to induce endogenous HDP synthesis for
further development as novel antimicrobial agents. By employing a stable HDP promoter-driven
luciferase reporter cell line known as HTC/AvBD9-luc, we performed high-throughput screening
of 5002 natural and synthetic compounds and identified 110 hits with a minimum Z-score of 2.0.
Although they were structurally and functionally diverse, half of these hits were inhibitors of class I
histone deacetylases, the phosphoinositide 3-kinase pathway, ion channels, and dopamine and sero-
tonin receptors. Further validations revealed mocetinostat, a benzamide histone deacetylase inhibitor,
to be highly potent in enhancing the expression of multiple HDP genes in chicken macrophage
cell lines and jejunal explants. Importantly, mocetinostat was more efficient than entinostat and
tucidinostat, two structural analogs, in promoting HDP gene expression and the antibacterial activity
of chicken macrophages. Taken together, mocetinostat, with its ability to enhance HDP synthesis and
the antibacterial activity of host cells, could be potentially developed as a novel antimicrobial for
disease control and prevention.

Keywords: host defense peptides; high-throughput screening; host defense peptide inducers;
mocetinostat; antimicrobial resistance

1. Introduction

Antimicrobial resistance is a major global healthcare concern [1]. The rapid emergence
of antibiotic-resistant pathogens, coupled with a dwindling antibiotic pipeline, demands in-
novative antimicrobial strategies that are less likely to trigger resistance [1,2]. Host-directed
immunotherapies have emerged as promising alternative approaches to disease control
and prevention [3,4]. Host defense peptides (HDPs), constitute a large, diverse group of
small antimicrobial peptides that act as an important component of innate immunity [5,6].
In vertebrate animals, HDPs are classified into two major families, namely cathelicidins and
defensins, that are expressed mainly by phagocytic cells and mucosal epithelial cells [7].
A large array of HDPs are produced in humans and animals to provide the first line of
host defense in response to infection and inflammation. For example, humans have one
cathelicidin known as LL-37, six α-defensins, and more than 30 β-defensins [7], while
four cathelicidins (CATH1-3 and CATHB1) and 14 β-defensins known as AvBD1-14 are
produced in chickens [8,9].
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HDPs are capable of killing a broad spectrum of pathogens through membrane-lytic
mechanisms [7] and, at the same time, exert a profound influence on the regulation of
both innate and adaptive immunity by recruiting and promoting the differentiation and
activation of different types of immune cell [7,10]. Augmenting the synthesis of endogenous
HDPs has become an active host-directed approach to antimicrobial therapy [4,11–13].
Besides infectious and inflammatory agents, a number of small-molecule compounds
such as butyrate and vitamin D3 have been identified as having the ability to induce HDP
synthesis in humans and other animals [4,11–13]. Some of these HDP-inducing compounds,
individually or in combination, show promise in conferring on the hosts an enhanced ability
to fight off infections such as shigellosis, tuberculosis, cholera, enteropathogenic E. coli
diarrhea, necrotic enteritis, and coccidiosis [14–21].

The discovery of HDP-inducing compounds for antimicrobial therapy has become an
active area of research. A high-throughput screening (HTS) assay based on a stable LL-37
promoter-driven luciferase reporter cell line (MN8CampLuc), has been developed and has
led to the identification of multiple LL-37 inducers [22,23]. We also established different
luciferase reporter cell lines through the stable integration of HDP promoter-driven lu-
ciferase reporter genes in macrophages or intestinal epithelial cell lines [24,25], which were
subsequently employed to identify a number of HDP-inducing compounds [24–27]. Here,
we report a large-scale screening of 5002 natural and synthetic small-molecule compounds
with much greater structural and functional diversities using one such reporter cell line,
termed HTC/AvBD9-luc [25]. We revealed that histone deacetylase (HDAC) inhibitors are
among the most efficacious HDP inducers. We further demonstrated that mocetinostat,
being a leading candidate, was highly potent in inducing the expressions of multiple HDP
genes and further enhanced the antibacterial activity of host cells. Further characterization
of these HDP-inducing compounds may pave the way for their development as novel
host-directed immune-boosting antimicrobials.

2. Results
2.1. HTS for Small-Molecule Compounds That Induce HDP Synthesis

To discover additional HDP-inducing compounds, we employed the HTC/AvBD9-luc
reporter cell line and conducted larger-scale screening of 5002 natural and synthetic small-
molecule compounds in several different libraries (Figure 1A). The average Z’ factor [28]
across 384-well plates was 0.52 ± 0.03, indicating that the HTS assay was robust and reliable.
Based on our preliminary screening and earlier experiences [24–27], a final concentration of
20 µM was used for each test compound in HTS. Using a Z-score of 2.0 as the threshold [28],
we identified 110 compounds, resulting in a hit rate of 2.2% (Figure 1B). These 110 hits were
largely scattered across libraries, with a larger percentage being found in the epigenetic
compound library (Figure 1B); this is consistent with earlier HTS results, which state that
many epigenetic compounds and HDAC inhibitors, in particular, are HDP inducers [24–26].

All hits were further compared for their relative AvDB9-inducing activity in HTC/AvBD9-
luc cells at 5, 10, and 20 µM using a luciferase assay. Obviously, most showed increased
luciferase activity in at least one concentration used (data not shown). Among the 18 com-
pounds with a minimum 5-fold increase in luciferase activity at 20 µM, each compound
dose-dependently induced luciferase activity while causing minimum cytotoxicity, particu-
larly at 5 or 10 µM (Table 1). Approximately half of these hits were known HDAC inhibitors,
while three others were involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B
(AKT)/mammalian target of rapamycin (mTOR) pathway; this was also observed in an ear-
lier study, as exemplified in wortmannin [25]. The remaining hits included maprotiline hy-
drochloride, desloratadine, doxorubicin, tetrandrine, quinacrine, and promazine (Table 1),
which are norepinephrine reuptake inhibitor, H1-antihistamine, topoisomerase II inhibitor,
calcium channel blocker, NF-κB inhibitor/p53 activator/histamine N-methyltransferase
inhibitor, and D2 dopamine receptor inhibitor, respectively [29–35].
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Figure 1. High-throughput screening to identify host defense peptide-inducing compounds. (A) Iden-
tities of small-molecule compound libraries used in the screening. The number of compounds in
each library is shown in the parentheses. (B) Z-scores of the 5002 compounds in different libraries.
HTC/AvBD9-luc luciferase reporter cell line was stimulated in 384-well plates with 20 µM of each
compound for 24 h, followed by luciferase and cell viability assays. The Z-scores for each compound
were calculated from luciferase activity normalized to cell viability.

Ten lead compounds with a minimum 20-fold increase in luciferase activity at 20 µM
were further selected to compare their relative potency in inducing AvBD9 mRNA ex-
pression in HTC cells using RT-qPCR. As expected, all 10 compounds obviously induced
AvBD9 expression in a dose-dependent manner, and all but triciribine achieved similar
efficacy to butyrate (Figure 2). Among them, mocetinostat and CUDC-907 were the most
potent, triggering nearly a 1000-fold AvBD9 induction even at 5 µM, while sodium butyrate
produced only a 125-fold increase at the optimal concentration of 4 mM. On the other hand,
mocetinostat at 20 µM enhanced AvBD9 mRNA expression more than 5000-fold (Figure 2).
It is worth mentioning that the order of relative potency of individual compounds in the
luciferase assay was rather different from the RT-qPCR analysis. For example, although
it was among the top compounds in the luciferase reporter assay, givinostat performed
much worse than mocetinostat, CUDC-907, and several other compounds in AvBD9 mRNA
induction in HTC cells (Figure 2).
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Table 1. Functional properties, Z-scores, fold changes in relative luciferase activity, and cell viability
of 18 lead compounds 1.

Compound Major Function Z-Score
Fold Change Cell Viability (%)

5 µM 10 µM 20 µM 5 µM 10 µM 20 µM

CUDC-907 HDACi/PI3Ki 2 9.97 137.04 482.67 264.88 88.1 69.1 51.2
Triciribine AKTi 3.25 37.36 77.73 156.08 92.8 74.7 79.4

Mocetinostat HDACi 3.45 21.36 41.72 59.69 96.7 96.0 74.4
Scriptaid HDACi 4.33 6.17 25.71 50.42 100.3 92.4 80.7

Givinostat HDACi 5.68 52.38 113.64 46.13 99.1 85.0 92.5
PCI-24781 HDACi 2.85 77.51 82.80 37.43 98.3 87.9 80.9
CUDC-101 HDACi/EGFRi/HER2i 2.54 4.69 12.52 34.17 105.0 66.5 70.3
Belinostat HDACi 6.58 23.05 41.44 33.96 97.5 98.8 79.7

Trichostatin A HDACi 17.00 68.08 47.64 27.62 96.1 106.2 68.4
AR-42 HDACi 2.27 107.71 80.82 25.88 103.0 111.2 85.8

Vorinostat HDACi 3.35 1.59 3.52 14.53 101.3 87.5 74.4
Wortmannin PI3Ki 2.38 29.61 33.69 12.09 92.4 67.9 58.9

Maprotiline hydrochloride NRi 5.61 1.53 3.85 7.01 102.3 97.7 64.1
Desloratadine HH1Ri 3.00 1.73 2.47 6.83 97.6 93.8 76.6
Doxorubicin TOPIIi 5.64 7.89 101.89 6.56 95.9 71.9 65.8
Tetrandrine CaChi 2.17 1.22 1.97 6.42 102.3 89.6 69.2
Quinacrine NF-κBi/p53a/HMTi 3.02 1.78 2.10 6.03 97.7 75.2 60.9
Promazine D2DRi 2.82 0.64 3.24 5.39 100.4 74.2 58.2

1 Z-scores were obtained from the high-throughput screening assay that was conducted once, while the fold
changes in the luciferase activity and cell viability were an average of three independent experiments with similar
results. 2 Abbreviations are listed at the end of the text.
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Figure 2. Dose-dependent induction of AvBD9 mRNA expression in chicken HTC cells in response to
ten leading HDP inducers. HTC cells were stimulated in duplicate using different concentrations
of each compound for 24 h, followed by RT-qPCR analysis of AvBD9 mRNA expression. Sodium
butyrate (4 mM) was used as a positive control and an equal volume of solvent as a negative control.
The results are means ± SEM of three independent experiments. One-way ANOVA was performed,
followed by Dunnett’s test. *** p < 0.001 (relative to the unstimulated control).

2.2. Confirmation of the AvBD9-Inducing Capacity of Mocetinostat in Chicken Macrophages

Mocetinostat, also known as MGCD0103, is a benzamide HDAC inhibitor (Figure 3A)
undergoing clinical trials for various forms of cancers [36–39]. Mocetinostat was the most
potent HDP-inducing compound in our assays, and thus, was selected for subsequent
characterizations. Mocetinostat was first evaluated for its ability to promote AvBD9 mRNA
expression in a different chicken macrophage cell line, HD11 [40]. As expected, it showed
an obvious dose-dependent AvBD9 induction. In fact, HD11 cells appeared to be more
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sensitive to mocetinostat than HTC cells (Figure 3B). At each concentration used, a higher
magnitude of AvBD9 gene induction was seen in HD11 cells than in HTC cells. To investi-
gate the kinetics of gene induction, a time-course experiment was conducted in HTC cells
in response to 2 µM mocetinostat. An apparent 100-fold increase in AvBD9 expression was
observed as early as 6 h, peaking around 24 h and remaining elevated at 48 h (Figure 3B).
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Figure 3. Dose- and time-dependent induction of AvBD9 mRNA expression by mocetinostat in two
different chicken macrophage cell lines. (A) Chemical structures of mocetinostat and its two structural
analogs, entinostat and tucidinostat. (B) Dose-dependent changes in AvBD9 mRNA expression in
chicken HTC and HD11 cell lines in response to different concentrations of mocetinostat for 24 h.
(C) Time-dependent induction of AvBD9 mRNA in HTC cells in response to 2 µM mocetinostat for
various lengths of time. AvBD9 mRNA expression levels were evaluated using RT-qPCR. The results
are means ± SEM of three independent experiments. One-way ANOVA was performed, followed by
Dunnett’s test. * p < 0.05, and *** p < 0.001 (relative to the unstimulated control).

2.3. Induction of Multiple HDP and Barrier-Function Genes by Mocetinostat

To verify how other HDPs are regulated by mocetinostat, RT-qPCR was used to
analyze the expression levels of multiple chicken HDP mRNAs in HTC cells in response to
mocetinostat. It was apparent that mocetinostat enhanced the expression of all HDP genes
that are expressed in HTC cells in a dose-dependent manner, although the magnitude of
induction varied (Figure 4). For example, like AvBD9, AvBD4 and AvBD10 were upregulated
by 20 µM mocetinostat more than 1000-fold, while AvBD1, AvBD3, AvBD7, AvBD8, and
AvBD14 were increased at least 100-fold. However, the remaining HDP genes showed a
peak induction no more than 50-fold in response to mocetinostat (Figure 4).

2.4. Comparison of HDP-Inducing Efficacy among Mocetinostat, Entinostat, and Tucidinostat

Entinostat, also known as MS-275 or SNDX-275, was recently identified among the
most potent compounds to stimulate human LL-37 synthesis [23,41]. Tucidinostat, also
known as chidamide, was found to have similar efficacy to entinostat in chicken HDP
induction in our recent HTS [27]. In fact, both entinostat and tucidinostat are benzamide
HDAC inhibitors and structural analogs of mocetinostat (Figure 3A). We sought to di-
rectly compare HDP-inducing efficacy among mocetinostat, entinostat, and tucidinostat in
chicken HTC cells and jejunal explants. It was apparent that mocetinostat was much more
potent in upregulating AvBD9 mRNA expression in both HTC cells and jejunal explants
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than entinostat and tucidinostat (Figure 5). For example, 20 µM mocetinostat triggered
approximately a 20,000- and 200-fold induction of AvBD9 mRNA in HTC cells and jejunal
explants, respectively, whereas tucidinostat caused approximately an 800-fold AvBD9 in-
crease in HTC cells and a 25-fold increase in jejunal explants. On the other hand, 20 µM
entinostat only produced a less-than-20-fold induction in both cell types (Figure 5).
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Figure 4. Induction of multiple HDP genes in chicken HTC macrophages in response to mocetinostat.
HTC cells were stimulated in duplicate with 5, 10, and 20 µM mocetinostat for 24 h. HDP gene-
expression levels were evaluated using RT-qPCR. The results are means ± SEM of three independent
experiments. One-way ANOVA was performed, followed by Dunnett’s test. * p < 0.05, ** p < 0.01,
and *** p < 0.001 (relative to the unstimulated control).
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Figure 5. Induction of AvBD9 mRNA expression by mocetinostat, entinostat, and tucidinostat in
HTC cells and chicken jejunal explants. HTC cells (A) or chicken jejunal explants (B) were exposed
to 4 mM butyrate or three different concentrations of mocetinostat, entinostat, and tucidinostat for
24 h, followed by analysis of AvBD9 gene expression using RT-qPCR. The results are means ± SEM
of 2–3 independent experiments. One-way ANOVA was performed, followed by Dunnett’s test.
* p < 0.05, ** p < 0.01, and *** p < 0.001 (relative to the unstimulated control).

2.5. Mocetinostat Augments the Antibacterial Activity of Chicken Macrophages without Directly
Killing Bacteria

To evaluate whether mocetinostat is capable of boosting the antibacterial activity
of host cells through the upregulation of HDP synthesis, HTC cells were treated with
mocetinostat, tucidinostat, or entinostat for 24 h, followed by cell lysis and the incubation
of cell lysate with E. coli (ATCC 26,922) and Salmonella Enteritidis (ATCC 13,076) for
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varying lengths of time using 4 mM butyrate as a positive control. Consistent with our
previous studies [25,42], butyrate enhanced the ability of HTC cells to suppress both
bacteria. Mocetinostat at 10 µM also significantly augmented bacterial inhibition at 6, 9,
and 24 h, while entinostat failed to show significant antibacterial activity at any time point,
and tucidinostat showed intermediate activity (Figure 6).
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Figure 6. Augmentation of the antibacterial activity of chicken HTC cells by mocetinostat, entinostat,
and tucidinostat. Chicken HTCs were stimulated with 10 µM mocetinostat, entinostat, tucidinostat,
or 4 mM butyrate for 24 h, followed by cell lysis and incubation of the cell lysate with Escherichia coli
(ATCC 25,922) or Salmonella Enteritidis (ATCC 13,076) for different durations. Bacterial turbidity
was measured at OD600 as an indication of bacterial growth. The results are means ± SEM of two
independent experiments. One-way ANOVA was performed, followed by Dunnett’s test. * p < 0.05,
** p < 0.01, and *** p < 0.001 (relative to the unstimulated control at each time point).

To ensure that augmentation of the antibacterial activity of host cells is not due to the
direct antibacterial activity of these compounds, we determined the minimum inhibitory
concentrations (MICs) of mocetinostat, entinostat, and tucidinostat using a standard broth
microdilution assay [43] using E. coli (ATCC 26,922) and Salmonella Enteritidis (ATCC
13,076). The MICs of all three compounds were beyond 320 µM, the highest concentration
tested, suggesting that they have no obvious antibacterial activity. It is, therefore, likely that
HDP inducers such as mocetinostat boost the antibacterial capacity of host cells through
the modulation of endogenous HDP synthesis.

3. Discussion

A number of small molecules have been found to be capable of inducing HDP synthe-
sis without provoking inflammation [4,11–13]. Moreover, HDP inducers are not expected
to trigger resistance because they regulate host immunity with no direct interactions with
bacteria. Modulating the synthesis of endogenous HDPs is, therefore, being actively ex-
plored as an alternative host-directed antimicrobial approach [4,11–13]. We have developed
a cell-based HTS assay to screen and identify a number of HDP-inducing compounds
through several recent small-scale efforts [24–27]. In this study, we broadened our screen-
ing effort to a list of 5002 small-molecule compounds with much greater structural and
functional diversity. From primary screening, we identified 110 hits with a minimum
Z-score of 2.0. Approximately half of the compounds function as inhibitors of HDACs, the
PI3K/AKT/mTOR pathway, dopamine and serotonin receptors, or calcium/sodium chan-
nels, with the HDAC and PI3K/AKT/mTOR blockers being among the most efficacious
HDP inducers. The other half of the compounds are involved in a variety of other functions.

The top ten hits that produced a minimum 20-fold increase in luciferase activity in
HTC/AvBD9-luc cells at 20 µM were further confirmed to induce AvBD9 mRNA expression
in a dose-dependent manner in chicken HTC cells, suggesting the validity and effectiveness
of our HTS assay. However, we observed a discrepancy among individual compounds in
their AvBD9-inducing potency between the luciferase and RT-qPCR assays. The reason
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is likely due to the fact that the luciferase assay is based on the ability of a compound to
activate a 2-Kb AvBD9 gene promoter fragment [25], while RT-qPCR measures the mRNA
expression levels of the native AvBD9 gene. It is possible that some compounds may
regulate certain transcription factors that bind beyond the 2-Kb promoter region of the
AvBD9 gene.

Histone acetylation is regulated by the opposing effects of HDACs and histone acetyl-
transferases (HATs), with the former functioning to remove the acetyl groups from the
lysine residues of histones and the latter adding the acetyl group to histones [44]. The
balancing act of HDACs and HATs serves to fine-tune chromatin structure, the accessibility
of transcriptional factors to their binding sites, and subsequent gene transcription [45].
HDAC inhibitors work by tipping the HDAC/HAT balance, leading to relaxation of the
chromatin structure and enhanced gene transcription [46]. Modifying the acetylation status
of the promoter has been shown to have a profound impact on the transcription of HDP
genes in humans, rats, rabbits, cattle, pigs, and chickens [11]. Therefore, it is, perhaps,
not surprising to see that nine out of the 10 most efficacious HDP inducers are HDAC
inhibitors, although two (CUDC-907 and CUDC-101) are known to be involved in other
functions, as well. These results are in line with our early screening, wherein the most
efficient HDP inducers were mostly HDAC inhibitors [24–26].

The PI3K/AKT/mTOR pathway is critically involved in cell growth and metabolism [47].
Several inhibitors of this pathway such as wortmannin and CUDC-907 were shown to
be potent in HDP induction in this study, which is consistent with our earlier HTS study,
in which wortmannin was identified as a top hit [25]. However, several other specific
inhibitors to PI3K, AKT, or mTOR were assessed and only had a marginal effect on HDP
induction in chicken HTC cells [25]. Additionally, butyrate, a well-known HDAC inhibitor
and HDP inducer, was recently shown to enhance mTOR phosphorylation, and knockdown
of mTOR significantly reduced butyrate-mediated β-defensin gene expression in mouse
intestinal epithelial cells [48]. These lines of apparently conflicting evidence suggest that
more studies are needed to implicate the PI3K/AKT/mTOR pathway in HDP synthesis.

Several calcium-channel blockers and serotonin-receptor antagonists were identified
as HDP inducers in this study. Consistently, tetrandrine and isotetrandrine, two calcium-
channel blockers, and dihydroergocristine mesylate, a serotonin-receptor antagonist, were
also identified in our previous screening as top hits [25]. However, the mechanism by
which these two classes of compounds induce HDP gene expression is currently unknown,
as is the case with the role of dopamine-receptor antagonists in HDP induction.

Although the majority of the hits obtained in the primary screening produced a dose-
dependent increase in the follow-up luciferase assay, the luciferase activity of approximately
half of the compounds in the secondary screening were not necessarily well-correlated
with their Z-score in the primary HTS assay. More than a dozen hits failed to show an
obvious increase in luciferase activity in the follow-up experiments. The reason for such
a discrepancy is unclear, but could be due to the fact that the compounds used in the
secondary screening were obtained from different batches of the libraries or procured from
different vendors.

Mocetinostat has been identified as the most potent HDP inducer among all hits
identified in this study. It specifically inhibits HDAC1-3 and HDAC11, but with a negligible
effect on other HDACs [49]. Mocetinostat causes hyperacetylation of histones and induces
apoptosis in cancerous cells; it is currently undergoing clinical trials, either individually
or in combination with other epigenetic agents, for several different types of cancer, with
varying degrees of success [36–39]. We have shown that mocetinostat potently induces
the expression of multiple HDP genes in different cell types and is more potent than two
of its structural and functional analogs, entinostat and tucidinostat, in enhancing HDP
synthesis and the antibacterial activity of host cells. Entinostat was identified earlier as a
highly potent HDP inducer in humans [23,41], and both entinostat and tucidinostat were
recently discovered to be among the most potent epigenetic compounds in HDP induction
in chickens [27].
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In this study, we revealed that mocetinostat is much more potent than both entinostat
and tucidinostat in chickens, which is consistent with their relative efficacy in inhibiting
class I HDACs [50]. However, it will be important to evaluate them directly in human and
porcine cells to see whether the results in chickens can be extended to other animal species or
whether it is only a species-specific observation. It is perhaps the presence of an additional
aromatic ring that confers on mocetinostat an improved efficacy in HDP induction. Given
its toxicity and limited success in current clinical trials, the application of mocetinostat for
disease control and prevention in animals and humans needs to proceed with caution, and
further chemical modifications and dosage optimization may be warranted.

It is noted that HDAC inhibitors are potent HDP inducers, but they are also well-
known for their anticancer properties [46,51]. Enhanced acetylation of histones, and partic-
ularly non-histone proteins, is largely responsible for the antiproliferative/apoptotic effect
of HDAC inhibitors. In fact, HDAC inhibition increases the acetylation and activation of
multiple proteins involved in cell-cycle arrest and apoptosis such as p53 and Ku70 [46].
However, the mechanism by which HDAC inhibitors induce HDP genes remains largely
unknown, although increased histone acetylation has been observed [11]. It is likely that the
acetylation of non-histone proteins that are critically involved in HDP gene regulation may
play a major role. For example, the activity of several transcription factors that are known
to regulate human cathelicidin antimicrobial peptide (CAMP) gene expression, including
STAT3, HIF-1, and C/EBP, can be directly enhanced by acetylation [52–54]. Therefore, it
is likely that HDP and antiproliferative/apoptotic genes are regulated independently by
different transcription factors that are further subjected to epigenetic modifications, which
helps explain the multifaceted function of HDAC inhibitors.

Collectively, we have identified multiple classes of HDP inducers, and further char-
acterization of these compounds has led to the identification of mocetinostat as the most
potent. With the potential to enhance HDP synthesis without killing bacteria directly,
mocetinostat shows promise for further development as a novel antimicrobial agent for
disease control and prevention, with minimal risk of triggering resistance.

4. Materials and Methods
4.1. Chemicals and Reagents

Cell-culture reagents including RPMI 1640 medium (without phenol red for HTS)
and antibiotics (penicillin, streptomycin, puromycin, and gentamicin) were purchased
from Lonza (Allendale, NJ, USA), Santa Cruz Biotechnology (Dallas, TX, USA), and Fisher
Scientific (Pittsburgh, PA, USA). Fetal bovine serum (FBS) was obtained from Atlanta Bio-
logicals (Flowery Branch, GA, USA). Sodium butyrate was procured from MilliporeSigma
(St. Louis, MO, USA), while mocetinostat, entinostat, and tucidinostat were obtained from
Cayman Chemical (Ann Arbor, MI, USA). Sodium butyrate was dissolved in RPMI 1640,
while all other chemicals were dissolved in dimethyl sulfoxide (DMSO). An equal volume
of RPMI 1640 or DMSO was used in all cell-culture experiments as a negative control.

4.2. Cell Culture

Chicken HTC [55] and HD11 [40] macrophage cell lines were kind gifts from Dr.
Narayan C. Rath and Dr. Hyun S. Lillehoj, respectively, at USDA Agricultural Research
Service (ARS). Both cells were cultured in complete RPMI 1640 medium (HyClone, Logan,
UT, USA) containing 10% heat-activated fetal bovine serum (Atlanta Biologicals, Flowery
Branch, GA, USA), and 100 U/mL penicillin/100 µg/mL streptomycin (Lonza, Walkersville,
MD, USA). A stable luciferase reporter cell line, HTC/AvBD9-luc, was established and
reported earlier through permanent lentiviral integration of the HTC cells with a firefly lu-
ciferase gene driven by a 2-Kb promoter of a chicken HDP gene known as avian β-defensin
9 (AvBD9) [25]. HTC/AvBD9-luc cells were maintained in complete RPMI 1640 supple-
mented with 0.5 µg/mL puromycin. All cells were incubated at 37 ◦C and 5% CO2 and
subcultured every 3–4 days.
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4.3. HTS for HDP-Inducing Compounds

HTS was conducted in the HTS Facility at the Vanderbilt Institute of Chemical Biology
(Nashville, TN, USA). A total of 5002 small-molecule compounds from the MicroSource
Spectrum Collection of biologically and structurally diverse compounds (2399), the NIH
Clinical Collections I and II of approved and experimental drugs used in human clinical
trials (618), the NCI Focused Natural Product Collection (819), the Cayman Bioactive Lipid I
Screening Library (823), the Marnett Collection of NSAID derivatives (212), the Enzo Screen-
WellTM Kinase Inhibitor Library (80), and the Selleck Chemicals Epigenetics Compound
Library (51) were included in the screening (Figure 1A). All compounds were dissolved in
DMSO to 10 mM and used in HTS at a final concentration of 20 µM. For primary screening,
HTC/AvBD9-luc cells were plated at 2 × 104 cells/well in 384-well white tissue-culture
plates in 20 µL of complete RPMI 1640 overnight, followed by stimulation with 20 µM of
each test compound for 24 h as we previously described [25,26]. Cells that were treated
with 4 mM sodium butyrate or left untreated were used as positive and negative controls,
respectively. Cell viability was measured using a CellTiter-Blue® Cell Viability Assay
kit (Promega, Madison, WI, USA) 4 h before the luciferase assay, which was performed
using the Steady-Glo® Luciferase Assay System (Promega, Madison, WI, USA). The relative
luciferase activity of each compound was determined after normalization of the cell viability.
To evaluate the robustness of the HTS, the Z’-factor [28] was calculated for each plate based
on relative luciferase activity of 12 positive and 12 negative controls. For hit selection, the
Z-score [28] was calculated for each test compound and a minimum Z-score of 2.0 was
considered a hit.

4.4. Validation of Hit Compounds

The hits were first confirmed for their relative HDP-inducing potency in HTC/AvBD9-luc
cells. HTC/AvBD9-luc cells were seeded in duplicate in 96-well plates at 4 × 104 cells/well
overnight; then, they were treated in duplicate with each hit compound at three different
concentrations (5, 10, and 20 µM) for 24 h, followed by cell-viability and luciferase assays.
The relative luciferase activity of each compound was determined after normalization
of the cell viability. For those with a minimum 20-fold increase in the relative luciferase
activity over the unstimulated controls, the compounds were further validated for their
ability to induce HDP mRNA expression in parental HTC cells. HTC cells were stimulated
in duplicate at 5, 10 and 20 µM in 12-well plates for 24 h; then, they were subjected to RNA
isolation and HDP mRNA expression analysis, as described below.

4.5. RNA Isolation and RT-qPCR

RNAzol RT (Molecular Research Center, Cincinnati, OH, USA) was used for cell lysis
and total RNA isolation. Reverse transcription of total RNA and qPCR were conducted
using iSCRIPT RT Supermix (Bio-Rad, Hercules, CA, USA) and iTaq Universal SYBR Green
Supermix (Bio-Rad), respectively, as previously described [19–21,56]. The mRNA expres-
sion levels of different chicken HDP genes were evaluated using gene-specific primers with
glyceraldehyde-3-phosphatedehydrogenase (GAPDH) as the reference gene, as described
previously [19–21,56]. The relative fold changes in mRNA gene expression were calculated
using the ∆∆Ct method [57].

4.6. Chicken Intestinal Explant Culture

A 10 cm segment of the jejunum was collected from 1- to 2-week-old broiler chick-
ens, and jejunal explants were prepared immediately after animals were sacrificed, as
previously described [25,58]. In brief, after thorough washes of a jejunal segment in cold
PBS supplemented with 100 µg/mL of gentamicin, 100 U/mL penicillin, and 100 µg/mL
streptomycin, smaller segments (approximately 5 mm × 5 mm) were prepared and placed
individually in 12-well plates containing 2 mL RPMI 1640 medium containing 10% FBS,
20 mM HEPES, 100 µg/mL gentamicin, 100 U/mL penicillin, and 100 µg/mL streptomycin;
this was followed by the addition of each compound, in triplicate, at different concen-
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trations. The explants were incubated at 37 ◦C for 24 h in a hypoxia chamber (StemCell
Technologies, Vancouver, BC, Canada) flushed with 95% O2 and 5% CO2. Total RNA
isolation and RT-qPCR analysis of chicken HDP gene expression were performed with
jejunal explants after stimulation.

4.7. Antibacterial Assay of Chicken HTC Macrophages

The influence of HDP-inducing compounds on the antibacterial activity of chicken
HTC cells was evaluated as previously described [42,59]. In brief, HTC cells were seeded
at 1 × 106 cells/well in 6-well plates in complete RPMI1640 medium. After overnight
incubation at 37 ◦C in 5% CO2, cells were stimulated with 4 mM sodium butyrate or 10 µM
of the selected compounds for 24 h; this was followed by cell lysis and the incubation of the
cell lysate with Escherichia coli (ATCC 25922) and Salmonella enterica subsp. enterica serovar
Enteritidis (ATCC 13076), at 2.5 × 105 CFU/mL, in 20% trypticase soy broth containing
1 mM NaH2PO4 and 25 mM NaHCO3 in a 96-well plate at 37 ◦C. Bacterial growth was
monitored at OD600 using a SpectraMax M3 (Molecular Devices, Sunnyvale, CA, USA) at
37 ◦C for 3, 6, 9, and 24 h.

4.8. Minimum Inhibitory Concentration (MIC) Assay

A standard broth microdilution assay was used to evaluate the MICs of selected com-
pounds in accordance with the recommendation of the Clinical and Laboratory Standards
Institute [43] as previously described [25,60–62]. Briefly, E. coli (ATCC 25922) and Salmonella
Enteritidis (ATCC 13076) were streaked onto trypticase soy agar plates. After overnight
incubation at 37 ◦C, 2–3 individual colonies were picked and grown in trypticase soy broth
(Thermo Fisher Scientific, Nazareth, PA, USA) at 37 ◦C for 3 h. The bacteria were diluted
in Mueller Hinton Broth (Thermo Fisher Scientific) to 5 × 105 CFU/mL, followed by the
addition of 90 µL/well in a 96-well tissue-culture plate. Serially diluted compounds (10 µL)
were added to each well in duplicate to final concentrations of 5, 10, 20, 40, 80, 160, and
320 µM. The MIC was defined as the lowest concentration of a compound that produced
no visible bacterial growth at 37 ◦C for 24 h.

4.9. Statistical Analysis

The results are expressed as means ± SEM. GraphPad Prism (San Diego, CA, USA)
was used to conduct one-way analysis of variance (ANOVA), followed by Dunnett’s test to
compare the differences between each treatment and the unstimulated control. Statistical
significance was considered as p < 0.05.
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Abbreviation

AKTi protein kinase B inhibitor
AvBD9 avian β-defensin 9
CaChi calcium-channel inhibitor
CLDN1 claudin 1
D2DRi dopamine receptor D2 inhibitor
EGFRi epidermal growth factor receptor antagonist
GAPDH glyceraldehyde-3-phosphate dehydrogenase
HDAC histone deacetylase
HDACi HDAC inhibitor
HDPs host defense peptides
HER2 human epidermal growth factor receptor 2 antagonist
HH1Ri histamine H1 receptor inhibitor
HMT histone methyltransferase inhibitor
HMT HMT inhibitor
HTS high-throughput screening
MIC minimum inhibitory concentration
mTOR mammalian target of rapamycin
MUC2 mucin 2
NF-κBi inhibitor to nuclear factor kappa-light-chain-enhancer of activated B cells
NRi noradrenaline reuptake inhibitor
p53a p53 activator
PBMCs peripheral blood mononuclear cells
PI3Ki phosphatidylinositide 3-kinase inhibitor
RT-qPCR reverse transcriptase-quantitative PCR
SEM standard error of the mean
TJP1 tight junction protein 1
TOPIIi topoisomerase II inhibitor
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