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Abstract: The incidence of brain metastases (BM) in cancer patients is increasing. After
diagnosis, overall survival (OS) is poor, elicited by the lack of an effective treatment. Monoclonal
antibody (mAb)-based therapy has achieved remarkable success in treating both hematologic and
non-central-nervous system (CNS) tumors due to their inherent targeting specificity. However,
the use of mAbs in the treatment of CNS tumors is restricted by the blood–brain barrier (BBB)
that hinders the delivery of either small-molecules drugs (sMDs) or therapeutic proteins (TPs). To
overcome this limitation, active research is focused on the development of strategies to deliver TPs
and increase their concentration in the brain. Yet, their molecular weight and hydrophilic nature turn
this task into a challenge. The use of BBB peptide shuttles is an elegant strategy. They explore either
receptor-mediated transcytosis (RMT) or adsorptive-mediated transcytosis (AMT) to cross the BBB.
The latter is preferable since it avoids enzymatic degradation, receptor saturation, and competition
with natural receptor substrates, which reduces adverse events. Therefore, the combination of mAbs
properties (e.g., selectivity and long half-life) with BBB peptide shuttles (e.g., BBB translocation and
delivery into the brain) turns the therapeutic conjugate in a valid approach to safely overcome the
BBB and efficiently eliminate metastatic brain cells.

Keywords: adsorptive-mediated transcytosis; antibody fragments; blood–brain barrier; brain
metastases; monoclonal antibodies; peptide shuttles

1. Brain Metastases

Brain metastases (BM) account for significant morbidity and mortality. The exact incidence is
unknown [1,2]. Based on various studies, investigators estimate that BM occurs in 10%–20% of adult
patients with cancer [3]. Nevertheless, the incidence might be higher, and it is increasing due to
prolonged life expectancy, increased resistance to cancer therapies, and improved imaging techniques.
In addition, the increased patient survival by treating primary tumors may increase the number of
patients that will develop more aggressive BM, or that are resistant to therapy. Among the different
cancer types, lung cancer (19.9%), breast cancer (15.2%), and melanoma (6.9%) are the most common
primary tumors developing BM [4]. After diagnosis, overall survival (OS) is poor. However, early
diagnosis, improved systemic therapies, and multimodality treatments have significantly increased
patients’ survival [5].

1.1. BM Pathophysiology

The pathophysiology of BM is complex and involves a multi-step process constituted of two major
stages (Figure 1) [6]. The first stage is tumor migration, which includes (i) metastatic clone progression,
due to tumor cells’ ability to degrade extracellular matrix (ECM); (ii) intravasation (transendothelial
migration of cancer cells into vessels); (iii) dissemination (spread of tumor cells via bloodstream); (iv)
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extravasation (transendothelial migration of cancer cells into tissues). The second stage corresponds to
tumor colonization.
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Figure 1. Steps in the formation of brain metastases (BM). Metastases formation begins in the 
microenvironment of the primary tumor with 1. metastatic clones developing, degrading the 
extracellular matrix (ECM), and suffering an epithelial–mesenchymal transition (EMT) to further 
detach from the connective tissue. 2. Subsequently, tumor cells invade and enter the circulation 
(intravation). 3. The dissemination within the vascular system drives tumor cells to distant sites, like 
the brain. 4. Then, they extravasate across the blood–brain barrier (BBB) and enter the brain 
parenchyma due to the release of proteolytic enzymes and cellular interactions. 5. Once inside the 
brain, cancer cells colonize the tissue and develop secondary tumors. 

The cells presented in the primary tumor are heterogeneous. Among others, the tumor 
microenvironment is composed of cancer stem cells (CSCs), partially differentiated progenitor cells, 
and fully differentiated end-stage cells [6]. Recent findings attribute to CSCs the primary 
responsibility for enhanced malignancy since they can complete the two stages of metastases 
formation (Figure 1) [7]. However, during cancer progression, other cells undergo an epithelial–
mesenchymal transition (EMT), changing their plasticity by morphological and phenotypical 
conversions [8,9]. EMT enables non-CSCs to resemble a CSC state. Thus, they acquire the ability to 
invade and colonize distant sites, creating secondary niches that may progress to a secondary tumor 
[10]. Therefore, in the end, within the tumor microenvironment, all cells are malignant. Nevertheless, 
the development of distal metastases only occurs in <0.1% of disseminated cancer cells. Thus, 
although the formation of metastases represents a major threat, it is considered highly inefficient 
[8,11]. 

1.2. BBB Physiology 

BBB is a complex system composed of a structurally distinct and continuous endothelial cell 
layer separating two brain compartments, namely, the blood and extracellular fluid. Its components 
include an endothelial cell layer, adjoined by tight cell-to-cell junction proteins, and pinocytic vesicles 
[12]. All together, they contribute to the selective permeability of the barrier, allowing brain 
homeostasis. The BBB is also dynamic. It responds to regulatory signals from both the blood and the 
brain [13], being the main portal into the brain of gaseous molecules, such as O2 and CO2, ions, 
nutrients, hormones, and water (Figure 2). Hydrophobic compounds (<500 Da) diffuse across the 
endothelium membrane. Carrier-mediated transport (CMT) is responsible for the transport of glucose 

Figure 1. Steps in the formation of brain metastases (BM). Metastases formation begins in the
microenvironment of the primary tumor with 1. metastatic clones developing, degrading the
extracellular matrix (ECM), and suffering an epithelial–mesenchymal transition (EMT) to further
detach from the connective tissue. 2. Subsequently, tumor cells invade and enter the circulation
(intravation). 3. The dissemination within the vascular system drives tumor cells to distant sites,
like the brain. 4. Then, they extravasate across the blood–brain barrier (BBB) and enter the brain
parenchyma due to the release of proteolytic enzymes and cellular interactions. 5. Once inside the
brain, cancer cells colonize the tissue and develop secondary tumors.

The cells presented in the primary tumor are heterogeneous. Among others, the tumor
microenvironment is composed of cancer stem cells (CSCs), partially differentiated progenitor cells,
and fully differentiated end-stage cells [6]. Recent findings attribute to CSCs the primary responsibility
for enhanced malignancy since they can complete the two stages of metastases formation (Figure 1) [7].
However, during cancer progression, other cells undergo an epithelial–mesenchymal transition (EMT),
changing their plasticity by morphological and phenotypical conversions [8,9]. EMT enables non-CSCs
to resemble a CSC state. Thus, they acquire the ability to invade and colonize distant sites, creating
secondary niches that may progress to a secondary tumor [10]. Therefore, in the end, within the tumor
microenvironment, all cells are malignant. Nevertheless, the development of distal metastases only
occurs in <0.1% of disseminated cancer cells. Thus, although the formation of metastases represents a
major threat, it is considered highly inefficient [8,11].

1.2. BBB Physiology

BBB is a complex system composed of a structurally distinct and continuous endothelial cell layer
separating two brain compartments, namely, the blood and extracellular fluid. Its components include
an endothelial cell layer, adjoined by tight cell-to-cell junction proteins, and pinocytic vesicles [12]. All
together, they contribute to the selective permeability of the barrier, allowing brain homeostasis. The
BBB is also dynamic. It responds to regulatory signals from both the blood and the brain [13], being
the main portal into the brain of gaseous molecules, such as O2 and CO2, ions, nutrients, hormones,
and water (Figure 2). Hydrophobic compounds (<500 Da) diffuse across the endothelium membrane.
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Carrier-mediated transport (CMT) is responsible for the transport of glucose and amino acid residues.
While water-soluble molecules (e.g., ions) cross the BBB through ion channels. On the other hand,
macromolecules (proteins and peptides) transport rely on endocytic vesicles, which involve either
receptor-mediated transport (RMT) or adsorptive-mediated transport (AMT) [14,15].
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hypothesized to create a unique brain microenvironment and to influence metastatic colonization 
[16]. The increased permeability of tumor-associated endothelial cells, due to tumor penetration into 
the brain, permits leakage of proteins and water into brain parenchyma. The mechanism described is 
responsible for the edema often associated with BM [17]. Microglia and macrophages influence tumor 
proliferation and invasion by secreting multiple cytokines, growth factors, enzymes, and reactive 
oxygen species (ROS). Other immune cells may also participate in the BBB translocation. However, 
the exact mechanisms are debatable [18–21]. The BBB structure may be affected momentarily during 
cancer cells’ invasion; however, in other non-cancer-related central-nervous system (CNS) 
pathologies, only in advanced disease stages, the dysfunction is usually significant. 
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Figure 2. Pathways across the blood–brain barrier (BBB). Representation of the BBB formed by the
endothelial cells and their interaction with astrocytes. Different translocation routes are presented.
(a) Tight junctions usually restrict the penetration of water-soluble compounds. (b) The large surface
area of the lipid membranes of the endothelium offers an efficient diffuse route for lipid-soluble
agents. (c) Several transport proteins (carriers) are present in the endothelium for glucose (Gluc-1),
amino acids, nucleosides, and other substances. (d) Large molecules such as antibodies, lipoproteins,
proteins, and peptides can only transverse the BBB by receptor-mediated transport (RMT). (e) The
transport of native plasma proteins or peptides is limited, but cationization can increase their uptake
by adsorptive-mediated transport (AMT).

Nevertheless, the BBB interacts with the metastatic cells in an unidentified way. The BBB is
hypothesized to create a unique brain microenvironment and to influence metastatic colonization [16].
The increased permeability of tumor-associated endothelial cells, due to tumor penetration into the
brain, permits leakage of proteins and water into brain parenchyma. The mechanism described is
responsible for the edema often associated with BM [17]. Microglia and macrophages influence tumor
proliferation and invasion by secreting multiple cytokines, growth factors, enzymes, and reactive
oxygen species (ROS). Other immune cells may also participate in the BBB translocation. However,
the exact mechanisms are debatable [18–21]. The BBB structure may be affected momentarily during
cancer cells’ invasion; however, in other non-cancer-related central-nervous system (CNS) pathologies,
only in advanced disease stages, the dysfunction is usually significant.
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1.3. BM Treatment

Major developments have been made in understanding brain function, metastases progression,
and the development of medical technologies. However, in many cases, the major drawback in BM
treatment is the inefficient drug delivery into the brain [22,23]. The BBB remains the most significant
obstacle to the efficient delivery of small-molecule drugs (sMDs) and therapeutic proteins (TPs) [24]. In
addition, some authors also attributed to the therapeutic resistance of metastatic cells the responsivity
for therapy inefficiency. According to them, during cancer progression, some survival pathways,
such as the PI3K/AKT/mTOR are activated in specific cells, which contributes to the poor response of
metastatic cells [25,26]. In the end, both mechanisms might be contributing to therapeutic failure.

The first-line approach to treat BM includes surgery, stereotactic radiosurgery (SRS), and
whole-brain radiation therapy (WBRT) [27–29]. However, both systemic and intracranial disease
control are also possible with the improved systemic therapies that have begun to offer greater potential
for specific cancer types and genotypes. Thus, the management of BM has become increasingly
individualized [1]. Depending on the histology and systemic disease status, physicians may consider
all the available therapies. For instance, recommendations suggest better disease management by
using a multidisciplinary modality in patients with BM from breast cancer, melanoma, and specific
genotypes of non-small cell lung cancer (NSCLC) (e.g., epidermal growth factor receptor (EGFR) gene
mutations, translocations in the anaplastic lymphoma kinase (ALK) gene). Whenever possible, patients
may enroll in clinical trials for a novel or existing therapy. Still, given the paucity of effective treatment
options, BM elimination represents an unmet clinical need [30].

2. Strategies to Overcome the BBB

The BBB restricts the delivery of therapeutics to the brain. Overall, 98% of sMDs and probably
all TPs cannot cross the barrier by free diffusion [31–33]. In the last decade, intense investigation
allowed the discovery of new strategies to increase brain penetration of existing therapeutics (invasive,
pharmacological, and physiological) [34–36]. Ideally, the translocation should not compromise the BBB
integrity. However, some of the current strategies do not meet this criterion, namely, the invasive and
pharmacological approaches.

2.1. Invasive Approach

This strategy allows drugs to flow directly from the systemic circulation into the brain by BBB
disruption using different methodologies. The most important are: (1) osmotic disruption, due
to the administration of hypertonic solutions (e.g., mannitol) causing cells shrinking based on cell
dehydration [37]; (2) ultrasound methods, which rely on transcranial delivery of low-frequency
ultrasound waves resulting in the opening of tight junctions [38]; and (3) pharmacological agents, such
as bradykinin-like compounds (e.g., histamine, bradykinin) that disrupt tight junctions by stimulating
B2 receptors presented in endothelial cells and transiently increasing cytosolic Ca2+ [39]. The costs,
anesthetic administration, and hospitalization are significant drawbacks for all these approaches. Also,
the disruption of the BBB may increase tumor dissemination, as well as irreversible neuropathological
changes due to the entry of unwanted substances [34].

2.2. Pharmacological Approach

The pharmacological approach relies on the observation that some molecules freely enter the
brain owing to their molecular weight (<500 Da), charge (low hydrogen bonding capabilities), and
lipophilicity [40]. Thus, researchers started modifying, through medicinal chemistry, molecules that
are active against CNS diseases or BM to enable them to get into the brain [31]. Although it has
enormous potential, the modifications may result in loss of pharmacological activity. In addition, the
new molecule may become a substrate for the efflux pumps by increasing drugs’ lipophilicity, which
decreases brain accumulation [34].
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2.3. Physiological Approach

This natural strategy exploits the various transporters and receptors expressed at the BBB, as
well as the physiological properties of the BBB (e.g., charge and lipid composition) (Figure 2) [41–43].
These translocation mechanisms are fundamental for the uptake of essential substances to maintain
brain homeostasis. They can be classified into: (1) CMT, which are responsible for the cross of
glucose (glucose transporter—GLUT1), amino acids (large neutral amino acid transporter—LAT1, and
cationic amino acid transporter—CAT1), and nucleosides (nucleobase transporter—NBT); (2) RMT,
fundamental for large molecules translocation, such as transferrin (transferrin receptor—TfR), insulin
(insulin receptor—IR), low-density lipoprotein (lipoprotein receptor-mediated protein—LRP), leptin
(leptin receptor—LEPR), and fragment crystallizable (Fc) fragment of immunoglobulin G (IgG) (Fc
fragment of IgG receptor transporter α—FCGRT); and finally, (3) AMT that drives albumin and other
plasma proteins to brain [44].

CMT is an interesting transporter due to the easy coupling of endogenous substrates to sMDs [45].
Besides, it is also possible to perform direct modification of sMDs to resemble CMT natural substrates.
The changes allow drugs to be recognized and transported across the BBB [46]. Nevertheless, the
molecules generated: (1) must mimic that of the endogenous CMT substrate; (2) should not affect
CMT physiological function; and (3) must maintain its pharmacological activity. So far, targeting
nanocarriers to CMTs have been the best example of the strategy’s success. However, the application
of this approach was only possible for small molecules, as revised in Witt et al. [47].

Another promising strategy to develop molecules that can efficiently cross the BBB is the RMT.
These molecules are known as Trojan Horses and can be either peptides or antibodies [48]. TfR and
IR are the most important BBB receptors explored by researchers. Pardridge et al. have extensively
documented the use of antibodies targeting these receptors [49–51]. The in vivo studies demonstrated
an accumulation of different anti-TfR monoclonal antibodies (mAbs) in the brain tissue and a distinct
biodistribution. The high affinity of antibodies towards these receptors is, however, a limitation since
results in weak receptor dissociation. Consequently, the high-affinity antibodies follow the lysosomes
pathway during intracellular trafficking leading to its degradation [52].

Yu et al. elegantly solved the problem by reducing the affinity of anti-TfR mAbs [53]. Next, the
group developed a bispecific therapeutic antibody with a low affinity for TfR and a high affinity for
the enzyme β-secretase (BACE1), an Alzheimer’s disease drug target. Relevant results were obtained
from the evaluation of the bispecific antibody efficacy in non-human primates. The brain accumulation
was significantly higher than control, and the amyloid β-peptide presence in the brain and serum
reduced considerably [54]. Similarly to TfR, exciting studies targeting IR have been developed.
Pardridge et al. have shown a total of 4% brain uptake 3 h after intravenous administration in Rhesus
monkeys. In the treatment of Parkinson’s, stroke, metachromatic leukodystrophy, and Sanfilippo type
A syndrome, some therapeutic drugs have been linked to the mAb and successfully translocated across
the BBB [49,55].

Another interesting strategy to deliver drugs into the brain exploiting RMT is the use of
nanoparticles (NPs) coupled with mAbs or peptides that recognize these receptors [43,56,57]. NPs
are colloidal carriers of natural or synthetic origin with a size varying from 1 to 1000 nm. They are a
fascinating system due to their modulating capacity concerning shape, size, hydrophobicity, coating,
chemistry, and surface charge [58]. In addition, they also have a high capacity of drug payload, the
relatively few mAbs or peptides to achieve high levels of drug targeting, protection of the encapsulated
drug, and the ability to provide a controlled release of the drug [59,60].

Although the considerable achievements accomplished, the drawback of these RMT systems
is related to the competition with natural substrates, which may affect brain homeostasis; and may
result in receptors’ saturation due to the high affinity of antibodies [34,61,62]. To overcome these
limitations, recently, more attention has been given to AMT. The concept of AMT through the BBB
began with the observation that polycationic proteins’ brain uptake did not involve binding to the
endothelial cell surface [63]. Electrostatic interaction between positively charged substances and
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negatively charged BBB drives the translocation. The vesicles created allow BBB cross and, consequently,
brain accumulation [64]. Lack of selectivity of these systems and possible BBB disruption were the
major concerns highlighted by researchers. However, the recent proof-of-concept given by the use
of cell-penetrating peptides (CPPs) in BBB translocation (BBB peptide-shuttle) has launched a new
interest in this strategy. These peptides have demonstrated a natural selectivity towards negatively
charged membranes and the ability to translocate large cargoes without BBB damage both in vitro
and in vivo models [65–67]. Therefore, the optimization of BBB peptide shuttles based-systems in the
delivery of sMDs and TPs, using AMT, will be an area of intense investigation during the next decade.

3. Therapeutic Antibodies for BM Elimination

TPs are the standard of care in a number of therapeutic areas [68]. They are protein manufactured
for biopharmaceutical use and include, for instance, mAbs, peptides, growth factors, cytokines, and
enzymes [69]. Their production is relatively easy and relies mostly on either simple purification
or recombinant DNA technology. Throughout the following sections, the description of antibodies’
activity and their therapeutic value only concern human antibodies. The activity of antibodies is
species dependent. Thus, some features presented might not be accurate for non-human antibodies.

3.1. Monoclonal Antibodies

mAbs represent the fastest growing class of TPs. Currently, over 50 therapeutic antibodies are
on the market [70]. They are complex molecules consisting of homodimers of variable and constant
regions (Figure 3) [71]. The former has antigen specificity owing to the presence of complementary
determining regions (CDRs). On the other hand, the Fc domain is responsible for the long half-life
of antibodies, due to antibody recycling after interaction to the neonatal Fc receptor (FcRn) [72]; and
immune activation (complement-dependent cytotoxicity—CDC; and antibody-dependent cellular
cytotoxicity—ADCC) by engaging Fcγ receptors (FcγRs) on immune cells (e.g., neutrophils, natural
killer cells, monocytes) [73]. High therapeutic tolerability and low risk-to-benefit ratios favor the use
of therapeutic antibodies. Thus, their exquisite specificity, high binding affinity, long half-life, low
toxicity, and versatility are characteristics that contributed to antibodies’ success [74,75]. Additionally,
the low number of drug–drug interactions between mAbs and sMDs increased their combination in
many therapeutic regimens [70].

The mechanism of action of mAbs differs depending on the molecule engineered (Figure 3). They
can target soluble mediators (e.g., cytokines) to inhibit their binding to receptors and, consequently,
inhibit signaling; or they can target membrane receptors either inducing or antagonizing signaling (e.g.,
programmed-cell death ligant-1—PD-L1; or human epidermal receptor-2—HER2, respectively) [76].
In addition, the presence of the Fc domain allows immune stimulation (CDC and/or ADCC). CDC is
related to complement activation. Complement is one of the first mediators of the immune response
to pathogens and cells. After binding, antibodies activate the classical complement cascade. Thus,
releasing cytokines (e.g., anaphylatoxins and opsonins) and forming the membrane attack complex
(MAC), which lead to cell lysis and phagocytosis [77]. On the other hand, ADCC occurred due to the
interaction of the Fc domain with FcγRs on effector immune cells (e.g., neutrophils—FcγRI, natural
killer cells—FcγIIIA; or monocytes—FcγIIIB). After recognition of an antibody-coated target cell,
effector cells engage the release of granzymes and perforins [78]. The consequence is cell death. The
magnitude of the stimulation of either CDC or ADCC depends on the IgG subset (IgG 1–4). For
instance, IgG2 and IgG4 do not activate both mechanisms. Therefore, they are designed primarily
for signaling blockage. Oppositely, IgG1 and IgG3 strongly activate both CDC and ADCC. Owing to
its short half-life due to a low FcRn affinity, IgG3 does not have the therapeutic value of other IgG
subsets [79].
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immunoglobulin G (IgG) antibodies to immune effector mechanisms (antibody-dependent cell 
cytotoxicity—ADCC; and complement-dependent cytotoxicity—CDC) by engaging Fcγ receptors 
(FcγR) on immune cells, promoting cell lysis. 

3.2. Therapeutic Value 
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such as organ transplantation (e.g., basiliximab and belatacept), inflammatory diseases (e.g., 
adalimumab and tocilizumab), and cancer (e.g., trastuzumab and cetuximab) [70]. The use of 
antibodies is increasing and improved mAb-based strategies will appear on the market in response 
to current therapeutic challenges (Figure 4). In particular, antibody research focused on the 
development of antibody fragments (e.g., single-chain Fv—scFv, single-domain antibody—sdAb, 
antigen-binding fragments—Fab); antibody–drug conjugates (ADC) (e.g., trastuzumab emtansine); 
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Nevertheless, there are some mAb-based systems already approved (Table 1) or in investigation 
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Figure 3. Main functions of therapeutic monoclonal antibodies (mAbs). mAbs have two antigen-binding
fragments (Fabs) and one constant fragment crystallizable (Fc). The variable domain of the Fab confers
specificity and binding affinity to either membrane receptors or soluble antigens. The Fc domain
binds neonatal Fc receptor (FcRn), prolonging the half-life of mAbs; and connects immunoglobulin
G (IgG) antibodies to immune effector mechanisms (antibody-dependent cell cytotoxicity—ADCC;
and complement-dependent cytotoxicity—CDC) by engaging Fcγ receptors (FcγR) on immune cells,
promoting cell lysis.

3.2. Therapeutic Value

The first mAb approved was muromonab-CD3 in the prevention of transplant rejection. Ever since,
mAbs have been introduced in a number of therapeutic regimens in a wide range of conditions, such
as organ transplantation (e.g., basiliximab and belatacept), inflammatory diseases (e.g., adalimumab
and tocilizumab), and cancer (e.g., trastuzumab and cetuximab) [70]. The use of antibodies is
increasing and improved mAb-based strategies will appear on the market in response to current
therapeutic challenges (Figure 4). In particular, antibody research focused on the development of
antibody fragments (e.g., single-chain Fv—scFv, single-domain antibody—sdAb, antigen-binding
fragments—Fab); antibody–drug conjugates (ADC) (e.g., trastuzumab emtansine); fusion proteins (e.g.,
etanercept); and intrabodies [80–82]. Although physicians use mAbs in a variety of conditions, their
applicability in the treatment of CNS diseases and BM remains challenging. Nevertheless, there are
some mAb-based systems already approved (Table 1) or in investigation (Table 2).



Pharmaceutics 2020, 12, 62 8 of 22
Pharmaceutics 2020, 12, x FOR PEER REVIEW 8 of 25 

 

 

Figure 4. Novel or innovative monoclonal antibody (mAb) strategies. Schematic representation of 
different antibody formats currently in research. (A) An intact IgG molecule alongside with various 
antibody fragments and their respective molecular weight. (B) Antibody-drug conjugates (ADC) are 
usually intact IgG molecules linked to a drug, toxin, or peptide to increase the cargo selectivity. (C) 
Fusion proteins are biopharmaceutical molecules where the binding domains can be derived from a 
receptor extracellular domain, cytokine, enzyme, and peptide. Depending on the IgG molecule, the 
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constituting the antigen-binding domain and an intracellular location domain to allow nuclear 
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respectively. Natalizumab is an IgG4 mAb targeting α4β1-integrin (very late activation antigen-4—
VLA-4), which is present on the surface of leukocytes. After binding to VLA-4, the mAb inhibits the 
interaction between VLA-4 and vascular cell adhesion molecule-1 (VCAM-1). Consequently, 
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a pivotal phase III trial (AFFIRM), natalizumab reduced clinical relapse at one-year by 68% and the 
risk of continuous progression of disability by 42–54% over two years [86]. Nevertheless, the 
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into the brain. Erenumab is an IgG2, which targets the calcitonin gene-related peptide (CGRP) 
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Figure 4. Novel or innovative monoclonal antibody (mAb) strategies. Schematic representation of
different antibody formats currently in research. (A) An intact IgG molecule alongside with various
antibody fragments and their respective molecular weight. (B) Antibody-drug conjugates (ADC)
are usually intact IgG molecules linked to a drug, toxin, or peptide to increase the cargo selectivity.
(C) Fusion proteins are biopharmaceutical molecules where the binding domains can be derived from
a receptor extracellular domain, cytokine, enzyme, and peptide. Depending on the IgG molecule,
the Fc region is capable of FcγR and C1q binding, potentially enabling the fusion protein to initiate
antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC).
(D) The scheme shows an intrabody made of a variable region of the light and heavy chain constituting
the antigen-binding domain and an intracellular location domain to allow nuclear binding.

3.3. CNS Diseases

Multiple sclerosis and episodic headache are the only neurologic pathologies where mAbs have
been administrated, which started with the approval of natalizumab [83] and erenumab [84], respectively.
Natalizumab is an IgG4 mAb targeting α4β1-integrin (very late activation antigen-4—VLA-4), which is
present on the surface of leukocytes. After binding to VLA-4, the mAb inhibits the interaction between
VLA-4 and vascular cell adhesion molecule-1 (VCAM-1). Consequently, reducing the adhesion,
attachment, and migration of leukocytes across the BBB into the CNS [85]. In a pivotal phase III
trial (AFFIRM), natalizumab reduced clinical relapse at one-year by 68% and the risk of continuous
progression of disability by 42–54% over two years [86]. Nevertheless, the therapeutic effect observed
occurs due to a peripheral action, instead of a direct antibody penetration into the brain. Erenumab is an
IgG2, which targets the calcitonin gene-related peptide (CGRP) receptor [87]. The mAb competes with
the binding of CGRP and inhibits its function at the CGRP receptor. The CGRP receptors are located at
relevant sites to migraine pathophysiology, such as the trigeminal ganglion and the paraventricular
structures. The BBB does not protect these regions. Thus, erenumab also exerts action at the periphery
and not at the brain. In phase III STRIVE clinical trial, erenumab was able to significantly reduce the
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number of migraine days per month by 3.2 versus 1.8 in the placebo group. Efficacy was sustained up
to one year [88].

A different strategy was applied in the management of Alzheimer’s disease. In this case, instead of
antibodies acting at the periphery, researchers are using mAbs and re-engineered antibody fragments
targeting natural brain portals (e.g., TfR and IR) [44]. Pardridge et al. reported for the first time an
anti-β-amyloid (Aβ) scFv fused to mAbs targeting either TfR or IR [89]. The brain uptake of the
molecule was of 0.88% ID/brain. The value is within the boundaries of the brain uptake of other drugs
that are active in the brain [44,90,91]. However, the mAb demonstrated a high affinity towards the
receptor. Thus, receptor dissociation was a major limitation. The consequence might be antibody
degradation since the molecules, instead of crossing the BBB, follow the lysosomal pathway. Yu et
al. elegantly solved the problem by reducing the affinity of these mAb [53]. In addition, the group
further developed a bispecific therapeutic antibody with a low affinity for TfR and a high affinity for
another Alzheimer’s disease drug target, the BACE1 [54]. The brain accumulation of the molecule in
non-human primates was significantly higher than control, and the amyloid β-peptide presence in the
brain and serum reduced considerably. The drawback of these RMT systems is the competition with
natural substrates, which may affect brain homeostasis; and receptor saturation due to the high affinity
of the antibodies engineered [44].

3.4. Brain Metastases

In the treatment of BM, the reality is different. In the recruitment phase of clinical trials, an active
exclusion of patients presenting BM occurs [92,93]. Therefore, to date, no clinical trial supports the
use of mAbs in the management of BM. The lack of information concerning efficacy and safety are
the main reasons. Consequently, the standard cancer regimens with well-established antibody-based
treatments cannot be applied to patients with BM [94]. Their use by physicians represents an off-label
use. Nevertheless, a class of mAbs related to immunotherapy (e.g., nivolumab, pembrolizumab) is
showing promising results. Several studies suggest their role in the elimination of metastatic tumors,
such as in the brain. Still, more data is necessary to approve these antibodies in the treatment of
metastatic brain cancers [95]. Another promising field is the radionuclide therapy. In the last years,
numerous papers have been published reporting its success in brain tumors and metastases [96].

New therapeutic targets in metastatic progression in either primary or secondary tumors have
driven intense research into the development of mAb-based systems [97,98], as they offer effective
targeted treatment with low adverse events. However, the lack of specificity and poor BBB penetration
render them ineffective. It is therefore imperative to find strategies that allow antibody translocation
across the BBB. For instance, the use of antibody fragments to reduce their molecular weight. Or
modify the mAbs to contain a translocation moiety, such as a CPPs. CPPs are effective in the delivery
of large cargoes across cell membranes and even across the BBB (BBB peptide shuttles) [66,99]. Similar
to the Trojan horse approach they engage interaction with BECs and BBB translocation, the main
advantage being that CPP does not require receptors in the majority of the cases, thus reducing the
toxicity of the system significantly.
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Table 1. Antibody therapeutics that are approved or in review for marketing for cancer or central-nervous-system (CNS) diseases.

Name Brand Name Type Target First Indication Approved or Reviewed Approval Status
(EU|USA)

[fam-]trastuzumab deruxtecan - Humanized IgG1 ADC HER2 HER2+ metastatic breast cancer N.A.|In review

Ado-trastuzumab emtansine Kadcyla Humanized IgG1 ADC HER2 Breast cancer 2013|2012

Alemtuzumab Lemtrada Humanized IgG1 CD52 Multiple sclerosis; chronic myeloid leukemia# 2013; 2001 #|2014;2001 #

Atezolizumab Tecentriq Humanized IgG1 PD-L1 Bladder cancer 2017|2016

Avelumab Bavencio Human IgG1 PD-L1 Merkel cell carcinoma 2017|2017

Bevacizumab Avastin Humanized IgG1 VEGF Colorectal cancer 2005|2004

Blinatumomab Blincyto Murine bispecific tandem scFv CD19, CD3 Acute lymphoblastic leukemia 2015|2014

Brentuximab vedotin Adcentris Chimeric IgG1 ADC CD30 Hodgkin lymphoma, systemic anaplastic large cell lymphoma 2012|2011

Cemiplimab Libtayo Human mAb PD-1 Cutaneous squamous cell carcinoma 2019|2018

Cetuximab Erbitux Chimeric IgG1 EGFR Colorectal cancer 2004|2004

Daclizumab Zinbryta; Zenapax Humanized IgG1 IL-2R Multiple sclerosis #; prevention of kidney transplant rejection # 2016 #; 1999 #|2016 #; 1997 #

Daratumumab Darzalex Human IgG1 CD38 Multiple myeloma 2016|2015

Dinutuximab Unituxin Chimeric IgG1 GD2 Neuroblastoma 2015|2015

Durvalumab IMFINZI Human IgG1 PD-L1 Bladder cancer 2018|2017

Edrecolomab Panorex Murine IgG2a EpCAM Colon cancer 1995 *#|NA

Elotuzumab Empliciti Humanized IgG1 SLAMF7 Multiple myeloma 2016|2015

Enfortumab vedotin - Human IgG1 ADC Nectin-4 Urothelial cancer N.A.|In review

Eptinezumab - Humanized IgG1 CGRP Migraine prevention N.A.|In review

Erenumab Aimovig Human IgG2 CGRP Migraine prevention 2018|2018

Fremanezumab Ajovy Humanized IgG2 CGRP Migraine prevention 2019|2018

Galcanezumab Emgality Humanized IgG4 CGRP Migraine prevention 2018|2018

Gemtuzumab ozogamicin Mylotarg Humanized IgG4 ADC CD33 Acute myeloid leukemia 2018|2017; 2000 #

Ibritumomab tiuxetan Zevalin Murine IgG1 CD20 Non-Hodgkin lymphoma 2004|2002

Idarucizumab Praxbind Humanized Fab Dabigatran Reversal of dabigatran-induced anticoagulation 2015|2015

Inotuzumab ozogamicin BESPONSA Humanized IgG4 ADC CD22 Acute lymphoblastic leukemia 2017|2017

Ipilimumab Yervoy Human IgG1 CTLA-4 Metastatic melanoma 2011|2011

Isatuximab - Humanized IgG1 CD38 Multiple myeloma In review|In review

Natalizumab Tysabri Humanized IgG4 α4 integrin Multiple sclerosis 2006|2004

Nebacumab Centoxin Human IgM Endotoxin Gran-negative sepsis 1991 *#|N.A.

Necitumumab Portrazza Human IgG1 EGFR Non-small cell lung cancer 2015|2015

Nivolumab Opdivo Human IgG4 PD1 Melanoma, non-small cell lung cancer 2015|2014



Pharmaceutics 2020, 12, 62 11 of 22

Table 1. Cont.

Name Brand Name Type Target First Indication Approved or Reviewed Approval Status
(EU|USA)

Obinutuzumab Gazyva Humanized IgG1
Glycoengineered CD20 Chronic lymphocytic leukemia 2014|2013

Ocrelizumab OCREVUS Humanized IgG1 CD20 Multiple sclerosis 2018|2017

Ofatumumab Arzerra Human IgG1 CD20 Chronic lymphocytic leukemia 2010|2009

Olaratumab Lartruvo Human IgG1 PDGFRα Soft tissue sarcoma 2016|2016

Panitumumab Vectibix Human IgG2 EGFR Colorectal cancer 2007|2006

Pembrolizumab Keytruda Humanized IgG4 PD1 Melanoma 2015|2014

Pertuzumab Perjeta Humanized IgG1 HER2 Breast cancer 2013|2012

Polatuzumab vedotin Polivy Humanized IgG1 ADC CD79b Diffuse large B-cell lymphoma In review|2019

Ramucirumab Cyramza Human IgG1 VEGFR2 Gastric cancer 2014|2014

Rituximab MabThera Chimeric IgG1 CD20 Non-Hodgkin lymphoma 1998|1997

Sacituzumab govitecan - Humanized IgG1 TROP-2 Triple-negative breast cancer N.A.|In review

Tafasitamab - Humanized IgG1 CD19 Diffuse large B-cell lymphoma N.A.|In review

Tositumomab-l131 Bexxar Murine IgG2a CD20 Non-Hodgkin lymphoma N.A.|2003 #

Trastuzumab Heceptin Humanized IgG1 HER2 Breast cancer 2000|1998

ADC, Antibody–drug conjugate; CGRP, Calcitonin gene-related peptide; CTLA-4, Cytotoxic T-lymphocyte-associated protein 4; EGFR, Epidermal growth factor receptor; EpCAM,
Epithelial cellular adhesion molecule; Fab, Fragment antigen-binding; HER2, Human epidermal growth factor receptor-2; mAb, Monoclonal antibody; PD1, Programmed cell death
protein-1; PDGFR, Platelet-derived growth factor receptor; PD-L1, Programmed death-ligand 1; scFv, Single-chain fragment variable; SLAMF7, Signaling lymphocytic activation molecule
F7; TROP-2, Tumor-associated calcium signal transducer 2; VEGF, Vascular endothelial growth factor; N.A. Not approved; * Country-specific approval; # Withdrawn or marketing
discontinued. Adapted from [100].
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Table 2. Antibody therapeutics that are in investigation for cancer or central-nervous-system (CNS) diseases.

Name Type Target Clinical Indications Most Advanced Phase

(vic-)trastuzumab duocarmazine Humanized IgG1 ADC HER2 Breast cancer Phase 3

[125I]-mAb 425 Human mAb EGFR Glioblastoma Phase 2

[131I]-BC-2 mAb Human mAb Tenascin Glioblastoma Phase 1/2

[131I]-chTNT-1/B MAb Human mAb DNA-histone H1 complex Glioblastoma Phase 1/2

[131I]-SGMIB anti-HER2 VHH1 Humanized VHH HER2 Breast cancer Phase 1

[188Re]-labeled
Nimotuzumab Humanized mAb EGFR Glioblastoma Phase 1

[211At]-labeled
81C6 mAb Human mAb Tenascin Glioblastoma Phase 1/2

131I-omburtamab Murine mAb, radio-labeled BT-H3 Neuroblastoma central nervous system/leptomenigeal metastases Phase 2/3

68-Ga-NOTA-anti-HER2 VHH1 Humanized VHH HER2 Brain metastases of breast carcinoma Phase 2

ABBV-8E12 Human mAb Tau protein Alzheimer’s disease Phase 2

Aducanumab Human IgG1 Amyloid beta Alzheimer’s disease Phase 3

AL002 Human mAb TREM2 receptor Alzheimer’s disease Phase 1

AL003 Human mAb SIGLEC-3 Alzheimer’s disease Phase 1

ALX-0651 Humanized VHH CXCR4 - Phase 1

Andecaliximab Humanized IgG4 MMP9 Gastric or gastroesophageal junction adenocarcinoma Phase 3

BAT8001 Humanized IgG1 ADC HER2 Breast cancer Phase 3

BCD-100 Human mAb PD-1 Melanoma Phase 2/3

Bernarituzumab Humanized IgG1 FGFR2b Gastric or gastroesophageal junction adenocarcinoma Phase 3

BIB092 Human mAb Tau protein Alzheimer’s disease Phase 2

biotin-coupled BC-4 +
Avidin + [90Y]-Biotin Human mAb Tenascin Glioblastoma Phase 1/2

Bispecific nb-derived CAR-T cells Bispecific Humanized tandem VH CD19/CD20 Refractory/relapsed B-cell lymphoma Phase 1

Camrelizumab Humanized IgG4 PD-1 Hodgkin’s lymphoma, hepatocellular carcinoma Phase 3

Carotuximab Chimeric IgG1 Endoglin Angiosarcoma Phase 3

Crenezumab Humanized IgG4 Amyloid beta Alzheimer’s disease Phase 3

CS1001 Human mAb PD-L1 Non-small cell lung cancer Phase 3

Depatuxizumab mafodotin IgG1 ADC EGFR Glioblastoma Phase 2b/3

Donanemab Humanized IgG1 mAb Amyloid beta Alzheimer’s disease Phase 2

Enfortumab vedotin Human IgG1 ADC Nectin-4 Urothelial cancer Phase 3

Eptinezumab Humanized IgG1 CGRP Episodic migraines Phase 3

Gantenerumab Human IgG1 Amyloid beta Alzheimer’s disease Phase 3
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Table 2. Cont.

Name Type Target Clinical Indications Most Advanced Phase

I-131-BC8 Murine IgG1, radio-labeled CD45 Ablation of bone marrow to hematopoietic cell transplantation in AML
patients Phase 3

IBI308 Human mAb PD-1 Squamous cell non-small cell lung cancer Phase 3

Isatuximab Humanized IgG1 CD38 Multiple myeloma Phase 3

JNJ-63733657 Human mAb Tau protein Alzheimer’s disease Phase 1

KN035 mAb single domain PD-L1 Bile tract carcinoma Phase 3

L19IL2 + L19TNF scFv conjugates Fibronectin extra-domain B Melanoma Phase 3

Loncastuximab tesirine Humanized IgG1 ADC CD19 Diffuse large B-cell lymphoma Phase 2

Margetuximab Chimeric IgG1 HER2 Breast cancer Phase 3

Mirvetuximab soravtansine IgG1 ADC Folate receptor 1 Ovarian cancer Phase 3

Naxitamab Humanized mAb GD2 High-risk neuroblastoma and refractory osteomedullary disease Phase 3

Opicinumab Human mAb LINGO-1 Multiple sclerosis, acute optic neuritis Phase 2

Oportuzumab monatox Humanized scFv immunotoxin EpCAM Bladder cancer Phase 3

Polatuzumab vedotin Humanized IgG1 ADC CD79b Diffuse large B-cell lymphoma Phase 3

Relatlimab Human mAb LAG-3 Melanoma Phase 2/3

Rovalpituzumab tesirine Humanized IgG1 ADC DLL3 Small cell lung cancer Phase 3

Semorinemab Humanized IgG4 Tau protein Alzheimer’s disease Phase 2

Solanezumab Humanized IgG1 mAb Monomers Alzheimer’s disease Phase 3

Spartalizumab Humanized IgG4 PD1 Melanoma Phase 3

Tisdelizumab Humanized mAb PD1 Non-small cell lung cancer, Hodgkin’s lymphoma Phase 3

Trastuzumab deruxtecan Humanized ADC HER2 Breast cancer, HER2+ gastric or gastroesophageal junction
adenocarcinoma Phase 3

Tremelimumab Human IgG2 CTLA4 Non-small cell lung, head & neck, urothelial cancer Phase 3

TSR-042 Humanized mAb PD1 Ovarian cancer Phase 3

Ublituximab Chimeric IgG1 CD20 Chronic lymphocytic leukemia Phase 3

Utomilumab Human IgG2 CD137 Diffuse large B-cell lymphoma Phase 3

XMAB-5574 Humanized IgG1 CD19 Diffuse large B-cell lymphoma Phase 2/3

Zagotenemab Human mAb Tau protein Alzheimer’s disease Phase 2

Zolbetuximab Chimeric IgG1 Claudin-18.2 Gastric or gastroesophageal junction adenocarcinoma Phase 3

ADC, Antibody–drug conjugate; AML, Acute myeloid leukemia; CGRP, Calcitonin gene-related peptide; CTLA-4, Cytotoxic T-lymphocyte-associated protein 4; CXCR4, Chemokine
receptor type 4; DLL3, Delta-like protein 3; EGFR, Epidermal growth factor receptor; EpCAM, Epithelial cellular adhesion molecule; HER2, Human epidermal growth factor receptor-2;
LAG-3, Lymphocyte-activation gene 3; mAb, Monoclonal antibody; MMP-9, Matrix metalloproteinase-9; PD1, Programmed cell death protein-1; PD-L1, Programmed death-ligand 1; scFv,
single-domain fragment variable; TREM2, Triggering receptor expressed on myeloid cells 2. Adapted from [96,101–104].
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4. The Role of BBB Peptide-Shuttles

CPPs are short peptides (less than 30 amino residues) capable of crossing cell membranes without
causing significant membrane damage [99]. They represent a broad group of peptides with different
physicochemical properties. Accordingly, they can be: (1) cationic, which comprises peptides with
highly positive charges at physiological pH; (2) amphipathic, that contains both polar (hydrophilic)
and nonpolar (hydrophobic) regions of amino acids; and (3) hydrophobic, the less studied class, which
are CPPs mainly containing nonpolar residues, resulting in a low net charge. Naturally occurring
proteins and peptides are the principal sources of CPPs [105,106], however, to optimize the peptides’
properties, fully engineered peptides have been designed, based on computational modeling [107].

The specific internalization mechanism of CPPs is unclear [108,109]. The peptide’s
concentration, the cargo conjugated, the physicochemical properties, and molecular weight are
features affecting the efficiency of cellular entry, as well as the internalization pathway followed.
Nevertheless, energy-dependent endocytic pathways, which include clathrin-mediated endocytosis,
caveolin-mediated endocytosis, and macropinocytosis, are considered the main translocation
mechanisms [110]. The intensive research using peptides and the development of technologies
that allowed their conjugation to TPs (e.g., recombinant DNA technology) resulted in the capacity of
cargo-transportation not only across cell membranes, especially epithelia, but also the endothelial BBB
(BBB peptide shuttle).

Human Immunodeficiency Virus Trans-activator of transduction (TAT) peptide was the first
peptide demonstrating translocation properties [111]. Subsequently, many other peptides, like SynB,
Penetratin, Angiopep-2, dNP2, and PepH3 were studied with relevant results [112]. Despite the
variation in length and amino acids’ sequence, these peptides share common features. Among others,
their amphipathic nature, net positive charge, theoretical hydrophobicity, helical moment, as well
as the ability to interact with lipid membranes. The mechanism by which these peptide shuttles
cross the BBB and mediate cargo translocation is not fully understood and may vary according to the
concentration, cell type, and the cargo of interest [113]. Direct membrane permeation, RMT, and AMT
are the three principal possibilities. The latter constitutes an advantage compared with others since it
avoids enzymatic degradation, problems related to endosomal escape, receptor saturation, and toxicity,
among others. The process is based on the electrostatic binding of positive charge peptide-shuttle
to negative charge proteoglycans (Figure 2), forming a vesicle that transports the system across the
endothelial cells layer [112].

The efficiency of large proteins delivery, such as antibodies or fusion proteins across cell membranes
by CPPs, has been intensively studied, mainly in vitro. However, the delivery to the brain by peptide
shuttles was not. Schwarze et al. performed the first in vivo study using BBB peptide shuttles. In
their work, they successfully delivered a 120 kDa β-galactosidase fused to TAT into the brain [114].
These results showed that the direct delivery of proteins into the brain was possible. Afterward, others
conjugated TAT to B-cell lymphoma-extra-large (TAT-Bcl-xL), glial cell-derived neurotrophic factor
(TAT-GDNF), NR2B9c (TAT-NR2B9c), and c-Jun N-terminal kinase-1 (TAT-JNK1) fusion proteins, and
evaluated their concentration in the brain [115]. In addition, the use of rabies virus glycoprotein
(RVG) fused to brain-derived neurotrophic factor (RVG-BDNF), and fibroblast growth factor-4 (FGF4)
fused to suppressor of cytokine signaling-3 (FGF4-SOCS3) also validated the use of these peptide
shuttles [116,117].

Angiopep-2 is a 19-amino acid peptide, derived from the Kunitz domain, which binds to LRP1
and efficiently penetrates the BBB via RMT. In the study performed by Demeule et al., the translocation
of angiopep-2 in an in vitro BBB model was found to be seven-fold higher than of aprotinin, an LRP1
natural ligand with BBB translocation properties [118]. Furthermore, the apparent distribution of
the peptide shuttle in vivo was far greater than both transferrin and aprotinin, confirming the BBB
translocation capabilities of angiopep-2. To further challenge the peptide, researchers conjugated it to
an anti-HER2 mAb to investigate the ability of cargo translocation across the BBB. HER2+ breast cancer
patients demonstrate a high incidence of BM. The low concentration of mAb in the brain provides a
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“sanctuary site” for tumor proliferation. Nevertheless, in this study, after carotid artery administration,
60% of the molecule was localized in the brain, demonstrating high brain accumulation. Besides,
increased survival was reported compared with control [119].

dNP2 is an amphiphilic human-derived CNS-permeable peptide shuttle. To evaluate the abilities
of cargo translocation across the BBB, Lim et al. conjugated the peptide with the cytoplasmic domain
of CTLA4 (ctCTLA-4) [120]. CTLA-4 is an immune regulatory receptor expressed on the surface of T
cells and often associated with susceptibility to multiple sclerosis. Thus, proving the autoimmune
pathogenesis of the disease. In Lim et al. study, the administration of the dNP2-conjugated ctCTLA-4
protein successfully controlled autoimmune effector T-cell responses in an experimental autoimmune
encephalomyelitis (EAE) model, an experimental mouse model of multiple sclerosis. The exact
mechanism of BBB translocation and cell internalization were not determined. However, due to dNP2
properties, BBB crossing was considered to be AMT, and cellular uptake of the fusion protein through
lipid-raft mediated endocytosis [120].

The most recent peptide shuttle reported is PepH3, a cationic peptide derived from Dengue virus
type-2 capsid protein (DEN2C) [121]. In Neves et al. study, the in vitro BBB transmigration after 24 h
was 67.2%. Furthermore, in an in vivo model, the peptide showed a brain biodistribution of 0.31% after
5 minutes. Although the exact mechanism is not fully described, studies with endocytosis inhibitors
reveal that the PepH3 mechanism is consistent with the AMT. The peptide BBB translocation capacity
was also evaluated in conjugation to anti-β-amyloid protein 42 (bAP42) sdAb (anti-bAP42 sdAb) [122].
bAP42 is an amyloid precursor protein fragment that plays a significant role in the formation of “senile
plaques” characteristic of Alzheimer’s disease. Through conjugation of PepH3 to an antibody fragment,
the investigators expected the increase in antibody concentration in the brain, followed by binding
to bAP42, decreasing plaques formation. Also, the complex may be detected in peripheral blood
aiding in the diagnosis of disease. Interestingly, the PepH3-anti-bAP42 sdAb conjugate showed a
brain accumulation of 1.5% after the same period (5 minutes), showing that cargoes do influence the
translocation mechanisms of BBB peptide shuttles [122].

The results obtained with these fusion proteins are promising. Nevertheless, their high elimination
rates prevent the clinical use of such peptide shuttles-based systems. Peptides and small proteins are
rapidly metabolized by serum/tissue proteases and easily eliminated by glomerular filtration [123].
Since they do not present a high circulation time, BBB translocation is also affected. By increasing
circulation time, the brain concentration the conjugates will improve, due to a higher contact frequency
and interaction time. Thus, increasing the half-life of such systems will hypothetically augment brain
accumulation. Several strategies are available. The most interesting methods explore the human serum
albumin protein (HSA) and the FcRn mediated recycling [124].

In the peptide shuttles-based approaches mentioned, researchers used mainly antibody fragments
of a full IgG as therapeutic agents [120,122]. However, antibodies are proteins also used as
pharmacokinetic enhancers owing to their Fc region. Thus, a strategy combining these properties with
the translocation capabilities of peptide shuttles will improve the half-life of the system and increase
brain accumulation. Depending on the target selected, the strategy may be used to eliminate BM
or CNS diseases. Since antibodies are large proteins and BBB translocation is complicated, instead
of a full antibody, the engineering of a minibody comprising the antibodies’ minimal domains (Fc
fragment and variable region) to keep the antibody properties is preferable. In this, a reduction from
150 kDa for 25–80 kDa is achieved (Figure 4). These molecular weights are similar to the fusion proteins
studied, increasing the interest of the strategy proposed. Another approach is the nanobodies (smallest
Ab-derivative) which reveal promising results in preclinical and clinical studies in the elimination of
brain tumors [102,125,126].

5. Conclusions and Future Perspectives

Our understanding of cancer biology and technological advances in cancer diagnosis and therapy
improved significantly over the past decades. One of the landmarks for reversing the worldwide
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increase in cancer incidence and mortality was the development of more effective, tumor-specific, and
less toxic anti-cancer drugs. The use of targeted therapy of human cancers using mAb-based systems
has revolutionized cancer therapy. They are currently being used as the first choice to treat some of the
most frequent metastatic cancers, such as HER2+ breast cancers or colorectal cancers. More recently,
the efficacy demonstrated by antibodies inhibiting immune checkpoints has extended their use in other
tumor types. In addition, they have also been introduced in many therapeutic protocols in combination
with sMDs. For the treatment of cancer, the Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) have approved 32 mAbs-based systems. Interestingly, between 2012 and
2017 the number has doubled. Therefore, the value of mAbs in cancer therapy is undisputable.

Despite the excitement of mAbs-based systems in cancer treatment, their use in brain cancers and
BMs are limited since they are unable to cross the BBB. Their molecular weight and hydrophilic nature
difficult brain accumulation. Therefore, to create BM specific mAbs-based systems, they need to be
modified to get across the BBB. Many strategies have been employed for mAbs to become a reality in the
treatment of BMs. The most promising uses BBB peptide shuttles conjugated to mAbs-based systems.
These peptides use endogenous routes, such as RMT or AMT to cross the BBB. Although RMT has been
by far the most exploited route, it presents several disadvantages, namely, the receptor’s saturation and
natural ligand competition. Therefore, with the advent of many peptide shuttles exploring AMT, the
crossing of the BBB without interfering with brain homeostasis has become a reality. Consequently, the
number of studies involving BBB peptide shuttles mAb-based systems are increasing in the literature.

In conclusion, BBB peptide shuttles mAb-based systems are being designed and studied with
some limitations. However, the attractive results within different studies validate their application.
Consequently, in the near future, it is expected a significant increase in the number of molecules
conjugated to BBB peptide shuttles pushing the use of antibodies for the treatment of BMs into a reality.
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