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Simple Summary: Our study aims to develop a novel quantitative analysis method that can increase
the oral cancer detection rate for screening oral cancer. We used two different optical techniques,
a light-based detection technique (VELScope) and a vibrational spectroscopic technique (Raman
spectroscopy). First, we analyzed and evaluated the performance of these two techniques individually
using PCA–LDA, and PCA–QDA classifiers. The PCA–LDA of Raman spectroscopy had 82.9%
accuracy, 80% sensitivity, and 85.7% specificity, while the region of interests on the autofluorescence
images were differentiated with 90% accuracy, 100% sensitivity, and 80% specificity. Afterward,
we combined both techniques and evaluated their performance. The combination of two optical
techniques can differentiate the cancer and normal groups with 97.14% accuracy, 100% sensitivity,
and 94.3% specificity. The main advantage of our study is that we can confirm our results by using
two different techniques that are completely independent of each other. That is the reason that the
combination of two techniques can increase the sensitivity and specificity.

Abstract: In this study, we developed a novel quantitative analysis method to enhance the detection
capability for oral cancer screening. We combined two different optical techniques, a light-based
detection technique (visually enhanced lesion scope) and a vibrational spectroscopic technique
(Raman spectroscopy). Materials and methods: Thirty-five oral cancer patients who went through
surgery were enrolled. Thirty-five cancer lesions and thirty-five control samples with normal
oral mucosa (adjacent to the cancer lesion) were analyzed. Thirty-five autofluorescence images
and 70 Raman spectra were taken from 35 cancer and 35 control group cryopreserved samples.
The normalized intensity and heterogeneity of the 70 regions of interest (ROIs) were calculated along
with 70 averaged Raman spectra. Linear discriminant analysis (LDA) and quadratic discriminant
analysis (QDA) were used with principal component analysis (PCA) to differentiate the cancer and
control groups (normal). The classifications rates were validated using two different validation
methods, leave-one-out cross-validation (LOOCV) and k-fold cross-validation. Results: The
cryopreserved normal and tumor tissues were differentiated using the PCA–LDA and PCA–QDA
models. The PCA–LDA of Raman spectroscopy (RS) had 82.9% accuracy, 80% sensitivity, and
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85.7% specificity, while ROIs on the autofluorescence images were differentiated with 90% accuracy,
100% sensitivity, and 80% specificity. The combination of two optical techniques differentiated
cancer and normal group with 97.14% accuracy, 100% sensitivity, and 94.3% specificity. Conclusion:
In this study, we combined the data of two different optical techniques. Furthermore, PCA–LDA and
PCA–QDA quantitative analysis models were used to differentiate tumor and normal groups, creating
a complementary pathway for efficient tumor diagnosis. The error rates of RS and VELcope analysis
were 17.10% and 10%, respectively, which was reduced to 3% when the two optical techniques
were combined.

Keywords: autofluorescence; cryopreserved tissue; oral cancer; Raman spectroscopy; PCA–LDA and
PCA–QDA

1. Introduction

Oral cancer is one of the most common cancers worldwide and is closely associated with
smoking, drinking alcohol, chewing tobacco, and consuming betel quid [1]. It accounts for 90%
of the oral malignancies among the 300,000 cases diagnosed annually [2]. According to Stewart [3],
approximately 60% of new cases of oral cancer and 68% of deaths related to oral cancer occur in Asia.
Taiwan has one of the world’s highest incidence rates of oral cancers [4]. The most common oral
cancer is squamous cell carcinoma (SCC), which is usually diagnosed late, resulting in an overall
five-year survival rate of 50% [5]. Early diagnosis and timely treatment may prevent oral potentially
malignant disorders (OPMDs) from transforming into oral cancer [6]. Although biopsies are the
gold standard for diagnosing oral cancer, they require an incision and are therefore invasive and
painful. Biopsies are also time-consuming; therefore, clinicians increasingly favor non-invasive
techniques such as light-based detection methods and other optical diagnostic technologies [7].
Optical imaging techniques have become adjunctive tools in oral cancer screening and utilize tissue
autofluorescence arising from endogenous chromatophores to identify the presence of malignant
tissue. The visualization of normal and abnormal tissues through use of optical imaging methods can
improve the visual perception. These optical methods can exploit differences in the optical properties
of tissues, such as fluorescence, reflectance, and chemiluminescence. The main fluorophores in the
range of 400–460 nm are nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide
(FAD), cellular coenzymes, collagen, and elastin in connective tissue. The Visually Enhanced Lesion
Scope (VELscope) is a handheld device that increases the visibility of oral membrane abnormalities
by activating tissue fluorescence. Evidence of the capability of light-based detection methods for oral
cancer screening is contradictory [8]. Previously, we reported a quantitative analysis method to classify
autofluorescence images using the VELscope, thus improving use of the VELscope [9]. This quantitative
analysis method can successfully differentiate normal, premalignant, and malignant lesions.

Raman spectroscopy (RS) is a vibrational spectroscopic technique. It is one of the most widely used
non-invasive techniques for the non-destructive characterization of molecules and other material [10].
RS investigates the vibrational modes of a molecule that are sensitive to its chemical bonds and
provides a unique “fingerprint” that enables the identification of chemicals [11]. RS has become a
common technique in biological and medical applications in the early diagnosis of various types of
cancer [12–14]. Some studies have explored the efficacy of RS to distinguish between normal and
abnormal and between normal, premalignant, and malignant forms of oral mucosa using various
preservation techniques and analytical methods [15–21]. We previously investigated the efficacy of RS
(with an excitation wavelength of 532 nm) for subsite (tongue, buccal mucosa, and gingiva) oral cancer
detection [22]. In that study, we used cryopreserved fresh tissue sample to classify normal and tumor
tissues. Light-based detection and optical diagnostic techniques have great potential for screening and
monitoring OPMDs [7]. Currently, there is no standalone method that can accurately identify OPMDs.
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In this study, we combined two optical techniques to detect oral cancer; we obtained
autofluorescence images using a VELscope (400–460 nm wavelength) and a vibrational spectroscopic
technique using RS that employs a 532 nm laser source of excitation. Based on the autofluorescence
images, we determined the intensity and the heterogeneity of lesions, while the RS detected biochemical
perturbations in tissue based on the scattering of light by the vibrating molecules. Heterogeneity is
calculated by the standard deviation of the lesions; it is an important feature in analyzing images, as it
helps one distinguish between normal and abnormal lesions. The alteration of cellular metabolism in
cancer patients is a prominent marker of tumor heterogeneity [23]. Oral cancer tissues have higher
heterogeneity compared to normal or healthy mucosa. In Raman spectra, the intensity of the measured
Raman scattering versus the Raman shift (wave numbers) is plotted. To achieve chemical information,
the chemical bond vibration frequencies are measured in wave numbers. We have computed intensities
and the heterogeneity of the region of interest (ROI) from autofluorescence images. These two different
optical sources (light-based detection and vibrational spectroscopic technique) have been used to excite
the fluorophores, such as NADH and FAD, and to exploit biochemical characteristics in tissues/organs.
Our novel approach (combining the two optical techniques) can enhance the differentiation efficacy
between abnormal and normal lesions with the highest sensitivity and specificity. This work is the first
attempt to enhance the accuracy of a system by combining two different optical techniques.

2. Materials and Methods

2.1. Patients and Data Collection

This study was approved by the Institutional Review Board (IRB) of the Chang Gung Medical
Foundation (IRB No: 201800420B0 and 201801960B0) in Taiwan. It was performed in the Department
of Otolaryngology—Head and Neck Surgery with the written and informed consent of the enrolled
participants. All specimens, autofluorescence images, and pathology reports were collected at Chang
Gung Memorial Hospital for analysis. Thirty-five oral cancer patients who had histologically proven
malignancies were tested. One normal sample and one cryopreserved tumor tissue sample were
collected from each patient. Table 1 summarizes the demographics of the thirty-five patients who were
classified by their lesions at different subsites. Normal tissues (control group) were taken from a site
adjacent to the tumor at the time of surgery. The study period was from Feb 2017 to July 2019. Figure 1
shows the block diagram of our proposed method of analysis. First, we collected all patient data from
the hospital. All cryopreserved specimens were collected for the RS analysis. Seventy samples were
collected from different subsites such as the tongue, buccal mucosa, gingiva, and mouth floor. All the
specimen were at least 3 × 3 mm in size. The tumor samples were obtained immediately after surgery,
while surgically resected tissues adjacent to the tumor (normal-appearing mucosa) were obtained
15–30 mins following surgical excision. The distance from the tumor border to the adjacent tissue
was 1.5 to 2 cm. A clinician checked this margin by frozen section to ensure there was no tumor or
premalignancy in the resection periphery. The cryopreserved samples were kept in liquid nitrogen
(N2) at −80 ◦C immediately after the surgery to prevent changes in morphology. This method does
not affect the measurements [24]. Each sample was analyzed by RS. Five spectra of each tissue sample
were recorded at different locations due to the heterogeneous nature of the tissue. A total of 350 spectra
were recorded from tumor and normal tissues (each per 175), yielding 70 averaged spectra (70 = 350/5).
The same patients of malignancy were captured under the VELscope, and 35 autofluorescence images
were collected for analysis. Thirty-five autofluorescence images with 70 ROI images (35 of tumor and
35 from adjacent site to the tumor or control group) were recorded. Figure 2 shows a autofluorescence
image with two selected ROIs (tumor and control). All the ROIs from autofluorescence images were
selected by the clinician (Dr. S.F. Huang). Figure 3 shows an example of a recorded autofluorescence
image with selected ROIs (normal and tumor) and measured Raman spectra.
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Table 1. Patient demographics in 35 patients.

Characteristics N(%)

Sex
Male 31 (89)
Female 4 (11)

Stage
T1 3 (9)
T2 11 (31)
T3 10 (29)
T4 11 (31)

Subsites
Tongue 8 (23)
Buccal mucosa 18 (51)
Gingiva 8 (23)
Mouth floor 1 (3)

Figure 1. Flowchart of the proposed method.

Figure 2. Lower gum cancer region of interest (ROI) denoted by a red circle and adjacent site of tumor
(normal region) denoted by a black circle (a) under white light and (b) under the VELscope.
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Figure 3. Autofluorescence image with selected ROI: (a) normal, (b) tumor. The mean of recorded
Raman spectra for cryopreserved tissues: (c) normal, (d) tumor.

2.2. Preprocessing and Data Analysis Methods

Data processing and analysis were performed using MATLAB (R2018a, MathWorks, MA, USA).
For Raman data, a Savitsky–Golay filter (of order 3) was used to smooth the recorded spectra to
remove interference. Then, baseline correction was performed, and normalized spectra were used to
eliminate data redundancy. Similarly, for autofluorescence images (VELscope data), the intensity and
standard deviation for each ROI were calculated. Then, normalized value of intensity and standard
deviation was enumerated to neutralize the autofluorescence effect in the ROI that arose from the parts
of the image outside the ROI. These parts could include teeth, the supporting device, a prosthesis or
prostheses, or filling materials.

2.3. Raman Spectroscopy (RS)

Each sample was placed on a glass substrate, and spectra were recorded using an RS instrument
(ProTrusTech co. LTD, Taiwan). This system consisted of a laser (532 nm wavelength) as an excitation
source with a maximum power of 126 mW. The spectral acquisition parameters were: laser power:
6.3 mW∼12.6 mW; integration time: 5 seconds; acquisition time: 15s. The average value of the
spectrum was 3 (averaged over three spectra). The spectra resolution specified by the manufacturer
was 1 cm−1. The laser spot size was 6 ∼ 8 micron. Five spectra were acquired from each sample for a
total of 350 spectra from 70 samples. Seventy cryopreserved samples of cancer and control (normal)
groups were tested randomly.

2.4. VELscope

The autofluorescence images were taken using the VELscope Vx (LED Dental and Apteryx,
Atlanta Georgia, GA, USA). To capture the images, the VELscope was adapted with an
eight-million-pixel iPod Touch (Apple, Atlanta, GA, USA).

2.5. Analysis Method

Principal component analysis (PCA) was used to reduce the number of dimensions. It provides
principal components (coordinates) based on new dimensions. The number of PCA components was
less than the half of minimal sample classes to avoid overfitting [25]. Linear discriminant analysis
(LDA) and quadratic discriminant analysis (QDA) classifiers were used to study the boundary between



Cancers 2020, 12, 3364 6 of 14

classes and probabilities of classification; these techniques enhance the separation boundary of between
class variance and within class variance. Due to this, the data variation increases in the same class
and detachment between classes. The LDA classifier has a common covariance matrix with linear
generated boundary, while the QDA classifier has a separate covariance matrix for each class with a
quadratic boundary. QDA optimally distinguishes between the classes in the data set [26] and requires
a huge data set. Therefore, LDA is more suitable for equal class samples to compare imbalanced
data sets, and QDA is more suitable for unequal class samples [27]. However, in some cases they
perform worse than expected [28]. To evaluate the performance of classifiers, the classifier results were
validated using different validation methods.

Unsupervised PCA was applied on the normalized spectrum from 700 to 1800 cm−1 and to the
VELscope data. The first three principal components (PC1, PC2, and PC3) generated by normalized
spectrum accounted for up to 97% variance, as evaluated by PCA. The first two principal components
(PC1, PC2) were fed to multivariate supervised classifier models LDA and QDA. For PCA–LDA and
PCA–QDA, scores of factor 1 and 2 were chosen to obtain a scatter plot with a decision boundary.
The analysis broadly categorized normal and tumor tissues. Due to the heterogeneity of the tissue,
the measured spectra at the various points varied greatly in intensity and Raman shift.

We analyzed the data generated by the autofluorescence images in the same manner. Two principal
components (PC1, PC2) generated by the VELscope data accounted for up to 100% variance,
as evaluated by PCA. First, we analysed and evaluated the data type generated by VELsope and RS
individually using PCA–LDA and PCA–QDA classifiers. Second, we combined both data types and
evaluated them by selecting four principal components (PC1 and PC2 from Raman data and PC1 and
PC2 from VELscope images). Afterwards, these PCs were feed in to LDA and QDA classifiers.

In our analysis, LDA and QDA shows approximately the same results. This depends on the data
set and number of samples used. Other studies have had the same results in performing LDA and
QDA [29]. The classifier models LDA and QDA used to divide between classes and their probabilities,
while enlarging between-class variance and within-class variance. The LDA and QDA assumes a
common and individual co-variance matrix of each class. This results in LDA and QDA being good
classifiers for equal and unequal class samples, respectively [30]. In this study, we have an equal
number of class samples for cancer and normal tissues.

3. Results and Discussion

A total of 70 Raman spectra and 70 ROI images (35 tumor and 35 normal) from autofluorescence
images were analyzed. The spectral features with vibrational molecules and tissue fluorescence
behaviour of the selected subsites are described below.

3.1. RS Band Spectral Features

Figure 4 shows normalized mean spectra of normal and tumor tissues of the oral mucosa.
The fingerprint region from 700 to 1800 cm−1 in biological tissues is rich in proteins, nucleic acids,
amino acid, carbohydrates and lipids. According to the existing literature, peaks occurring in normal
tissues are lipid-dominated and malignant tissue peaks are protein-dominated [15,16,20,31,32]. In our
study, we observed that tumor tissues have higher intensity peaks at 1004, 1156, 1339, 1450, 1523,
1656 cm−1 compared to normal tissues. A sharp and intensive peak at 1004 cm−1 is attributed to the
symmetric ring breathing mode of phenylalanine that can be observed in protein-enriched tumor tissue
samples, while such a peak in normal tissues is due to hydroxyapatite/phosphate or protein [15,33].
A small peak at 1123 cm−1 in normal tissues is attributed to the C-C skeletal stretch in lipids, and in
tumor tissues it is attributed to the C-N stretching mode of protein. A sharp and intense peak at
1155∼56 cm−1 is attributed the protein signal in tumor tissues [34], while it can be attributed to C-C in
lipid/proteins in normal tissues. A peak at 1449∼50 cm−1 in tumor tissues indicates protein and is
associated with CH2 bending [31,32]; the peak in normal tissues is attributable to CH2 deformation
of lipids/collagen. Smaller and wider peaks at 1339 cm−1 in tumor tissues are associated with the
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adenine feature of nucleic acid/protein [35]. A sharp and more intense peak at 1518∼1524 cm−1

is due to the presence of beta-carotene/nucleic acid and was seen in both type of tissues (normal
and tumor) [36]. A broad peak at 1650∼1655 cm−1 is characteristic of proteins in the alpha-helix
structure of amide I while in normal tissues, this peak is generated by the C=C bond in lipids or
phospholipids [15,32]. The signature of protein, amide I, greater CH2 bending, amide III and amino
acid (Tryptophan or phenylalanine) were the main biomolecular difference markers that enabled tumor
tissue to be distinguished from normal tissues.

Figure 4. Mean spectra of oral normal and tumor cryopreserved tissues.

3.2. Tissue Fluorescence Feature

A VELscope is a non-invasive light-based detection technique. It utilizes the principle of direct
tissue autofluorescence with the blue light excitation wavelength between 400 nm and 460 nm to
enhance oral mucosal abnormalities. At these wavelengths, the normal oral mucosa is associated with
a pale green fluorescence when viewing through a filter and abnormal tissue is associated with a loss
of autofluorescence and appears dark. Oral tissues contain molecules which can have fluoresce (i.e.,
glow), when excited by light of specific wavelength and each fluorophore has a unique excitation
wavelength. Fluorophores are molecules that absorb light at one wavelength and emit light at longer
wavelength [37]. The main fluorophores in oral tissues are NADH and FAD, cellular coenzymes,
collagen, and elastin within the range of 400–460 nm. Fluorescence visualization (FV) relies on three
principles: (1) scattering of light as it interacts with tissue, (2) absorption, and (3) reflection of light from
the tissue surface. Which principle is to be existed it depends on biochemical composition of the tissue.
Tissue architectural changes in pre-cancerous and cancerous tissues affect their optical properties and
can be visualized using autofluorescence and spectroscopic methods [38]. The VELscope exploits
the biological characteristic to distinguish healthy tissues from malignant tissue. It has a reasonable
sensitivity but is associated with a high number of false-positive results in cases of inflammatory
lesions due to the elevated blood flow and concentration of hemoglobin. Hemoglobin in blood also
absorbs light and reduces fluorescence in high concentration region. Huang et al. [39] proposed the use
of quantitative analysis method to quantify the classification of VELscope images (autofluorescence
images) by their intensity and heterogeneity. They used QDA as a method of discriminant analysis
classification to differentiate between normal and abnormal (malignant/premalignant) lesions of oral
mucosa. They successfully differentiated between abnormal and normal lesions with high specificity
and good sensitivity. One major limitation of this approach was evident in differentiating between
malignant and premalignant lesions. Therefore, in our previous work, three groups of patients (with
normal, premalignant and malignant lesions) were differentiated using multiclass classification method.
Information in the image was normalized first and then LDA and QDA were used for classification.
In the current work, we used the same normalization method for autofluorescence images.
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3.3. Autofluorescence Imaging Analysis

A total of 35 autofluorescence images of malignant samples were collected. The clinician selected
two ROIs from each image. The first was from the tumor site and the second was from a site adjacent
to the tumor (normal). Normalized intensity and standard deviation were calculated for each ROI.
Next, PCA was applied to compress the data. The first two principal components (PC1, PC2) were
selected to feed in LDA and QDA classifiers. Figure 5a,b show the scatter plot with linear and
quadratic decision boundary curves, where the red and green dots represent tumor and normal tissues,
respectively. The PCA–LDA model correctly classified 35/35 and 28/35 tumor and normal sites,
respectively. Here, 7 normal cases are incorrectly diagnosed as a tumor by using VELscope with LDA
classifier. On the other hand, the PCA–QDA model correctly classified 34/35 and 29/35 tumor and
normal samples, respectively, while 6 cases incorrectly diagnosis in the QDA classifier. Both classifier
have approximately the same accuracy of about 90%. However, sensitivity and specificity are quite
different as shown in Table 2.

(a) (b)
Figure 5. Decision boundary curve for autofluorescence images analysis using (a) PCA-LDA and (b)
PCA- QDA classifier model.

Table 2. Confusion and performance tables for autofluorescence images (VELscope) analyzed by
PCA–LDA and PCA–QDA.

Data Set Confusion Table Performance Parameters

PCA–LDA Normal Tumor Total Accuracy (%) Sensitivity (%) Specificity (%)

Normal 28 7 35 90 100 80
Tumor 0 35 35

PCA–QDA Normal Tumor Total Accuracy (%) Sensitivity (%) Specificity (%)

Normal 29 6 35 90 97.14 82.86
Tumor 1 34 35

3.4. Raman Spectroscopic Analysis

Thirty-five oral cancer patients who had gone through surgical excision were selected.
During surgery, 35 tumor tissue samples and 35 tissue samples from adjacent sites were collected.
These tissue samples were cryopreserved for Raman analysis. After preprocessing, 35 spectra were
collected from both normal and tumor tissues for further analysis. First, PCA was applied on the
selected spectrum to examine patterns in the data. Three principle components (PC1, PC2, and PC3)
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were examined for classification due to giving the maximum variance. PC1 and PC2 were selected
to visualize the classification between the samples and feed to LDA and QDA classifiers. Figure 6a,b
show the PCA–LDA and PCA–QDA classifier results with decision boundary curve, respectively.
These two classifiers generated similar results, as shown in Table 3. Both classifiers have 82.9%
accuracy with 85.7% sensitivity and 80% specificity. Here, 7 normal cases are incorrectly diagnosed as
a tumor by using Raman data, and 5 tumor cases are incorrectly classified as normal with LDA and
QDA classifiers.

(a) (b)
Figure 6. Decision boundary curve for Raman data analysis using (a) PCA-LDA and (b) PCA-QDA
classifier model.

Table 3. Confusion and performance tables for Raman data analyzed by PCA-LDA and PCA-QDA.

Data Set Confusion Table Performance Parameters

PCA–LDA Normal Tumor Total Accuracy (%) Sensitivity (%) Specificity (%)

Normal 28 7 35 82.9 80 85.71
Tumor 5 30 35

PCA–QDA Normal Tumor Total Accuracy (%) Sensitivity (%) Specificity (%)

Normal 28 7 35 82.9 80 85.71
Tumor 5 30 35

3.5. Autofluorescence Imaging versus Raman Spectroscopic Analysis

From the autofluorescence images data, the first two principal components (PC1, PC2) were
selected, with 100% variance amongst the data are used for input. From Raman data, first two
principal components (PC1, PC2) were selected, with 97% variance. In our novel analysis, these four
principle components were combined for further analysis and fed in to the LDA and QDA classifiers
to improve the accuracy rate. Both models generated the same performance table. However, in our
novel analysis, the performance was much better than when using the individual optical techniques
(autofluorescence imaging or RS). In combination, they correctly classified 35/35 and 32/35 tumor
and normal patients, respectively, and generated higher accuracy 97.14% with maximum sensitivity
100% and better specificity 94.3% as shown in Table 4. Here, only 2 normal cases are incorrectly
diagnosed as a tumor by combining autofluorescence imaging with Raman spectroscopic analysis,
and no tumor case incorrectly diagnosis as normal. Here, the 100% sensitivity verify the importance of
the combination of these two techniques. Because we are providing a complementary study which can
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be verified by two different technique. If any case VELscope gives some wrong prediction or suspected
results in that case we can also justify that by using Raman spectroscopy.

Table 4. Confusion and Performance table of combined study.

Data Set Confusion Table Performance Parameters

PCA–LDA Normal Tumor Total Accuracy (%) Sensitivity (%) Specificity (%)

Normal 33 2 35 97.14 100 94.3
Tumor 0 35 35

PCA–QDA Normal Tumor Total Accuracy (%) Sensitivity (%) Specificity (%)

Normal 33 2 35 97.14 100 94.3
Tumor 0 35 35

The performance of a model is estimated by cross-validation, a process using a limited number
of data samples. It estimates the effectiveness of models (PCA–LDA and PCA–QDA) with unseen
data. The sample data set is randomly partitioned into two disjoint subsets. The first one is a training
data set and second one is a validation data set. The classification models were trained using the
training data set and the validation data set was used to evaluate the performance of the models [40].
The K-Fold and LOOCV (Leave-one-out-cross-validation) methods were used for cross-validation, as
previously described in detail [22]. Table 5 shows estimates of the error rates of the model used for
Raman data, VELscope data and combination data. The error rates of both PCA–LDA and PCA–QDA
models for the Raman data are 17.10%. However, the error rates of both the PCA–LDA and PCA–QDA
models for the VELscope data is only 10%. These results are confirmed by the K-Fold and LOOCV
methods, which yield error rates of 17.10% and 14.30% for the Raman data, and 10% to both for the
VELscope data. After combination the two techniques, the K-Fold and LOOCV methods yield the
error rates of 7% and 9%, respectively.

The objective of this study is to combine the two different tumor diagnosis techniques such
that a complementary pathway is designed to efficiently diagnose the tumors. Our claim is
reflected in Table 5, where the error rate of Raman data analysis with autofluorescence imaging
is substantially reduced.

Table 5. Error Rate of PCA–LDA, PCA–QDA and validation methods for different data set.

Error Rate PCA–LDA
(%)

PCA–QDA
(%)

Validation:
KFold (%)

Validation:
LOOCV (%)

Raman analysis 17.10 17.10 17.10 14.30
VELscope analysis 10 10 10 10
Raman+VELscope
analysis 3 3 7 9

3.6. Discussion

The autofluorescence imaging and spectroscopic techniques are fast and non-invasive methods
to screen for oral cancer. There are many new optical diagnostic techniques and instruments
used in routine clinical practice, such as ViziLite (Zila Pharmaceuticals, Phoenix, AZ, USA),
Identafi (DentalEZ, PA, USA), narrow band imaging (NBI; Olympus Medical Systems Corporation,
Tokyo, Japan), and VELscope (LED Medical Diagnostics Inc., Burnaby, BC, Canada) [41]. Identafi uses
multispectral fluorescence light in a sequential manner to facilitate intraoral examination. NBI is
an endoscopic technique to enhance the visualization of oral mucosal abnormalities and underlying
vasculature. In NBI, white light is filtered to produce two narrow bands ( 30 nm) of blue light (415 nm)
and green light (540 nm). One recent study designed an autofluorescence detection device using two
excitation light sources to detect different fluorescent metabolites (375 nm and 460 nm to capture
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NADH and FAD fluorophores) [42]. In our current study, we utilized two different commercial optical
techniques to gain additional and complementary information simultaneously. This was achieved
by combining one excitation light (400–460 nm) and one laser source with a wavelength of 532 nm.
Light-based detection using VELscope exhibited 90% accuracy with two of the most diagnostically
important endogenous fluorophores, NADH and FAD. Other optical techniques, such as the vibrational
spectroscopic technique using RS, exhibited 83% accuracy with variation in the main biomolecular
difference markers, such as protein structure, amino acids, and beta-carotene. However, our novel
approach improved the accuracy rate up to 97% by exploiting the biological characteristics and the
biochemical properties simultaneously. Both optical techniques have the potential to differentiate
the two classes (normal and tumor), but the combination of the two yielded better results than each
individual technique. From Table 2, we can see that the specificities of the VELscope were 80% and
82.6% using PCA–LDA and PCA–QDA. This improved to 94.3% for the combined method (Table 4).
Hence, the true negative rate or specificity increased up to 11.4% compared to autofluorescence
imaging alone. Specificity is equal to 1—false positive rate (FPR). This means that approximately 20%
of cases are still false positives between VELscope and the histology report of our samples. In Table 2,
we can see that seven normal cases were incorrectly diagnosed as a tumor from use of the VELscope
with LDA while six were incorrectly diagnosed in the QDA classifier. This FPR can be minimized by
up to 5.7% in the combined method as well as through use of RS (up to 14%). Thus, we observed that
the diagnostic specificity of the VELscope can be improved by our new method.

In this work, our objective was to conduct a combined study, which meant that a sample had to
go through the VELscope and RS. We tried to provide an algorithm or method to differentiate between
malignancy and normal mucosa. This is why we did not select early stage oral cancer. Once our
method proves workable, we may use it in the future to detect early oral cancer. RS is not intended to
use directly on patient’s mucosa. We used RS ex-vivo and try to shorten the time of analysis compared
with pathology examinations. In a long run, in-vivo Raman analysis can be used but not at this time.
Our technique has substantially reduced the FPR. Still, there is one limitation of our study that have a
limited number of cases (35 patients with 70 ROIs). To obtain maximum sensitivity and specificity,
we need to analyze a huge data set. An inherited limitation of VELscope is that it cannot be easy to
capture images of all interior subsites of oral mucosa, including hard palate and retromolar space.
However, RS is not bounded by this limitation.

The main advantage of our study is that we can confirm our results by using two different
techniques that are completely independent of each other. That is the reason that they can combine
to increase sensitivity and specificity. If they were similar, this study could not be reliable or
might produce a duplicate testing. Some cases that are suspicious under VELscope examination
(false-positive results) can be analyzed or confirmed under RS. Thus, we can verify our skeptical
scanning results of VELscope. In this study, we have focused on the same patient who was tested
under both techniques while not the same location. Both techniques were performed at a different
time but they were surely within the same tumor. For the Raman testing of the samples, we randomly
selected different sites of specimens. We assume that the characteristics within the tumor were
homogenous. Randomly sampling is to homogenize the differences between testing. So, the testing
sites between VELScope and Raman testing could be different in a tumor. Therefore, the results are
reliable and comparable.

In the future, we will combine these two techniques for the in vivo application so that these two
testing can be done at the same location and time slot. A fiber-optic probe for the Raman system can
be used for the in vivo applications in a clinical setting. We can also introduce these two techniques in
one portable system by integrating it into the clinical environment by cloud. The iPod will collect the
autofluorescence images using VELscope whereas Raman data will be collected by using a fiber-optic
probe of the Raman system. These two testings will be done separately. We store the data from
both techniques over the cloud, where a clinician can access it for further diagnosis. So, this system
can be easily operated by the clinician for oral cancer detection. In the future, it can also probably
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be used to detect the boundary for surgical resection. We would also further incorporate some
artificial-intelligence-based algorithms with VELscopy and RS for tumor invasions.

4. Conclusions

In this study, we developed a novel quantitative method to improve oral cancer detection using
autofluorescence images and Raman spectra recorded by a VELscope and RS, respectively. The main
focus of this study is to differentiate the malignancy and normal mucosa using VELscope and RS.
This approach yielded higher sensitivity and specificity with PCA–LDA and PCA–QDA classifier
models. The combination of these two quantitative optical tools can create a complementary effect
and improve the differentiation of oral tumors. In the future, we will combine these two techniques
for the in vivo application so that it can be used as a clinical point of care oral cancer screening
device. This novel system can be easily operated by the clinician and any health worker without any
formal healthcare training can do oral cancer screening. Further studies are required to confirm the
clinical importance of our novel approach. Future investigations will focus on a maximum number of
cases in the oral cavity to enhance the classification rate and the use of other approaches that involve
meta-learning, neural networks, and combinatorial fusion analysis for improving the classification rate.
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