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ABSTRACT: Accurately estimating reservoir rock properties is para-
mount for modeling the storage and flow of fluids (hydrocarbon, carbon
dioxide, and groundwater) in porous media. However, existing laboratory
techniques to measure rock properties are usually time-consuming,
expensive, and computationally intensive. This work proposes an efficient
workflow that uses the machine learning algorithm, based on the
convolutional neural network (CNN) framework, to predict rock
properties from microcomputed tomography (micro-CT) X-ray images.
The workflow involves data preprocessing, label extraction, training, and
prediction using the segmented images of the rock to predict porosity,
throat area, and pore surface area, which are essential for pore-scale
modeling. The model was trained and validated on the Bentheimer
sandstone, which was then used to predict properties of other sandstones
(Castlegate and Leopard) with different pore structures and flow
properties. The model yielded a good prediction for the throat and pore surface area but a significant error for porosity.
Subsequently, a new complex model was trained and validated using diverse images from Bentheimer and an additional rock
Castlegate, which was then used to predict the properties of Leopard sandstone. The new model improved the prediction of each
property, resulting in mean absolute percentage error (MAPE) values of 2.19%, 3.04%, and 6.08% for porosity, pore surface area, and
throat area with the binary images, respectively. In addition, we present a novel data-driven method using a simple regression model
to predict the absolute permeability of a digital rock sample using the pore network parameters as predictors. The extreme gradient
boost (XGBoost), which performed the best among several machine algorithms, was trained and validated using digital rock images
from Bentheimer and Castlegate sandstone. The generated model was then used to predict the absolute permeability of the Leopard
sandstone with an R2 of 0.813, which was a significant improvement over the model generated solely by using either the Bentheimer
or the Castlegate sandstone images. Furthermore, our analysis showed that the tortuosity had the most significant effect on the
absolute permeability prediction of the rock sample. This study showed that we can reliably predict the morphological properties of
porous media using computationally efficient models generated from digital rock images, which can be used to build a regression
model to predict the crucial petrophysical properties needed to model the flow of fluids in porous media.

1. INTRODUCTION
The reservoir rocks contain complex networks of interconnected
and isolated pores, which create an ideal environment for
trapping hydrocarbons in the porous media. Furthermore, the
connected pore networks dictate the flow behavior and
production potential of the trapped hydrocarbons by directly
affecting the intrinsic permeability.1 Thus, the accurate
determination of the reservoir rock properties, such as porosity,
throat area, and permeability, is essential for predicting the initial
hydrocarbon in place, estimating the ultimate recovery,
identifying the storage potential for CO2 sequestration and
hydrogen storage, and modeling groundwater flow in subsurface
porous media.2−4 These properties are usually determined from
reservoir rock samples or the core through routine and special
core analyses (RCA/SCAL) in the lab. The fundamental
properties, such as porosity, are measured during the RCA,

whereas other complex properties (capillary pressure, relative
permeability, and wettability) require SCAL. However, the data
collected from the core analysis may have significant errors due
to issues such as the presence of hydratable clays, miscalibration
of equipment, absorption of atmospheric water in the core, loss
of core samples due to chipping, and other reasons.5 As a result,
the core analysis data may not always be reliable for modeling
the storage and flow behavior of the reservoir rocks.6 For these
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reasons, there is a significant push toward reliable and
economical alternative and complementary methods to estimate
these properties. The three-dimensional rock images obtained
from advanced imaging techniques, often referred to as the
“digital rock”, provide an alternative to laboratory-based
methods.
Digital rock technology is an effective and accepted tool for

extracting various petrophysical and flow properties from
reservoir rocks. Numerical simulation can be applied to data
obtained from digital rocks to computemechanical properties,7,8

predict fluid topology,9 estimate flow properties,10,11 and
identify electrical properties12 of the rock by solving the
governing equations of different pore-scale phenomena. The
typical digital rock physics workflow can be divided into the
following steps: (a) acquiring raw grayscale digital rock images,
(b) segmentation of digital rock images, and (c) calculating
petrophysical properties by numerical simulation.13 Segmenta-
tion is a process of identifying all the phases (pore vs matrix) in
an image correctly and distinctly. This process is crucial in digital
rock analysis and influences pore-scale characterization.14,15

Inaccurate segmentation of the digital rock leads to significant
errors in subsequent quantitative analysis. There are numerous
segmentation methods, among which machine learning (ML)
algorithms are becoming more popular due to their relative
accuracy and ease over traditional methods.16,17 ML methods
have been found to be useful in solving complex problems in
several areas of science and engineering by identifying
relationships between inputs and outputs, deciphering patterns,
and generating solutions to complex problems. Petroleum
industry also finds extensive use of ML in different areas,
including reservoir engineering,18 production engineering,19

drilling engineering,20 and other related areas.21,22

The application of ML continues to grow for other
engineering domains, including digital rock analysis for property
and flow behavior estimation. Tembely and AlSumaiti23

developed a workflow for fast and accurate prediction of the
permeability of complex networks using deep learning methods.
Their work suggested that the deep neural network performs
slightly better than gradient boosting and linear regression for
the permeability calculation. Linden et al.24 investigated the
relationship between fluid flow at the macroscale and internal
pore structure in porous media by applying machine learning
techniques. They reported that the pore network closeness
centrality, a metric for describing the centrality of the shortest
paths between pores, was the most crucial network feature to
predict the permeability. Many researchers incorporate physical
equations into ML to reduce the dependency on the data. This
method is usually referred to as physics-informed machine
learning.25 Tian et al.26 suggested a combination of artificial
neural networks (ANNs) and genetic algorithms to predict
permeability. Their study uses the genetic algorithm to tune the
ANN architecture, whereas the ANN is applied to learn the
nonlinear relationships. They reported that tortuosity, number
of pores, and pore−throat ratio were inversely proportional to
permeability. There are other studies that focus on the
prediction of flow properties,27,28 but studies for the prediction
of pore networks and porosity remain limited.
The convolutional neural network (CNN) is capable of

extracting task-related data from the images with high accuracy;
hence, in many studies,29,30 a CNN-based surrogated model has
been conducted to predict rock permeability. However, the use
of CNN is not out of the scope of limitations. First, a CNN
model requires a large number of training data for better

prediction, and acquiring high-quality 3D images of rock
samples is expensive. This complexity may explain why, in
many previous studies,31−33 artificially generated sphere packs
are used to predict the petrophysical properties of rock samples.
Second, the 3D CNN algorithm is highly computationally
intensive and requires excessive memory.34 In contrast, simple
regression models like random forest (RF), support vector
machine (SVM), and gradient boost (GB) algorithms are much
easier to interpret and less memory intensive.35,36 Further
investigation is required to define a systematic workflow
focusing on data preprocessing and predicting various
petrophysical properties and microstructural characteristics of
a digital rock sample. Furthermore, although numerous
previously published works have used an image-based approach
using CNN to predict permeability, significantly less focus has
been placed on simple regression models, which are computa-
tionally less intensive than CNN.
In this work, a step-by-step procedure for predicting the

morphological descriptors, namely, porosity (Ø), pore surface
area (PSA), and throat area (TA) from the digital rock, is
presented using a convolutional neural network (CNN).
Utilizing the framework, the end user can extract the properties
related to the pore network of an unknown rock sample using
only raw micro-CT images, which can later be used to build a
data-driven machine-learning model to predict permeability. To
train the machine-learning model using CNN, we used micro-
CT images of multiple rocks (Bentheimer, Castlegate, and
Leopard sandstones) with different pore structures. The trained
model is then used to predict the morphological properties of
other rocks with different properties. First, three models are
trained with binary and grayscale images of two different rocks.
Two of these models are only trained with images of either
Bentheimer and Castlegate sandstone. The third model is
trained with the images of both Bentheimer and Castlegate
sandstone. Next, the trained model was used to predict the
properties of Leopard sandstone, which were unseen by each of
the three models. Our investigation reveals that predata
processing of the rock images significantly improves prediction
accuracy; thus, this is a crucial step. In addition, the results
showed that skewed data sets and defective images could
negatively affect the performance of the trained model. The
novel workflow presented here expands on the limited literature
for porosity and related property prediction using ML methods.
We utilized actual rock images instead of synthetic images.
While synthetic images have advantages,37−39 we believe that
actual rock images provide a more realistic representation of
porous media structure and properties. We focused on the
quantitative analysis of rock images, specifically measuring pore-
related properties and their distribution. While previous studies
have primarily used imaging techniques such as thin section, CT
scan, and SEM images to qualitatively analyze rocks,40−42 our
approach provides a more comprehensive and quantitative
understanding of the rock properties. We further developed a
data-driven machine learning model to predict the absolute
permeability of a new rock sample by using the properties
extracted from the pore network of known rock samples. This
study confirms that a simple regression model can be developed
to predict permeability by using accurate morphological
descriptors of porous media. In addition, our study offers
practical techniques for image preprocessing and segmentation,
which can be useful for other geoscientists working with similar
types of data. The remainder of the paper is organized as follows:
Section 2 provides a brief description of the materials (rock

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10131
ACS Omega 2024, 9, 30205−30223

30206

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10131?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


samples) used in this study, and Section 3 presents the methods
for image segmentation, label extraction, and machine learning
model architectures. Section 4 is dedicated to the results and
discussion of this study. Finally, Section 5 provides a summary
and significant conclusions from this work.

2. MATERIALS
This study uses three digital rock samples: Bentheimer,
Castlegate, and Leopard. The Bentheimer sandstone is selected
as it is considered to be the model sandstone for reservoir
studies,43 and the other two rocks (Castlegate and Leopard) are
chosen as they have similar fractions of the primary minerals as
Bentheimer sandstone: quartz, feldspar, and kaolinite. The
digital versions of these sandstones contain micro-CT images in
the netCDF format and are collected from the “Digital Rock
Portal”.44 The Bentheimer sandstone has a lab-measured
average porosity of 23.5% and a permeability of 1.30
Darcy.43,45 The porosity of the Castlegate and Leopard
sandstone is 26.0% and 22.8%, respectively, and the correspond-
ing permeability is 1.05 and 0.08 Darcy, respectively.45 Further
details on the other properties of the selected rock samples are
given in Shikhov et al.45 Figure 1 displays the Bentheimer,
Leopard, and Castlegate sandstone subsamples, and Table 1
provides the specifics of the tomograms.

3. METHODS
This section discusses the methods used to prepare the raw
grayscale images and extract the morphological properties (Ø,
TA, and PSA) and the absolute permeability. In addition, the
machine learning models with different training and testing
functions for predicting the morphological properties and
permeability are also briefly described. Figure 2 shows the
general workflow for predicting the morphological properties
from the digital rock image, which involves image acquisition
from digital rock, preprocessing of raw grayscale images
(augmentation, data cleaning, denoising), segmentation of the

images, extracting the labels from binary and grayscale images,
preprocessing of the label data, creating a CNN model, and
finally testing, training, and validation of the CNN model.
Figure 3 shows the workflow for developing a regression

model to predict the permeability. The workflow involves
subdividing the rock samples, segmenting the images, extracting
input and target parameters, and finally training, testing, and
evaluating the accuracy of the regression model. Additional
details on each step and the relevant morphological properties
are provided in Section 3.2.2.

3.1. Image Acquisition and Pre-processing of Data.
Data pre-processing is a crucial machine learning step as it
significantly affects model accuracy. As a part of data pre-
processing, we applied data cleaning, denoising, and augmenta-
tion to the input data set and data transformation to the target
data set. Data cleaning is a process of detecting incorrect and
noisy data and correcting or removing it from the data set.
Usually, the micro-CT images have noise and some artifacts,46

which can lead to incorrect label extraction. After extracting the
2D images, the 3D tomographic data, and subdividing them into
the regions of interest (ROIs) measuring 200× 200 pixels, it was
observed that some images have higher noise labels (Figure 4).
Hence, wemanually checked the input images before any further
steps and deleted the images which had higher noise
interference. We applied a Gaussian blur filter to reduce the
signal-to-noise ratio of the rest of the images, as the Gaussian
blur filter effectively smooths out noise while preserving crucial
features of the image.47

As the voxel sizes of the individual rock samples are different
(Table 1), dividing the 3D tomograms into specific ROIs yields a
variable number of images. For instance, the Bentheimer
sandstone sample has 6400 ROI with 16 images per 400 layers.
In order to improve the predictive ability of the trained model,
we increased the number of training data by augmentation. The
data augmentation is implemented in this work by rotating the
images at different angles (90°, 180°, and 270°). After cleaning
the data set and data augmentation, 24,880 images were
generated, from which 17,416 images were used to train the
model, 3,732 images for testing, and 3,732 for validation. The
label data was then checked for skewness factor, as it can
significantly impact the model’s ability to predict outcomes
accurately. A skewed data set has a significant deviation between
the value of the mean and median. So, the tail region of the
skewed data set may act as an outlier, and outliers negatively
affect the model’s performance.48 In this work, the values of the

Figure 1. Tomogram layer of (A) Bentheimer sandstone, (B) Castlegate sandstone, and (C) Leopard sandstone.

Table 1. Size and Resolution of the Tomograms of
Bentheimer, Castlegate, And Leopard Sandstone

Sandstone name Size (voxels) Resolution (μm)

Bentheimer 800 × 800 × 400 2.15
Leopard 1240 × 1240 × 180 2.15
Castlegate 800 × 800 × 400 2.28
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throat area were positively skewed, and log transformation was
applied to the target data set to create normally distributed
training data.

3.2. Image Segmentation and Target Data Extraction.
3.2.1. Image Segmentation. The ground truth or the labels for
training the ML model were obtained from the binary images

Figure 2. Workflow for extracting and predicting physical properties of porous media using CNN: (A) Image acquisition, (B) Raw image pre-
processing (augmentation, data cleaning, denoising), (C) Image segmentation and label data extraction, (D) Label data pre-processing, (E) Training
and testing of the CNN model, and (F) and Model evaluation.

Figure 3. Workflow for developing the regression model to predict permeability.
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and extracted pore network, which require image segmentation.
First, we manually segmented 50 images of each rock sample to
create the ground truth using the interactive learning and
segmentation toolkit, Ilastik.49 After that, the segmented results
from the traditional thresholding method and a machine
learning model were compared with the manually segmented
images to evaluate each segmentation method.
The Otsu thresholding50 method was used as a traditional

thresholding tool to segment the individual rock ROIs. The
Otsu threshold separates the pixels into the foreground and
background. It involves iterating through all possible threshold
values and calculating the spread of the foreground and
background pixels.50 The algorithm aims to identify the
threshold value at which the sum of foreground and background
pixels is the least. “Scikit-image”,51 an image-processing library
in Python, was used to implement the Otsu threshold to raw
grayscale images to create binary images.
A U-Net model was developed as a machine learning model to

segment the individual ROIs of the rock samples. The model
architecture is illustrated in Figure 5. Due to the encoder−
decoder architecture, the U-Net model can capture both high-
level features and fine details of the image. The skip connection
option facilitates U-Net to preserve the spatial information of
the image. In total, 14,000, 500, and 50 images were used for
training, validating, and testing the model, respectively.

Figure 4. Defective ROIs of Leopard sandstone.

Figure 5. U-Net model architecture for image segmentation.
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The intersection over union (IoU) was calculated by
comparing the segmented images from the Otsu thresholding
method and U-Net model with the manually segmented images
(Table 2). The results show that both Otsu and U-Net’s

performance is satisfactory in segmenting the digital rock
images. Though U-Net’s deep learning approach offers more
versatility and capability for complex image segmentation
challenges, this study used the Otsu thresholding method to
segment the individual ROIs of different rock samples because of
simplicity, fast processing, and interpretability. However, it
should be noted that for complex images, ML methods trained
on a large number of images perform better than traditional
thresholding methods.
3.2.2. Morphological Property Extraction. To measure the

porosity, first, the pixels of the binary images were separated
according to their intensity. For example, the white pixels have
an intensity closer to 255 and represent the pore area. Then, the
total number of pore pixels was added up, and finally, the
porosity was calculated by dividing it by the area of the image.
The average porosity calculated from this workflow matches the
porosity obtained from the laboratorymeasurements reported in
the literature.43

The pore network was extracted from the segmented images
using the method proposed by Gostick.52 This technique uses
the watershed algorithm to create a distance map of the
segmented image to locate the pores and throats in the
tomograms. After the peaks from the watershed were identified
using the maximum filter, the spurious peaks on saddles and
plateaus of the distance map are eliminated. Following that, the
algorithm automatically merges the nearby peaks and considers
them as a single large pore. Finally, in order to achieve the
segmented pore areas and extracted pore networks, a marker-
based watershed algorithm was used. The value of sigma in the
Gaussian filter was set to 0.4, and the radius of the spherical
structuring element was set to 4, which is similar to the settings

suggested by Gostick.52 Figure 6 summarizes the steps for data
processing involved in pore network extraction.
Next, the morphological descriptors for predicting the

permeability were extracted from the pore network model.
The pore network model represents the network topology of the
porous media in terms of their interconnected pores and throats.
Table 3 lists the morphological descriptors extracted from the
rock sample to create a data-driven model to predict absolute
permeability.

3.2.3. Permeability Extraction. The 3D tomogram of the
sandstone was first subdivided into small ROI (100 × 100 ×
100) to ease the computational resource requirements prior to
permeability calculation. An increment of 100 was applied in
each direction to increase the data set. Then, the images were
segmented using the Otsu thresholding to distinguish and label

Table 2. Image Segmentation Results from the U-Net Model
and the Otsu Thresholding Method

Sandstone type IoU value for U-Net IoU value for Otsu thresholding

Bentheimer 0.970 0.954
Leopard 0.805 0.780
Castlegate 0.964 0.949

Figure 6. (A) Tomogram of a raw grayscale image for Bentheimer sandstone, (B) ROI (200 × 200) of the tomogram, and (C) segmented image.

Table 3. Morphological Properties Extracted for the
Quantitative Characterization of Porous Microstructures

Index Morphological descriptors Denotation

1 Porosity Ø
2 Pore volume vp
3 Pore surface area Sp
4 Maximum pore size dmp

5 Pore region volume vpr
6 Pore size distribution pd
7 Pore diameter dp
8 Maximum throat size dmt

9 Pore equivalent diameter deqp
10 Throat diameter dt
11 Throat length lt
12 Throat volume vt
13 Throat size distribution td
14 Pore inscribed diameter dip
15 Pore extended diameter dep
16 Throat inscribed diameter dit
17 Throat total length lTt
18 Throat perimeter lt
19 Throat cross-sectional area Sct
20 Throat equivalent diameter deqt
21 Throat spacing mt

22 Effective diffusivity Deff

23 Tortuosity τ
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solid grains and pore space. After that, based on the defined
geometry and grid resolution, a computational mesh was
generated using Palabos, and absolute permeability for each
block was measured. Palabos,53 an open-source software library,
was used to implement the Lattice Boltzmann Method (LBM)
for simulating fluid flow. LBM is a popular numerical method for
simulating fluid dynamics in porous media. It is a numerical
approach that simulates fluid flow in porous media by
representing the fluid as a collection of particles. Each particle
is associated with a particle velocity distribution function located
at each discrete lattice node. At regular time intervals, the
particles collide with one another, and the properties associated
with the lattice nodes are updated accordingly. These collisions
are governed by rules designed to ensure that the time-averaged
motion of the particles aligns with the Navier−Stokes
equations,54 which describe the motion of fluids in a continuum.
We used the D3Q19 scheme, representing three-dimensional
fluid motion and utilizing 19 associated velocity vectors. Palabos
calculates the permeability of the porous medium using Darcy’s
law.55 The workflow for extracting the permeability is illustrated
in Figure 7.

3.3. Machine Learning Models. 3.3.1. Convolutional
Neural Network for the Morphological Property Prediction.
The convolutional neural network (CNN) architecture uses
multiple layers of nonlinear transformations, which are trained
iteratively to make predictions close to the expected ground
truth targets. The CNN consists of convolution, pooling, and
fully connected layers (Figure 8).
The function of the first two layers (convolution and pooling)

is to extract the features, and the function of the third layer (fully
connected layer) is to map the extracted features into the final
output. The convolution layers preserve the spatial relationship
between inputs and feature maps, whereas fully connected layers
do not preserve the spatial structure of their inputs. In CNN,

detectors trained by the filters can be reused several times
throughout the input image, which makes CNN suited for
computer vision tasks. In this study, the inputs for the CNN
model were the ROIs obtained from the 2D images, which were
generated from the 3D tomographic data. Figure 9 shows the
model architecture proposed in this work. In the following
sections, we briefly discuss the rationale for choosing the major
functions used in this study (ReLU, Dropout, Max-pooling,
Adam optimizer, and Huber loss) and their working principle.
The convolutional layer convolves over the input image using

filters to extract the key features such as pore and throat spaces,
which are important for analyzing the porosity, pore surface area,
and throat area of the sandstone. Figure 10 shows the sequential
feature extraction at each activation layer from a single ROI
using the proposed CNN model.
The convolution process is just a simple mathematical

operation of two matrices. For example, consider that an input
image has a matrix of (7 × 7); the filter has a matrix of (3 × 3);
the stride is 2; and the padding is the same. Then, a sum-product
operation between the individual elements of the two matrices
was done to generate the elements of the feature map with a
matrix of (3 × 3). Equation 1 controls the output dimension of
the convolutional process.

+ + × + +n p f
S

n p f
S

2
1

2
1

(1)

where n × n is the dimension of the matrix; p is the padding; f is
the filter size; and S is the stride.
The activation function introduces nonlinearity into the

output of a neural network, allowing it to model more complex
relationships between inputs and outputs. There are several
activation functions to construct the CNN, such as Sigmoid,
Tanh, Softplus, and the Rectified Linear Unit (ReLU). In this
work, ReLU was used as an activation function as it is simple to
calculate, has a higher convergence speed, is cost-effective, and
prevents the emergence of vanishing gradient problems, which is
common for Sigmoid and Tanh functions.56

Pooling and subsampling were used to reduce the spatial size,
hence reducing the number of features and computational
complexity of the network. Three standard functions can be used
in the pooling operation: average pooling, maximum pooling,
and minimum pooling. The max-pooling function with a kernel
size of (2 × 2) and stride of 2 pixels was applied for the images
used in this work. The purpose of the max-pooling function is to
downsample the input representation by picking up the highest
value from the region of the feature map covered by the filter,
which tends to retain the most prominent features and edges
present in the image. In contrast, average pooling and min
pooling can potentially blur important image details and may

Figure 7. Workflow for extracting permeability from a digital rock image.

Figure 8. Structure of the convolutional neural network.
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not be as effective at capturing the essential characteristics of the
image. Figure 11 illustrates the maximum-pooling operation in
CNNs.
The “dropout” method was applied to the fully connected

layer to avoid overfitting the training data. After implementing
dropout, the network becomes thinner than the standard neural
network, thus enhancing the resistance of overfitting andmaking
training faster.57 In this work, 20% of the neurons in the fully
connected layers were dropped out.
The model was trained to minimize errors between its

predictions and expected ground truth labels. In this work,
“Huber loss”58 was used as a loss function to compute the error
(eq 2). Huber loss is the hybrid of Mean Absolute Error (MAE)
and Mean Squared Error (MSE) loss functions, and it takes the

best of these loss functions: robustness and stability. Equation 2
was used to measure the distance and backpropagate the error
through the network to compute gradients. The hyperparameter

Figure 9. Proposed CNN model architecture.

Figure 10. Key feature extraction using the proposed CNN model.

Figure 11. Max-pooling operation in CNNs.
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δ was set to 0.5 in this study. The “Adam”59 optimizer was used
in this experiment to update the network parameters (weights
and biases). The Adam optimizer updates the learning rate for
each network weight individually, and it takes less time to
compute and requires fewer parameters for tuning.
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where ŷi is the true value; yi is the predicted value; and δ is the
hyperparameter.
The data set was too large to be processed in a single batch, so

it was divided into smaller batches (240 images each) to train the
model. We set optimal values for the learning rate through
manual adjustment to optimize the individual model accuracy
and computational speed. The learning rate was set to 1 × 10−6

while training the model for predicting porosity and pore surface
area, and for throat area, it was set to 1 × 10−4. The
“TensorFlow”60 platform was used to train the network in this
work. Google Colaboratory was used to run the code, and each
step was processed in around 26 s using a Tesla T4 GPU.

3.3.2. Regression Models for Permeability Prediction. The
morphological descriptors and absolute permeability of each of
the subdivided ROIs (200 × 200 × 200) of Bentheimer
sandstone were used to construct proxy models using four
different machine learning algorithms: random forest (RF),
multilayer perceptron (MLP), gradient boosting (GBoost), and
extreme gradient boosting (XGBoost). The best algorithm was
then selected to develop a combined model for predicting an
unknown rock’s permeability (Leopard sandstone in this study).
After that, three models were trained with two different rock
samples: the first with the morphological properties, of
Bentheimer, the second with only Castlegate properties, and
the third with combined Bentheimer and Castlegate properties.
We used 80% of the data set to train the model while allocating
the remaining 20% to validate the model’s performance. Log
transformation was applied to reduce the skewness of the data
set, and GridSearchCV was used to find the best hyper-
parameters for the model by optimizing for the minimum mean
squared error. Metrics such as mean squared error (MSE), mean
absolute error (MAE), root mean squared error (RMSE), and R-
square score were computed to evaluate the model.

Table 4. Comparison between Different Evaluation Functions for Model A, Model B, and Model C

Porosity Pore surface area Throat area

Evaluation functions Binary image Grayscale image Binary image Grayscale image Binary image Grayscale image

Model A (Trained with Bentheimer Images)
MAPE (%) 1.01 1.43 3.2 4.21 1.97 2.55
MSPE (%) 0.02 0.04 0.18 0.29 0.07 0.11
RMSPE (%) 1.24 1.95 4.29 5.37 2.7 3.34

Model B (Trained with Castlegate Images)
MAPE (%) 0.84 1.51 3.44 3.93 7.31 2.91
MSPE (%) 0.0136 0.201 0.1589 0.3187 0.867 0.139
RMSPE (%) 1.169 4.49 3.986 5.645 9.311 3.73

Model C (Trained with Bentheimer and Castlegate Images)
MAPE (%) 3.9 4.13 2.26 3.29 1.17 1.28
MSPE (%) 0.25 0.28 0.08 0.19 0.02 0.03
RMSPE (%) 5.03 5.31 2.93 4.41 1.4 1.66

Figure 12. Prediction of porosity against actual labels from (left) binary and (right) grayscale images of Leopard sandstone using Model C.
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4. RESULTS AND DISCUSSION
This section presents training, validation, and testing results for
predicting the morphological properties and permeability of a
rock sample using CNN and regression models, respectively.
The CNN estimation accuracy increases with every elapsed
epoch. Various metrics have been used to evaluate the model
such as mean absolute percentage error (MAPE), mean squared
percentage error (MSPE), and root mean squared percentage
error (RMSPE). Table 4 shows the evaluationmetrics calculated
for Model A, Model B, and Model C. Model A was trained,
validated, and tested using the Bentheimer sandstone images,
Model B with Castlegate images, and Model C with Bentheimer
and Castlegate images combined.
Next, we used these trained models (Model A, Model B, and

Model C) to predict the morphological descriptors of an
unknown rock (Leopard sandstone) that the models do not see.

4.1. Porosity (Ø). Figure 12 shows the porosity predictions
with binary and grayscale images against the test data set
generated from Leopard sandstone using Model C. The model
was trained for 200 epochs, after which the average error loss
stays constant (Figure 21). The performance of Model C in
predicting porosity from binary and grayscale images demon-
strates a significant improvement compared to the results
reported in other literature.61 This improvement can be
attributed to several factors, such as image preprocessing, data
cleaning, and the CNN model architecture used in this study.
The R-squared (R2) metric in Model C achieved 0.992 for
predicting porosity with binary images and 0.913 for predicting
porosity with grayscale images. Furthermore, when employing
Model C, the MAPE for porosity prediction of Leopard
sandstone stands at 2.19% with binary images and at 6.25%
for grayscale images, which marks a notable improvement
compared to the porosity prediction from Model A and Model
B. Model A resulted in the errors (MAPE) of 16.19% for binary
images and 19.91% for grayscale images, whereas Model B
showed errors of 2.32% with binary images and 6.59% with
grayscale images. This result shows that the pore network and
other morphological characteristics of the Castlegate rock are

similar to those of the Leopard sandstone, which is further
discussed in Section 4.4.

4.2. Pore Surface Area (PSA). Model C was trained for 300
epochs to predict the pore surface area (PSA) of Leopard
sandstone (Figure 22). The R2 score for predicting PSA using
Model C is 0.977 and 0.944 for the binary and grayscale images,
respectively (Figure 13). The MAPE for predicting the PSA of
Leopard sandstone utilizing Model C is 3.04% for binary images
and 8.35% for grayscale images. The MAPE to predict the PSA
of Leopard sandstone using Model A is much higher than those
using Model B and Model C, 6.52% and 9.56% for binary and
grayscale images, respectively. For Model B, the error (MAPE)
is 3.6%, and 9.45% is the value for binary and grayscale images,
respectively.

4.3. Throat Area (TA). The pore throat area computed from
the Gostick algorithm (Section 3.2.2) was positively skewed,
with a significant number of calculated values larger than 280
μm. The mean of the throat area was 133.9 μm, with a standard
deviation of 56.1 μm. The skewness in training data can
negatively impact the predictive ability of an ML model. Hence,
we applied the log transformation method to reduce the
skewness, after which the mean of the throat area became 4.82
μm, with a standard deviation of 0.43. The log transformation is
a mathematical operation that reduces skewness and compresses
large values while expanding smaller ones. It involves taking the
logarithm of the original values, which results in a new set of
values that are proportional to the original values but with a
more manageable range of variations. Mathematically, the log
transformation can be presented as eq 3.

=y xlog( ) (3)

where x is the original value, and y is the transformed value.
Figure 14 illustrates the distribution and probability plot

changes of the TA after the log transformation. The red line in
the normal probability plot represents the expected values of a
standard normal distribution, which is used to compare the
distribution of the transformed variable against a normal
distribution. Although the skewness of the training data

Figure 13. Prediction of pore surface area (PSA) against actual labels from (left) binary and (right) grayscale images of Leopard sandstone using
Model C.
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decreases after transformation, the data becomes slightly
negatively skewed.
Figure 15 presents the prediction of TA from binary and

grayscale images of Leopard sandstone with Model C after 300
epochs (Figure 23). The R2 values for TA prediction using
binary and grayscale images of Leopard sandstone are 0.776 and
0.744, respectively. Model B results in a MAPE of 6.08% for
binary images and 6.37% for grayscale images when applied to
the Leopard sandstone. However, Model A results in higher
MAPE values: 7.34% for binary images and 7.4% for grayscale
images. Also, with Model B, the MAPE is higher than that of
Model C, with 6.74% and 10.04% for grayscale and binary
images, respectively.
Overall, it is observed, in terms of predicting Leopard

sandstone properties, that Model B outperforms Model A,
indicating the similarity between Castlegate and Leopard
morphological properties. However, overall, the combined
model (Model C) trained with both Bentheimer and Castlegate
sandstone exhibits higher accuracy in predicting Leopard
sandstone’s morphological properties, indicating the importance
of diverse training data for robust model performance.

4.4. Permeability Prediction. The permeability prediction
from digital rock images using CNN, which we previously used
for the porosity prediction, is significantly complicated and
resource-intensive. The permeability prediction based on CNN
requires complex architecture and significant computational
resources, which may not be tenable if a large number of samples
are to be analyzed. Hence, we used a data-driven method that is
significantly easier and more efficient to implement than image-
based approaches.
The morphological properties extracted from Bentheimer

sandstone were trained with four different algorithms (XGboost,
GBoost, RF, and MLP). Eighty percent of the data set of
Bentheimer properties was used for training and 20 percent for
testing. Among other models, the XGboost demonstrated the
best accuracy for predicting the permeability of the Bentheimer
sandstone, achieving an R2 score of 0.934. Figure 16 shows the
permeability prediction of Bentheimer sandstone blocks against
the LBM simulation results using the XGBoost model. The
XGboost provides the best accuracy among the tested models as
it can handle complex relationships between features in the data.
It also includes L1 and L2 regularization terms, which help

Figure 14. Distribution and probability plot of the throat area (A, B) before log transformation and (C, D) after log transformation.
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prevent overfitting and make the model more robust.62

However, in this study, the MLP model becomes less accurate
for predicting the permeability. Table 5 shows the values of the
evaluation matrices for different models (XGBoost, GBoost, RF,
and MLP).
Next, three different models were trained using Bentheimer

and Castlegate rock samples with XGboost to predict the
permeability of an unknown rock sample (Leopard). The first
two models were trained on the morphological properties of
individual rock samples, and the third model was trained on the
properties of both Bentheimer and Castlegate sandstones.
Each model resulted in an acceptable accuracy for

permeability prediction when tested with the same rock sample.

However, when themodels were tested with Leopard sandstone,
the model trained with the combined properties of Bentheimer
and Castlegate sandstone provided the most accurate results.
TheMAE, RMSE, andR2 for permeability prediction of Leopard
sandstone using all the models are summarized in Table 6.

Across all of the metrics, the combined model delivers
significantly improved rock property prediction. The improve-
ment is more apparent when comparing the combined model to
themodel trained with just the Bentheimer sandstone. However,
we observe improvement in prediction even for the combined
model compared with the model trained with the Castlegate
sandstone.
The improvement in accuracy for the combined model was

also observed in predicting the morphological properties
(Sections 4.1−4.3). Figure 17 illustrates the accuracy in the
prediction of Leopard sandstone permeability with models
trained with different data sets.
Feature importance analysis was conducted to understand the

critical parameters influencing the permeability prediction of the

Figure 15. Prediction of throat area against actual labels from (left) binary and (right) grayscale images of Leopard sandstone using Model C.

Figure 16. Comparison between targets and predictions for predicting
Bentheimer sandstone permeability with the XGBoost model.

Table 5. Comparison between Different Evaluation
Functions for the Models Used for Predicting Permeability

Evaluation functions XGBoost GBoost RF MLP

MAE 0.087 0.117 0.158 0.217
MSE 0.013 0.018 0.051 0.117
RMSE 0.114 0.136 0.227 0.342
R2 score 0.933 0.906 0.738 0.407

Table 6. R2, MAE, and RMSE Errors for Predicting the
Permeability of Leopard Sandstone Using Models Trained on
Three Distinct Datasets

Sandstone Properties for model training MAE RSME R2

Bentheimer 0.112 0.146 0.466
Castlegate 0.069 0.105 0.710
Bentheimer and Castlegate 0.049 0.084 0.813

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10131
ACS Omega 2024, 9, 30205−30223

30216

https://pubs.acs.org/doi/10.1021/acsomega.3c10131?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10131?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10131?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10131?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10131?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10131?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10131?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10131?fig=fig16&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10131?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


rock samples. Previous studies reported that morphological
properties like porosity, tortuosity, and pore-to-throat ratio
correlate with the porous media’s permeability.63−65 Our
findings underscore the paramount role of tortuosity, which
emerged as the most significant factor with an importance
percentage of ∼28%, indicating the complexity of fluid paths
within the rock as a crucial determinant of permeability.
Additionally, porosity and pore region volume were identified as
important features with importance percentages of ∼9%,
highlighting the significance of void spaces within the rock for
fluid storage and transmissibility. The analysis also revealed the
importance of effective diffusivity in influencing permeability
(∼8%), pointing toward the relevance of fluid movement ease
between connecting pores. Figure 18 shows the feature

importance plot for permeability prediction using the data-
driven model with morphological properties.
In order to understand the reason for the improved prediction

of both morphological properties and permeability using the
individually trainedmodel trained with Castlegate sandstone, we
analyzed the underlying pore-scale properties of each rock,
which showed that the statistical distributions of features in the
Castlegate sandstone are closer to those of Leopard sandstone.
The key features such as pore region volume, porosity, pore/
throat ratio, effective diffusivity, and tortuosity in Castlegate
sandstone share mean values and distributions that align more
closely with those in Leopard sandstone, which are critical in
defining permeability. Figure 19 shows the box plot for various
features used for training the machine learning model, and the

Figure 17. Prediction of permeability of Leopard sandstone with models trained with (A) Bentheimer sandstone properties, (B) Castlegate sandstone
properties, and (C) Bentheimer and Castlegate sandstone properties.

Figure 18. Feature importance plot for permeability prediction, based on the XGBoost model trained with the combined properties of Bentheimer and
Castlegate sandstone.
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descriptive statistics of these features are summarized in
Appendix, Table 7.

5. SUMMARY AND CONCLUSIONS
This study proposed a workflow to predict the morphological
properties of an unknown rock sample using micro-CT images,
which can later be used to predict the permeability of the porous
media. Various flow properties, including porosity and
permeability, can be extracted by using the proposed workflow
without extensive laboratory experiments. These flow properties
are crucial in modeling the flow in porous media. This work used
Leopard sandstone as an unknown rock sample to predict
morphological properties (Ø, TA, and PSA). Three distinct
models were trained using two distinct rock samples: one model

only used the images of Bentheimer sandstone (Model A);
another one was with only Castlegate sandstone images (Model
B); and the last one was with both Bentheimer and Castlegate
sandstone images (Model C). The training of Model C required
an average duration of 2.5 h, utilizing the Tesla T4 GPU offered
by Google Colaboratory. The number of epochs to train the
models was selected based on the training and validation loss.
Training and validation losses decreased with each additional
epoch. Figure 20 summarizes the MAPE for predicting various
morphological properties for an unknown rock sample.
In the case of Model C while using grayscale images to predict

the properties of Leopard sandstone, the MAPE is 6.25% for
porosity, 8.35% for pore surface area, and 6.37% for throat area
(Figure 20). On the other hand, while using binary images, the

Figure 19. Box plot showing the key features for Castlegate, Bentheimer, and Leopard sandstones. The morphological properties of Castlegate
sandstone are significantly similar to those of Leopard sandstone.

Figure 20. MAPE for predicting properties (Ø, PSA, and TA) of Leopard sandstone by using (A) grayscale images and (B) binary images.
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MAPE is lower: 2.19%, 3.04%, and 6.08% for predicting
porosity, pore surface area, and throat area, respectively (Figure
20). This is because the model generated with grayscale images
is more sensitive to noise and defects, resulting in a higher
prediction error than the model developed with binary images.66

Accurate rock image segmentation is essential for extracting the
precise properties of the rock sample. This study applied two
different segmentation methods, the U-Net model and the Otsu
thresholding method, to extract the properties. Then, the
segmented images were evaluated against the manually
segmented images. The results show that with proper data
preprocessing Otsu thresholding can provide satisfactory
segmentation results and improve model accuracy. We found
that deleting the defective images and reducing skewness
reduced the MAPE of property prediction by around 3%.
Furthermore, this study also shows that it is possible to create an
enhanced model trained from a large variety of rock samples to
predict the accurate morphological descriptors of an unknown
rock sample. The workflow can also be applied to predict other
morphological properties using high-resolution micro-CT
images. To validate the workflow presented in this study, the
average pore size was calculated from the extracted network of
the rock images and trained with the proposed CNN model
(Model C). Previous studies have indicated that model accuracy
tends to be lower when predicting properties extracted from the
pore network.61 However, the results show that the proposed
model (Model C) provides good accuracy in predicting the
average pore size of an unknown rock sample (Leopard
sandstone), with an R2 value of 0.91 and 0.94 for grayscale
and binary images, respectively.

We also demonstrated a data-driven workflow for predicting
the permeability of porous media using various morphological
data extracted from the rock sample. The XGboost model
resulted in the most accurate prediction of permeability for an
unknown rock sample. The model trained with Castlegate
sandstone outperformed the model trained with the Bentheimer
sandstone data set in terms of predicting both the morphological
property and permeability of the Leopard sandstone, which
indicates the similarity between Castlegate and Leopard
sandstone. The feature importance analysis revealed that the
statistical distributions of key features in the Castlegate
sandstone are closer to those of Leopard sandstone (Figure
19). For predicting the permeability of Leopard sandstone, the
models trained using Bentheimer and Castlegate sandstone
properties yielded R2 values of 0.466 and 0.710, respectively
(Figure 17). However, the combined model (trained with both
Bentheimer and Castlegate sandstone) was more accurate in
predicting the properties of Leopard sandstone, indicating the
importance of diverse training data for robust model perform-
ance. The R2 value for predicting the permeability of Leopard
sandstone was 0.813 by using the model that is trained with both
Bentheimer and Castlegate sandstone properties.
The model presented in this work for predicting the

morphological descriptors of porous media still has room for
improvement. Methods like the generative adversarial network
(GAN)66 and hybrid stochastic deep-learning (HSDL)67 can be
applied to increase the image resolution and thus increase the
prediction accuracy. In addition, the hyperparameters of the
CNN model can also be tuned for better model performance.
For themodels in this study, the decrease in the learning rate and
increase in the number of epochs improved the property

Figure 21. Average error loss during training and validation of Model C to predict porosity.
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prediction with grayscale images. The MAPE while training
Model A with grayscale images for porosity prediction decreased

from 24.60% with a learning rate of 1 × 10−3 to 1.43% when the
learning rate was 1 × 10−6. Future studies will focus on

Figure 22. Average error loss during training and validation of Model C to predict pore surface area.

Figure 23. Average error loss during training and validation of Model C to predict throat area.
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improving the predictive power of the proposed model using
other advanced algorithms and tuning different hyperpara-
meters.

6. APPENDIX
The average error loss during the training and validation for
predicting porosity, pore surface area, and throat area using
Model C is presented in Figures 21, 22, and 23.
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■ TABLE OF ABBREVIATIONS

CNN, Convolutional neural network
2D, Two dimensional
3D, Three dimensional
Micro-CT, Microcomputed tomography
RCA, Routine core analysis
SCAL, Special core analysis
ML, Machine learning
ANN, Artificial neural network
Ø, Porosity
PSA, Pore surface area
TA, Throat area
ROI, Region of interest
ReLU, Rectified linear unit
MAE, Mean absolute error
MSE, Mean squared error
MAPE, Mean absolute percentage error
MSPE, Mean squared percentage error
RMSPE, Root mean squared percentage error
GAN, Generative adversarial network
HSDL, Hybrid stochastic deep learning
XGBoost, Extreme gradient boost
GBoost, Gradient boost
RF, Random forest
MLP, Multilayer perceptron

Table 7. Descriptive Statistics of Key Features of Castlegate, Bentheimer, and Leopard Sandstone Subdivided Blocks for Machine
Learning Model Training

Bentheimer Sandstone

Tortuosity Effective Diffusivity Pore/Throat Porosity Pore Region Volume

min 7.51 × 10−03 2.11 × 10−09 2.02 × 1014 0.10 6.32 × 10−12

25% 3.21 × 1000 4.36 × 10−08 3.24 × 1014 0.19 7.35 × 10−12

Median 1.10 × 1001 8.07 × 10−08 4.11 × 1014 0.23 7.64 × 10−12

75% 2.91 × 1001 1.31 × 10−07 4.61 × 1014 0.26 8.03 × 10−12

Mean 3.60 × 1001 9.55 × 10−08 3.99 × 1014 0.23 7.63 × 10−12

max 6.70 × 1001 2.62 × 10−07 6.66 × 1014 0.36 8.93 × 10−12

Castlegate Sandstone

Tortuosity Effective Diffusivity Pore/Throat Porosity Pore Region Volume

min 8.31 × 10−03 1.11 × 10−09 1.85 × 1014 0.12 6.75 × 10−12

25% 2.50 × 1000 4.29 × 10−08 2.45 × 1014 0.20 7.34 × 10−12

Median 5.97 × 1000 6.44 × 10−08 2.81 × 1014 0.23 7.63 × 10−12

75% 1.84 × 1001 9.76 × 10−08 3.18 × 1014 0.26 7.93 × 10−12

Mean 2.21 × 1001 7.54 × 10−08 2.80 × 1014 0.23 7.60 × 10−12

max 4.01 × 1001 1.80 × 10−07 4.00 × 1014 0.32 8.60 × 10−12

Leopard Sandstone

Tortuosity Effective Diffusivity Pore/Throat Porosity Pore Region Volume

min 1.58 × 10−02 4.02 × 10−09 2.03 × 1014 0.11 5.95 × 10−12

25% 1.13 × 1000 2.95 × 10−08 2.64 × 1014 0.16 7.33 × 10−12

Median 3.77 × 1000 5.17 × 10−08 2.84 × 1014 0.20 7.87 × 10−12

75% 1.35 × 1001 8.44 × 10−08 3.15 × 1014 0.26 8.28 × 10−12

Mean 1.39 × 1001 6.22 × 10−08 2.91 × 1014 0.22 7.70 × 10−12

max 3.10 × 1001 1.64 × 10−07 3.77 × 1014 0.40 8.77 × 10−12
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