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A B S T R A C T   

In the present investigation, with an effort to provide appropriate material for future applications, 
we have touched on two viable advancement targets: the production of silver nanoparticles (Ag- 
NPs) employing an ultrasonic approach and the use of Ag-NPs in environmental remediation. A 
green economical method was involved to prepare Ag-NPs using butyl acrylate as a stabilizer. The 
following techniques were used for analysing Ag-NPs: energy dispersive X-ray spectroscopy 
(EDX), transmission electron microscopy (TEM), field emission scanning electron microscopy 
(FESEM), powder X-ray diffraction (XRD), and Fourier transformed infrared (FT-IR) spectroscopy. 
X-ray diffraction (XRD) analysis for the lattice characteristics showed that Ag-NPs have a face- 
centered structure with an average crystallite size of 9.51–11.83 nm. FE-SEM and TEM analysis 
were used for morphological investigations, and revealed that Ag-NPs had a spherical shape with 
an average particle size of 16.27 nm. The EDX profile displayed a strong signal at ~3.0 keV, 
which indicated that the samples comprised silver. UV–Visible spectrophotometer with the ab-
sorption maximum occurring between 401 and 411 nm further confirmed the formation of Ag- 
NPs. The dye degradation effect of synthesized Ag-NPs on methylene blue and Rhodamine B 
was analyzed to assess their ability for environmental remediation, and results showed that 
around 100% of the dye degradation effect. This study has provided a most plausible mechanism 
for the dye degradation.   

1. Introduction 

Over the last decades, refined attention has been devoted to nanomaterials synthesis and applications. Nanoparticles (NPs) of noble 
metals like silver, gold, palladium etc., played crucial role in different biological, chemical and physical assets from their bulk 
counterparts due to their unique physicochemical properties [1–5]. In recent times researchers have a great interest in nano-size 
materials (less than 100 nm) as they exhibited huge utility in several areas of industry, for instance, toothpaste, coating of re-
frigerators, food storage, cellular phones, air sanitizer spray, washing machines, detergents, soaps, etc. [6–9]. In general, the intrinsic 
assets of metal NPs are mainly ascertained through their composition, crystallinity, size, and structure [6,10]. Discoveries in the last 
few years have noticeably confirmed that the optical, electromagnetic, and catalytic properties of silver nanoparticles (Ag-NPs) are 
intensely affected by size and shape distribution, which are frequently diverse by differing the synthetic methods, reducing agents and 
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stabilizers [11–16]. From literature survey, it has been clear that Ag-NPs displayed a broad spectrum of biological activities such as 
antibacterial, antifungal, and anti-cancer etc., [17]. A lot of methods have been described for the synthesis of nanomaterials for 
example Ag-NPs are usually synthesized by chemical reduction method. However, irradiation of ultrasonic, microwave, gamma, and 
UV rays have also been one of the ways for synthesizing Ag-NPs [18,19]. The ultrasonic method has been one of the most popular 
methods for a synthesizing variety of noble metal NPs including Ag, Au, Pt, Pd, etc., as well as other nanomaterials [20]. A lot of studies 
reported the formation of Ag-NPs via ultrasonic method as it was found to be much simple, eco-friendly, cost-effective, and a favorable 
pathway for the synthesis of fine metal nanoparticles with desired size and structure [21–24]. In this study, we synthesise Ag-NPs 
because there are numerous advantages to adopting the ultrasonic approach. Ag-NPs in aqueous or ethanoic media are previously 
synthesized for the majority of researchers. Consequently, an effort has been undertaken utilising polymeric media, i.e., the synthesis 
of Ag-NPs in butyl acrylate medium. Butyl acrylate is an inexpensive natural monomer and can behave as a good stabilizer for Ag-NPs. 
Water remediation is a major global concern these days due to the significant health and environmental risks it poses to human life. 
Organic dyes or dye-based effluent which are toxic with non-biodegradable properties caused water pollution which is an imminent 
worldwide problem [25]. Because dyes are used in many fields, such as the textile, food, and leather industries, several processes, such 
as coagulation, flocculation, chemical precipitation, biodegradation, ozonation, solvent extraction, ion exchange, membrane filtration, 
electrochemical destruction, and adsorption, have been developed to reduce dye pollutants and protect the environment and aquatic 
life [25,26]. Unfortunately, these methods have high operating costs and are ineffective in accomplishing the complete elimination of 
organic dyes from wastewater [25,27–30]. 

In the present study, we reported a greener technique for Ag- NPs synthesis by changing the concentrations of butyl acrylate under 
ultrasonic irradiation at room temperature for 2 h. The as-synthesized Ag-NPs are characterized using UV–Visible spectroscopy, 
powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), 
energy dispersive X-ray spectroscopy (EDX), and Fourier transformed infrared (FT-IR) spectroscopy. The as-synthesized Ag-NPs are 
subjected to test its catalytic action for dye degradation. 

2. Experimental protocol 

2.1. Materials 

Silver nitrate (99.89%) was purchased from Bendosen (C0721-2284551), India. In addition, Butyl acrylate, grad type (CAS 9000- 
07-1), was purchased from Sigma-Aldrich (St. Louis, MO, USA). Methylene blue (MB), Rhodamine B (RhB), and NaBH4 were purchased 
from Sigma- Aldrich. All chemicals were used without further treatment in the entire synthesis process. All stock solutions were 
prepared by using double distilled water and aqua regia was used to wash glassware properly, then autoclaved and sanitized. 

2.2. Synthesis of silver nanoparticles 

A variety of Ag-NPs were synthesized by mixing 10 ml AgNO3 (0.1 M) in 40 ml of 0.10, 0.15, 0.20, 0.25, and 0.3 wt % butyl acrylate 
solutions on a magnetic stirrer for 2 h at room temperature. The samples were then exposed to high-intensity ultrasonic irradiation at 
room temperature for 2 h at 50 % amplitude. It has been found that the solution turned to yellowish brown from colorless which 
confirms the formation of Ag-NPs. The suspensions were then centrifuged for 15 min and rinsed three-four times with double distilled 
water to eliminate the silver ion residue as well as impurities. The powdered Ag-NPs were collected from the decantation of water and 
then dried at 100 ◦C under a vacuum overnight. 

2.3. Catalytic degradation of dyes 

Freshly prepared (0.1 M) sodium borohydride and stock solution of rhodamine B or methylene blue (10 mg/L) were used. To test 
the catalytic degradation of dye, 0.5 ml of the stock solution of borohydride and 0.5 ml of Ag-NP are separately injected into 
Rhodamine B or methylene blue solution. Theb the samples were incubated for a day and subjected to record absorption spectra using 
UV–Vis spectrophotometer. 

2.4. Instrumentation 

The absorption spectra of Ag-NPs were recorded on a Lab UV next-generation UV–visible double beam spectrophotometer over a 
wavelength range of 300–900 nm. For structural analysis, the X-ray diffractometer (Rigaku smart lab X-ray diffractometer with Cu Kα 
radiation (λ = 1.5404 Å) in the 2 θ range from 10 ◦ to 85 ◦ with a step of 0.5 ◦ per minute was used. A series 100 PerkinElmer FT-IR 1650 
spectrophotometer was used to record FT-IR spectra in the range of 500–4000 cm− 1 (PerkinElmer, Waltham, MA, USA). The entire 
structure and size of synthesized Ag-NPs were examined with the help of FE-SEM with a JEOL JSM 761 working at 0.5–30 kV and HR- 
TEM with an FEI Tecnai running at 0.5–30 kV. 

3. Results and discussion 

The suspension of butyl acrylate and AgNO3 solution was light yellow; when exposed to ultrasonic irradiation at 50 % amplitude for 
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2 h at room temperature, the color changed from light yellow to yellowish-brown solution, showing Ag-NPs formation [31]. The most 
plausible mechanism for Ag-NPs synthesized by butyl acrylate has been shown in Scheme 1, equations 1- 6. On application of ul-
trasonic waves, water splits and leads to the formation of hydrogen and hydroxide free radicals (eq 1) [20,32,33]. These radicals are 
capable of giving sufficient chemical potential to produce nanoparticles via the reduction of noble metals. The hydroxide free radical in 
turn combines with butyl acrylate (RH) and leads to the formation of R free radical (eq 2) [34]. However, equation 3 demonstrated the 
hydrolysis of silver nitrate aqueous solution which leads to produce Ag+ and NO3

− ions [19]. The R free radical produced in the reaction 
mixture simultaneously reacts with Ag+ ions and hence reduction of Ag+ into Ag0 takes place (eq 4) with the formation of R’ [35]. 
Similarly, the remaining amount of silver ions reacts with the hydrogen-free radical (produced in eq 1) to reduce it into Ag0 or Ag-NPs 
(eq 5) [36]. Further, few remaining Ag+ interact with the as-formed Ag0 and leads to produce quite aggregated Ag-NPs [37]. 

3.1. XRD study of synthesized silver nanoparticles 

The structural properties and crystallite size of the Ag-NPs were analyzed by powdered X-ray diffraction (XRD) technique. The XRD 
pattern for various concentrations i.e. 0.10, 0.15, 0.20, 0.25, and 0.30 % of butyl acrylate polymer used for the formation of Ag-NPs 
was shown in Fig. 1(i). The XRD pattern of Ag-NPs reveals several characteristics peaks in the broad-angle range of 2θ from 20◦ to 85◦

with step size 0.5◦ per minute with Cu-Kα radiation. It revealed almost same XRD pattern for each variation of butyl acrylate polymer 
with a prominent change in the intensity of Bragg’s peaks. The XRD peaks at 2θ values 38.22◦, 44.39◦, 64.69◦, 77.62◦, and 82.22◦ can 
be allocated to the (111), (200), (220), (311), and (222) crystallographic plane of silver crystals, respectively, which is in agreement 
with the JCPDS file number 04–0783 of silver [36,38]. It revealed a face-centered cubic structure of the synthesized Ag-NPs with the 
most of the crystallites oriented towards (111) plane. The Ag-NPs are extremely crystalline which implies that this method produced 
high-purity Ag-NPs [39,40]. The average crystallite size “D” of the synthesized Ag-NPs was evaluated by Scherer’s formula given by 
equation (7) [41,42]; 

D=
0.9λ

β cos θ
(7)  

Where β is FWHM (full width at half maxima), shape factor is 0.9, wavelength λ is (1.5404 Å, Cu-Kα), and θ is the diffraction angle. 
Since most of the crystalline were oriented towards the (111) plane, therefore, the average crystallite size was calculated con-

cerning (111) plane of each diffraction pattern. Table 1 represents the calculated D for each variation of butyl acrylate in the reaction 
mixture. The D-value varied from 9.51 to 11.83 nm depending upon the concentration of butyl acrylate in the reaction mixture. 
Additionally, a plot in Fig. 1(ii) has been plotted to study the change in average crystallite with the variation of butyl acrylate polymer 
concentration and it suggested that the average crystallite size decreases as the concentration of butyl acrylate solution increases. But 
the change in the average crystallite size of Ag-NPs was not considerable. So, any concentration of butyl acrylate polymer of the present 
study can be used for Ag-NPs formation of 9.51–11.83 nm sized which may be further used for multipurpose applications. 

3.2. EDX analysis 

EDX profile of the synthesized Ag-NPs was recorded by energy-dispersive X-ray spectroscopy. Fig. 2(a–e) illustrated the EDX profile 
of Ag-NPs prepared by using 0.10, 0.15, 0.20, 0.25, and 0.3 % butyl acrylate concentrations, respectively. It shows signals corre-
sponding to silver and oxygen at ~3.0 and <1.0 KeV, respectively [42], which confirms the presence of silver in the analyzed samples 
and showed a good resemblance with the result of XRD analysis. The presence of oxygen in analyzed Ag-NPs might be due to the 
adsorption of R’ group onto its surface or aerial oxidation of some silver ions [42]. No other impurity-related signal was found in the 

Scheme 1. Proposed mechanism for Ag-NPs formation.  
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Fig. 1. (i) XRD plot for the Ag-NPs at different concentration of butyl acrylate (0.1, 0.15, 0.2, 0.25, and 0.3 %) (ii) Average crystallite size vs 
concentration of butyl acrylate solution (%). 

Table 1 
Average crystallite size (D) calculated via XRD plot.  

Concentration of Butyl acrylate solution (in %) Average Crystallite size (D) 
(in nm) 

0.10 11.83 
0.15 10.79 
0.20 10.75 
0.25 10.33 
0.30 9.51  

Fig. 2. (a–e) EDX profile for Ag-NPs at different concentration of butyl acrylate (a) 0.1% (b) 0.15% (c) 0.2% (d) 0.25% (e) 0.3%.  
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EDX, demonstrating that the NPs are entirely comprised of silver and oxygen. The elemental composition of silver and oxygen in each 
sample was shown in Table 2. It revealed that with an increase in butyl acrylate concentration in the reaction mixture, the percentage 
weight composition of silver increases. Conclusively, 0.30 % concentration of butyl acrylate was optimized for the formation of Ag-NPs 
via the ultrasonic method. 

3.3. Field emission scanning electron microscopy (FE-SEM) 

To analyse the morphology and particle size (average) of the synthesized Ag-NPs, FE-SEM analysis was carried out and the images 
captured for different concentrations of butyl acrylate i.e. 0.10, 0.20, 0.25, and 0.30 % are shown in Fig. 3(a–e), respectively. These 
images revealed that the spherical-shaped Ag-NPs were formed. Also, as the concentration of butyl acrylate in the reaction mixture 
increases, the small particle size Ag-NPs was observed in Fig. 3(a–e), which shows good resemblance with EDX data. Noticeably, 
agglomeration of Ag-NPs enhanced with the decrease in the particle size or at higher concentration of butyl acrylate. Furthermore, 
ImageJ software has been used to determine the average particle size (data listed in Table 3) of synthesized Ag-NPs. A graph has been 
plotted for comparing the average particle size of Ag-NPs for the concentration of butyl acrylate and it has been found that Ag-NPs are 
formed in the range of 27–60 nm size. This size range is good enough to use synthesized Ag-NPs in catalytic applications. However, to 
confirm exact particle size and morphology transmission electron microscopy analysis was performed. 

3.4. Transmission electron microscopy (TEM) 

The images captured using TEM are shown in Fig. 4(i)-(a-e) at 50 nm scale. From TEM images it has been clear that Ag-NPs have a 
spherical morphology and are quite agglomerated in the medium. To evaluate the average particle size ImageJ software has been used 
and particle size distribution plots have been drawn, Fig. 4(ii)-(a-e). Based on particle size distribution plots, summarized values of the 
average particle size of each sample are listed in Table 4. The average particle size was found in the range of 16–28 nm. It also revealed 
that as the concentration of butyl acrylate in the reaction mixture increases, the particle size of the synthesized Ag-NPs decreases which 
showed good resemblance with the results of XRD, SEM, and EDX. Also, the agglomeration of NPs considerably decreases as the 
concentration of butyl acrylate is enhanced. Conclusively, the synthesized Ag-NPs with particle size of below 30 nm are promising 
material for multipurpose applications [42]. Therefore, the synthesized Ag-NPs are employed to test their catalytic activity in 
methylene blue and rhodamine dye degradation reactions. 

3.5. Optical properties analysis 

The absorption spectra of Ag-NPs at different concentrations of butyl acrylate are displayed in Fig. 5(i) (a–e). The absorption 
spectra are helpful in confirmation of the Ag-NPs formation and are shown in Fig. 5 (i, ii, iii). The absorption spectrum displayed strong 
absorptions in the wavelength range of 401–411 nm which matched well with the surface plasmatic bond of Ag-NPs [37,43]. From 
Fig. 5(i), it is clear that the intensity of the absorption peak increases with increasing butyl acrylate concentrations (0.1, 0.15, 0.2, 0.25, 
and 0.30% [44]. Furthermore, Fig. 5(ii) revealed that when butyl acrylate concentration increased, the absorbance also increased, and 
the absorption maxima were shifted towards a lower wavelength i.e, a blue shift occurs which infers that the particle size of syn-
thesized Ag-NPs reduced considerably [45,46]. Similarly Fig. 5 (iii) showed the change in absorbance of the sample as the concen-
tration of butyl acrylate increases and it has been found that increases absorbance has been noticed for 0.30% butyl acrylate containing 
reaction mixture, refers larger particle size, which again matched well with the result of other technique. According to Mie’s theory 
[47], different sizes of nanoparticles should have various optical properties due to differences in absorbance bands. 

3.6. FT-IR analysis 

The functional groups adsorbed on the surface of Ag-NPs were examined by FT-IR spectrum. Fig. 6 represented FT-IR spectra (a-e) 
of Ag-NPs with different butyl acrylate concentrations 0.10, 0.15, 0.20, 0.25, and 0.30 %, respectively. The characteristic sharp 
spectrum exhibited, the absorption at 3568–3579 cm− 1 for O–H stretching vibration, 1425–1439 cm− 1 for O–H bending vibration of 
carboxylic group, bands absorbed at 1058–1075 cm− 1 absorption of strong tri substituted C–H bending vibration bands at 879–897 
cm− 1 and a strong monosubstituted C–H bending vibration bands absorbed at 746–759 cm− 1 [48,49]. The sharp peak of Ag-NPs at 423 
to 410 cm− 1 was assigned for successful preparation of Ag-NPs. Furthermore, the shift in wavenumber of Ag-NPs samples to lower 
wave numbers with the increase in butyl acrylate concentration denoted that butyl acrylate and Ag-NPs are interacting strongly 

Table 2 
Elemental composition of Ag-NPs at different concentration of butyl acrylate.  

Elements 0.10% 0.15% 0.20% 0.25% 0.30% 

Weight 
(%) 

Atomic 
(%) 

Weight 
(%) 

Atomic 
(%) 

Weight 
(%) 

Atomic 
(%) 

Weight 
(%) 

Atomic 
(%) 

Weight 
(%) 

Atomic 
(%) 

Silver (Ag) 90.25 57.86 92.50 61.50 93.75 64.30 95.25 69.05 97.50 75.70 
Oxygen 

(O) 
9.75 42.14 7.50 38.50 6.25 35.70 4.75 30.95 2.50 24.30  
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[50–52]. 

3.7. Catalytic degradation of rhodamine B and methylene blue 

The exploration of catalytic activity of the synthesized Ag-NPs was performed on the degradation of two toxic dyes namely 
Rhodamine B and methylene blue [50,51]. The absorbance spectra recorded for methylene blue dye degradation was shown in Fig. 7. 
The absorption peak corresponding to 665 nm, was used to determine the concentration change during the degradation process. The 
degradation of MB using NaBH4 without any catalyst showed a very slow progress (more than a day), but when Ag-NPs added into the 
reaction takes place rapidly (within 18 h). The absorption spectra of MB show a sharp peak at 665 nm (Fig. 7) and upon reaction with 
Ag-NPs, the absorbance at this particular wavelength continuously decreases due to the degradation of dye along with the formation of 
degradation products such as CO2, H2O [52,53]. To calculate the percentage of dye degradation the following formula (8) has been 
used 

Fig. 3. (a–e) FE-SEM images for the Ag/butyl acrylate at different concentration of butyl acrylate [0.1% 4(a), 0.15% 4(b), 0.2% 4(c), 0.25% 4(d), 
and 0.3% 4(e)] and (f) mean particle size vs concentration of butyl acrylate solution (%). 

Table 3 
Average particle size of Ag-NPs calculated using FE-SEM images.  

Concentration of butyl acrylate solution (%) Average 
Crystalline size (DFE-SEM(nm)) 

0.10% 58.07 
0.15% 49.20 
0.20% 46.28 
0.25% 40.36 
0.30% 27.15  
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Fig. 4. (a–e) The particle size distribution for the Ag/butyl acrylate and TEM images at various concentrations of butyl acrylate [0.1% 4(a), 0.15% 4 
(b), 0.2% 4(c), 0.25% 4(d), and 0.3% 4(e)] and 4(f) mean particle size vs concentration of butyl acrylate solution (%). 

Table 4 
Average particle size of Ag-NPs calculated using TEM images.  

Concentration of butyl acrylate solution (%) Average particle size (in nm) 

0.10 27.51 
0.15 24.47 
0.20 24.26 
0.25 23.85 
0.30 16.27  

Fig. 5. (i) UV–Vis spectra for the Ag/butyl acrylate at different concentrations of butyl acrylate [0.1% (a), 0.15% (b), 0.2% (c), 0.25% (d), and 0.3% 
(e)] and (ii & iii) Wavelength & absorbance vs concentration of butyl acrylate solution (%). 

I. Saxena et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e28309

8

% dye degradation=
(

Acom − Adeg

Acom

)

x 100 (8) 

The color of the dye delocalizes which also confirms degradation. The % dye degradation of methylene blue was calculated as 100 
% which confirms the synthesized Ag-NPs can be a good catalyst for MB dye degradation. 

Likewise, Fig. 8 represented the absorption spectra recorded for the catalytic action of Ag-NPs on Rhodamine B dye, which pos-
sesses a peak at 665 nm. The intensity of this peak will decrease along with the decolorization of the solution confirming the 
degradation of Rhodamine B. The degradation of Rhodamine B is confirmed by the disappearance of the absorption peak at 665 nm. 

The % dye degradation was calculated by using equation (8) and it has been found that 100 % degradation of rhodamine B 
occurred, which suggested that the synthesized Ag-NPs are good for the degradation of rhodamine B dye. The mechanism for the action 
of Ag-NPs upon dye degradation is shown in Fig. 9. Ag-NPs played a significant role in the catalytic reduction of dyes because it has a 
larger surface area and easily provides electron [45–47]. 

Due to the absorption of free electron of Ag-NPs, electron get exited and combined with O2 and leads to form O2
− which in turn 

reacts with H2O and produces H2O2. This H2O2 breaks its OH free radical and leads to reduce the dye along with the formation of the 
degradation products such as CO2, H2O, etc. [54]. 

4. Conclusion 

In summary, this research report demonstrated the synthesis of silver nanoparticles using butyl acrylate polymer as a stabilizing 

Fig. 6. FTIR spectra for the Ag-NPs at different concentrations of butyl acrylate [0.1% (a), 0.15% (b), 0.2% (c), 0.25% (d), and 0.3% (e)].  

Fig. 7. Absorption spectra for methylene blue degradation. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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agent via ultrasonic method. It involves a low-cost and nontoxic method for synthesis. The XRD examination revealed that Ag-NPs have 
a face-centered structure with an average crystalline size in the range of 9.51 and 11.83 nm. EDX profile confirmed the formation of Ag- 
NPs with no impurities in the synthesized samples. The surface area of Ag-NPs changed with increasing butyl acrylate concentration, 
resulting in small-sized Ag-NPs with a spherical shape (FE-SEM). The TEM images demonstrate that the particles are spherical in shape, 
and their particle size was 16.27 nm which means the quantity of Ag-NPs enhances as butyl acrylate concentrations increase. The 
formation of Ag-NPs was confirmed by UV–Vis spectroscopy, which shows an absorption peak at wavelength range 401–411 nm. FT-IR 
data revealed the interactions exist between butyl acrylate and Ag-NPs. The catalytic activity of Ag-NPs examined by the reduction of 
methylene blue and rhodamine B by Ag-NPs express extremely quick responses that change these dyes into leuco form (colorless). 
Conclusively, the synthesized Ag-NPs can be a promising material for the environmental remediation process. 
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