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As dried blood spots (DBSs) have various advantages over conventional venous blood 
sampling, some assays for detection of one or two anti-tuberculosis (TB) drugs in DBSs 
have been developed. However, there are no assays currently available for the simultane-
ous measurement of three or more anti-TB drugs in DBSs. In this study, we developed 
and evaluated a multiplex method for detecting nine anti-TB drugs including streptomy-
cin, kanamycin, clarithromycin, cycloserine, moxifloxacin, levofloxacin, para-aminosalicylic 
acid, prothionamide, and linezolid in DBSs by using ultra-performance liquid chromatog-
raphy-tandem mass spectrometry (UPLC-MS/MS). Seventy-nine patient samples of DBS 
were analyzed on the UPLC-MS/MS system. All drug concentrations were determined 
within 4 min, and assay performance was evaluated. All drugs were clearly separated 
without ion suppression. Within-run and between-run precisions were 1.7-13.0% and 5.7-
17.0%, respectively, at concentrations representing low and high levels for the nine drugs. 
Lower limits of detection and quantification were 0.06-0.6 and 0.5-5.0 μg/mL, respec-
tively. Linearity was acceptable at five level concentrations for each drug. Correlations be-
tween drug concentrations in plasma and DBSs by using Passing-Bablock regression and 
Pearson’s rho (ρ, 0.798-0.989) were acceptable. In conclusion, we developed a multiplex 
assay to measure nine second-line anti-TB drugs in DBSs successfully. This assay pro-
vided convenient and rapid drug quantification and could have applications in drug moni-
toring during treatment. 
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Therapeutic drug monitoring (TDM) of second-line anti-tubercu-

losis (TB) drugs becomes increasingly important to assess pa-

tients with multidrug-resistant (MDR) or extensively drug-resis-

tant (XDR) TB due to current complex treatments [1, 2]. Inap-

propriate dosing due to pharmacokinetic variability of anti-TB 

drugs is a main casual factor in the emergence of drug-resistant 

Mycobacterium tuberculosis strains [3, 4]. We recently reported 

on a multiplex assay for nine second-line anti-TB drugs, namely, 

streptomycin, kanamycin, clarithromycin, cycloserine, moxiflox-

acin, levofloxacin, para-aminosalicylic acid (PAS), prothion-

amide, and linezolid, in human sera by using ultra-performance 

liquid chromatography-tandem mass spectrometry (UPLC-MS/

MS) [5]. Dried blood spots (DBSs) have various advantages over 

conventional venous blood sampling, including easier sampling, 
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storage, and transportation, thereby enabling TDM even in re-

mote areas [6]. Owing to these advantages, assays with DBSs 

for one or two anti-TB drugs like moxifloxacin, linezolid, rifampi-

cin and clarithromycin have been developed [7-9]. However, an 

assay for simultaneously measuring three or more anti-TB drugs 

in DBSs is currently unavailable. We developed an UPLC-MS/

MS method for simultaneously measuring concentrations of 

these nine second-line anti-TB drugs in DBSs.

Standard plasma were prepared by spiking stock solutions 

into blank plasma. Standard whole-blood with six drug concen-

trations (streptomycin, kanamycin, cycloserine, and PAS at 0, 5, 

10, 20, 40, and 100 μg/mL; clarithromycin and prothionamide 

at 0, 0.5, 1, 2, 4, and 10 μg/mL; and moxifloxacin, levofloxacin, 

and linezolid at 0, 1, 2, 4, 8, and 20 μg/mL) were prepared by 

mixing equal amounts of standard plasma and blank packed 

red blood cells. For standard DBSs, 100 μL of six standard 

whole-blood was added dropwise onto Whatman 903 filter pa-

per by using an adjustable pipette [10, 11]. After samples were 

dried for 12 hr at room temperature, they were stored in a 

sealed bag at -20°C.  

Total 79 DBS patient samples were prepared with similar 

method to that of plasma with some modifications [5]. In brief, 

two 3.2-mm diameter punched-out DBSs made by the same 

process as the standards were extracted by using 100 μL 50% 

methanol in distilled water with 50 μL internal standard in the 

same mixed solution except for streptomycin and kanamycin. 

For these drugs, 5 μL of 3M HCl were also added. After 20 min 

of sonication, mixtures were centrifuged at 15,700g for 5 min; 

90 µL supernatant was mixed with 90 μL methanol. In the case 

of two drugs, 5 μL of 1M NaOH was added to the mixtures. Af-

ter centrifugation at 15,700g for 5 min, the supernatants were 

injected into a UPLC system. Plasma samples were prepared as 

described previously [5].

All samples were analyzed on an LC-30A Nexera UPLC sys-

tem (Shimadzu Co., Kyoto, Japan) with an AQUITY Waters HSS 

T3 column (50.0×2.1 mm, 1.8 μm; Waters, Watford, UK). The 

flow rate was 0.25 mL/min. The mobile phase was a gradient of 

a mixture of 10 mM ammonium formate in 0.1% formic acid 

Table 1. Inter-assay variability of calibration curves, within-run and between-run precision, lower limit of detection, and lower limit of quan-
tification for UPLC-MS/MS assay for second line anti-tuberculosis drugs in dried blood spots

Compound
Inter-assay variability of calibration curves Precision, CV (%)

LLOD in DBS vs 
Plasma* (µg/mL)

LLOQ in DBS vs Plasma*

Range 
(µg/mL)

Slope Intercept R
Nominal conc.  

(µg/mL)
Within-run Between-run

Conc. 
(µg/mL)

Precision 
(CV, %)

Streptomycin 5-100 2.5605 0.0001 0.9997 3.33 13.0 13.6 0.30 vs 0.50 2.5 vs 2.5 10.0 vs 2.5

38.70 7.7 9.6

Kanamycin 5-100 0.9920 0.0019 0.9987 5.50 10.0 11.0 0.30 vs 0.50 5.0 vs 2.5 3.4 vs 10.1

36.45 9.6 10.9

Clarithromycin 0.5-10 0.1565 -0.0305 0.9980 0.76 4.9 8.1 0.06 vs 0.025 0.5 vs 0.25 5.6 vs 9.0

4.56 6.6 12.7

Cycloserine 5-100 0.0215 0.0151 0.9981 7.50 4.3 9.7 0.30 vs 0.50 5.0 vs 5.0 2.5 vs 19.8

36.00 5.1 5.7

Moxifloxacin 1-20 0.7025 -0.1315 0.9992 1.06 6.7 12.3 0.06 vs 0.05 0.5 vs 0.5 5.6 vs 2.8

8.00 6.1 13.1

Levofloxacin 1-20 0.4722 0.0544 0.9992 1.07 4.5 17.0 0.125 vs 0.10 0.5 vs 1.0 6.6 vs 8.6

8.93 1.7 10.5

Linezolid 1-20 0.2005 -0.1065 0.9982 1.62 9.1 11.0 0.125 vs 0.05 1.0 vs 0.5 9.1 vs 14.9

9.42 9.0 15.6

PAS 5-100 0.3287 -0.6836 0.9983 6.69 2.8 10.3 0.60 vs 0.50 5.0 vs 5.0 7.0 vs 16.6

37.58 6.4 7.8

Prothionamide 0.5-10 0.6617 -0.1234 0.9989 0.77 2.7 11.4 0.06 vs 0.05 0.5 vs 0.5 3.2 vs 9.7

3.35 7.4 9.7

*LLOD and LLOQ data in plasma samples were obtained by the previous study [5]. 
Abbreviations: LLOD, lower limit of detection; LLOQ, lower limit of quantification; Conc., concentration; PAS, para-aminosalicylic acid.
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(solvent A) and acetonitrile in 0.1% formic acid (solvent B). The 

total running time was 4 min. All drug concentrations were de-

termined by using an AB Sciex API 6500 triple quadrupole tan-

dem mass spectrometer (AB Sciex Pte., Ltd., Framingham, MA, 

USA). 

All drugs and internal standards were clearly separated in the 

UPLC-MS/MS system, as in our previous study [5]. Ion suppres-

sion, evaluated by the post-column infusion model method [12], 

was not observed at the retention time for any of the com-

pounds. 

Inter-assay calibration variability data were collected on five 

consecutive days. Linear and reproducible curves were ob-

tained in the observed analytical ranges (Table 1). According to 

the CLSI EP6-A guideline [13], linearity was acceptable at five 

concentrations for each drug (R >0.9990). 

Values of within-run precision, determined by using 10 repli-

cated analyses of quality control samples, were 2.7-13.0% at 

low concentrations and 1.7-9.6% at high concentrations. Values 

of between-run precisions, determined by measuring controls 

for 10 consecutive days, were 8.1-17.0% at low concentrations 

and 5.7-15.6% at high concentrations.

The lower limit of detection (LLOD) and lower limit of quantifi-

cation (LLOQ) were defined as the lowest concentration with a 

signal-to-noise ratio of >3.0 and the lowest concentration with 

precision <20% and an accuracy within ±20%, respectively. 

The LLOD and LLOQ were 0.06-0.30 and 0.5-5.0 μg/mL, re-

spectively (Table 1). Compared with our previous study in plasma 

[5], LLOQs of DBSs were generally higher. According to the phar-

Fig. 1. Passing-Bablok regression with regression equations, Pearson’s rho, significance levels and Bland-Altman plots between measure-
ments in DBS and plasma for second-line anti-TB drugs: kanamycin, cycloserine, moxifloxacin, levofloxacin, prothionamide, PAS, linezolid, 
and clarithromycin.
Abbreviations: DBS, dried blood spot; PAS, para-aminosalicylic acid.
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macokinetic study of second-line anti-TB drugs [14], Cmax values 

of streptomycin, kanamycin, cycloserine, PAS, moxifloxacin, le-

vofloxacin, and prothionamide were within linear ranges, and at 

least five times higher than the LLOQ for each drug. 

All standard DBSs were tested again after being kept in a 

sealed bag at -20°C over 6 months, to assess their stability. Dif-

ferences between the time points were within ±10%, except for 

streptomycin at low levels and prothionamide at both low and 

high levels.  

Plasma and DBSs for the comparison study were obtained 

from residual samples of TB patients. This research was ap-

proved by the Seoul National University Bundang Hospital Insti-

tutional Review Board, and was conducted in accordance with 

the Declaration of Helsinki. Passing-Bablok regression analysis 

revealed strong similarity between drug concentrations in DBSs 

and in plasma (Fig. 1). For streptomycin, only two residual sam-

ples were tested, and the results were 4.8/3.6 μg/mL and 

2.1/2.7 μg/mL (plasma/DBS) respectively. The Pearson’s rho (ρ) 
of drugs ranged from 0.798 to 0.989 (P <0.0015). Although 

these values were lower than those of published single or dual 

drug assays [7-9], they are acceptable for TDM in MDR/XDR 

management. The concentration of each drug in DBSs showed 

a degree of negative bias compared with that in plasma, except 

for levofloxacin. Several factors cause a mismatch of drug con-

centration between plasma and venous whole blood, including 

differential partition between red blood cells and plasma, and 

individual hematocrit variations [6]. Nevertheless, a very high 

positive correlation for clarithromycin, cycloserine, and PAS and 

high positive correlation for the other drugs were observed [15]. 

At first, the corresponding plasma values could be calculated 

from the DBSs by using the conversion equations for clarithro-

mycin, cycloserine and PAS. 

This study had some limitations. First, concentrations of more 

than a half of the samples were lower than the Cmax value be-

cause most samples were not originally intended for TDM. Fur-

ther studies into TDM should use samples collected immedi-

ately before the test to assess and optimize such multiplex as-

says. Second, we did not measure hematocrit and hence could 

not correct for the effect of hematocrit. This may cause differ-

ences between plasma and DBS concentrations in some sam-

ples. It is possible to measure the hematocrit directly from 

DBSs: potassium could be used to predict the hematocrit of 

DBS [16]. Third, our procedure is not universally applicable be-

cause a 100-μL spotted volume cannot be drawn from a finger 

prick, and a falling drop of blood has volume of 30-50 μL. In 

addition, there were no paired samples obtained by finger prick 

and venous puncture. Nevertheless, we successfully developed 

a method to measure nine second-line anti-TB drugs in DBSs 

simultaneously using UPLC-MS/MS.

So far, a few methods of TDM for second-line anti-TB drugs in 

plasma or DBSs have been developed [7-9]. Our study is the 

first description of a method for the simultaneous measurement 

of nine second-line anti-TB drugs in DBSs. The performance of 

our detection technique in DBSs, comparable with those of cur-

rently applied methods using plasma, was feasible for applica-

tion of TDM of second-line anti-TB drugs. We expect that such 

TDM of second-line anti-TB drugs using DBSs will be crucial in 

the identification and management of MDR/XDR TB. 
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