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Abstract

Background: Whole genome amplification techniques have enabled the analysis of unexplored genomic
information by sequencing of single-amplified genomes (SAGs). Whole genome amplification of single bacteria is
currently challenging because contamination often occurs in experimental processes. Thus, to increase the
confidence in the analyses of sequenced SAGs, bioinformatics approaches that identify and exclude non-target
sequences from SAGs are required. Since currently reported approaches utilize sequence information in public
databases, they have limitations when new strains are the targets of interest. Here, we developed a software
SAG-QC that identify and exclude non-target sequences independent of database.

Results: In our method, “no template control” sequences acquired during WGA were used. We calculated the
probability that a sequence was derived from contaminants by comparing k-mer compositions with the no
template control sequences. Based on the results of tests using simulated SAG datasets, the accuracy of our
method for predicting non-target sequences was higher than that of currently reported techniques. Subsequently,
we applied our tool to actual SAG datasets and evaluated the accuracy of the predictions.

Conclusions: Our method works independently of public sequence information for distinguishing SAGs from
non-target sequences. This method will be effective when employed against SAG sequences of unexplored strains
and we anticipate that it will contribute to the correct interpretation of SAGs.
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Background
Accessing genetic information in environmental bacteria
has been considered challenging, as >99% of currently
known microbes cannot be cultivated using current
standard cultivation techniques. However, understanding
these uncultivable bacteria has been made possible by
the whole genome amplification (WGA) techniques that
enable the amplification of DNA from as low as several

femto-grams. Thus far, WGA methods, particularly mul-
tiple displacement amplification (MDA), have promoted
the sequencing of bacterial genomes at the single-cell
level [1, 2] and have assisted in elucidating the charac-
teristics of several uncultivable taxonomic groups [3–6].
Despite its advantages, WGA of single cells is extremely

sensitive and is easily affected by DNA contamination
from the surrounding environment. Efforts to eradicate or
avoid these contaminants include the use of clean rooms
or clean-up techniques [3, 7–11], but it remains difficult
to completely remove these contaminants. The presence
of contaminating DNA may cause the misinterpretation
on the characteristics of the target bacterium. Therefore,
quality control of whole genome amplified bacterial
genomes, known as single-cell amplified genomes (SAGs),
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to identify and remove sequences derived from contamin-
ating constituents is critical for subsequent SAG analyses.
Currently, two main approaches are used for the quality

control of SAGs. These include approaches dependent on
(1) similarity searching and (2) sequence composition.
The first approach excludes sequences highly similar to
sequences that originated from contaminant species [12].
These methods are highly effective when the target or
contaminant species belong to taxonomic groups whose
genome information is substantially available. However,
these methods are not appropriate when the targets
belong to minor taxonomic groups that have not been
well-studied. The second approach clusters sequences
based on sequence compositions such as tetramer fre-
quencies and then extracts clusters corresponding to the
target genome sequences [13]. In contrast to the similarity
searching-based approach, this approach enables the re-
moval of contaminant sequences independently of existing
information. Several composition-based methods have
been proposed for binning of metagenomic information
[14–16]. However, even if sequences are grouped into
clusters based on sequence composition, there is a diffi-
culty and uncertainty to determine whether the clusters
correspond to the target bacterium.
ProDeGe is the first system that achieved fully auto-

mated quality control of SAG information [17]. This tool
utilizes both similarity searching and sequence compos-
ition. However, performance of the tool depends on the
results of the similarity search. There are still limitations
when a target belongs to a minor uncultivable taxo-
nomic group and there is no sequence of closely related
species in a reference database.
In this study, we introduce SAG-QC, a software aimed

for the quality control of bacterial SAG sequences. Both
approaches based on similarity searching and sequence
compositions are available in this application. Unlike the
methods for binning of metagenome sequences based on
sequence compositions [14–16], SAG-QC identifies
clusters of target sequences by utilizing “non-target se-
quences” that can be acquired experimentally. The non-
target sequences are acquired from sequence libraries
subjected to experimental processes without template
DNA. Therefore, this tool is applicable for minor taxo-
nomic groups for which limited information is available
because the function is only dependent on the non-
target sequences. Additionally, this application provides
a user-friendly graphical user interface, supporting users
to remove contaminant sequences intuitively and rap-
idly. We believe this application enables users to exam-
ine various types of SAG sequences.

Implementation
SAG-QC is a user-friendly graphical user interface appli-
cation developed using Python. All of the executable

files and the source codes are available in https://source-
forge.net/projects/sag-qc. This application is available
for Mac OS X.

Overview of quality control with SAG-QC
SAG-QC is designed to exclude contaminant sequences
from contigs. SAG-QC includes three steps for the
quality control of the input contig sequences (Fig. 1).
The first step is the identification of contaminant con-
stituents based on 16S rRNA gene sequences or with a
k-mer-based taxonomic classification tool [18]. In the
second step, contaminant sequences can be removed by
similarity searching against the genome sequence if the
genome sequences of the contaminant constituents
were determined previously. The third step is a quality
control that includes binning based on sequence com-
position. This step removes contaminant sequences
that were not identified in the second quality control
step. In this step, contaminant sequences are removed
by comparison of the sequence composition to non-
target sequences. Non-target sequences can be acquired
by sequencing of samples subjected to experimental
processes (ex: WGA) without using cells as a negative
control. Therefore, this step removes contaminant se-
quences even when target or contaminant sequences
belong to taxonomic groups with limited available
genetic information.

Fig. 1 Overview of SAG-QC SAG-QC. Uses contig sequences generated
by de novo assembly. Decontamination of the contig sequences
involves three steps: identification of contaminating constituent,
annotation-based decontamination, and binning-based decontamination.
The output can be reliably utilized for subsequent downstream analyses
such as gene annotation
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Description of the use of SAG-QC
Input files for SAG-QC are contig sequences in Fasta
format. SAG-QC divides the input sequences into small
fragments (fragments of 1000 bp in default) and projects
them onto a scatterplot based on sequence composition
(Fig. 2). The colors of the plots can be changed based on
other information (ex: taxonomic information) using the
color control panel. Importantly, SAG-QC has a func-
tion to extract sequences at any region within the scat-
terplot by manually clicking and gating the region of
interest. This feature allows users to specifically select
the region of interest and focus on these regions for
downstream analyses.

Identification of contaminating constituents
The subsequent sections include detailed descriptions of
the three quality control steps of SAG-QC. In the first
step, SAG-QC identifies contaminating constituents
using two methods. The first method uses Kraken [18],
which is a tool that assigns taxa to sequences based on
their characteristic k-mers. Kraken identifies whether the
query file includes sequences from contaminating con-
stituents (Fig. 3a). Based on the classification results,
users are able to exclude sequences to which unexpected
taxa are assigned. The second method is based on the
annotation of 16S rRNA gene sequences. SAG-QC

utilizes HMMER to predict 16S rRNA gene sequences in
the input contigs. The 16S rRNA gene sequences are
then annotated by BLAST searching against the SILVA
database [19] (Fig. 3b). This step also enables users to
identify clusters of target and contaminant sequences by
setting the colors of the plots according to the classifica-
tion results (Fig. 3c).

Quality control based on similarity search
In the second step, SAG-QC removes contaminant
sequences based on similarity searching against the
genome sequence of contaminating constituents deter-
mined in the previous step. This step is applicable if a
SAG sample is contaminated with bacterial DNA whose
information is available. SAG-QC uses the similarity
search tool BLAT [20] to identify and exclude sequences
that show high homology to sequences of contaminating
constituents. Any sequence files can be loaded as a data-
base for the similarity search.

Quality control based on binning with sequence
compositions
In the third step, SAG-QC excludes contaminant se-
quences by comparing sequence compositions with
those of non-target sequences. The sequence composi-
tions utilized by SAG-QC are GC contents, principal

Fig. 2 Graphical user interface of SAG-QC. Contigs are plotted as dots in the scatterplot based on sequence properties such as GC contents and
k-mer frequencies. Users can enclose any regions manually and extract/remove contigs inside the region. Statistics of the enclosed contigs is in
the “contig information” panel. Colors of the plots can be edited in the “color control” panel. Users can modify the parameters for drawing the
scatterplot in the “parameter control” panel
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components of k-mer frequencies, and those of codon
frequencies. We used relative synonymous codon
usage frequencies as an indicator of codon usage [21].
This implies

rij ¼ njxijX
k¼1

nj
xik

where rij is relative synonymous codon usage frequency
for codon j of sequence i. nj is the number of codons
synonymous with codon j, xij is the number of codon j
observed in the sequence i. The frequency is calculated
for coding sequences predicted using MetaGeneAnnota-
tor [22].
In SAG-QC, multiple sequence files can be pro-

jected on a single scatterplot. Thus, clusters of target
sequences can be determined by projecting non-target
sequences onto the scatterplot together. Additionally,
if the genome sequence of species that is closely re-
lated to a target bacterium is available, a target clus-
ter can also be identified by loading the genome
sequence onto the scatterplot.
For example, we used SAG sequences from Escheri-

chia coli. We simultaneously performed WGA with-
out a sorted cell and acquired non-target sequences.
These sequences were assembled and projected using
the genome sequence of E. coli downloaded from
RefSeq onto a scatterplot together. Consequently, we
found that the distribution of the SAG sequences was
composed of two clusters: a cluster of target se-
quences and a cluster of non-target sequences (Fig. 4).

This observation suggests that sequences of either
closely related species or non-target sequences can be
utilized for identifying the distribution of the target
sequences.

Estimation of confidence scores by utilizing non-target
sequences
We established a method utilizing non-target se-
quences to extract sequences derived from target bac-
terium with high probability. Similar to the above
observation, distributions of SAG sequences can be
decomposed into distributions of target and non-target
sequences (Fig. 4). SAG-QC possesses a function for
predicting where target sequences are distributed on a
scatterplot by subtracting the distribution of non-
target sequences from that of SAG sequences. Based
on the predicted distribution of target sequences,
SAG-QC assigns the sequences confidence scores,
which are probabilities indicating whether the se-
quences originated from the target species. These
scores help users extract sequences derived from target
species with high probability.
f(s), f(t), and f(n)denote functions for the probability dens-

ity of SAG sequences, target sequences, and non-target se-
quences, respectively. The probability density function of
the sample sequences f(s) can be decomposed into that of
target and non-target sequences. This implies

f sð Þ xð Þ ¼ p tð Þf tð Þ xð Þ þ p nð Þf nð Þ xð Þ

p tð Þ þ p nð Þ ¼ 1

A

B

C

Fig. 3 Detection of contaminating constituents. a Users can identify contaminating constituents using a k-mer based annotation tool Kraken [16].
b Contaminating constituents also can be detected by annotation of 16 rRNA gene sequences. c Colors of plots can be set based on classification.
Users can extract sequences in a cluster of some specific bacterial species
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where x represents the coordinates in the scatterplots.
p(t) and p(n) are proportions of target and non-target se-
quences in the sample SAG sequences.
f(s) and f(n) are approximated from the scatterplots.

The scatterplot is divided into M ×M blocks (default as
M = 50). Thereafter, a density matrix D is computed
based on Gaussian kernel distribution estimation
(Fig. 5b). This implies

D0
ij ¼

1
nh

Xn
k¼1

K
xij−xk
h

� �

K xð Þ ¼ 1ffiffiffiffiffiffi
2π

p exp −
1
2
x2

� �

Dij ¼
D0

ijX
m¼1

M X
n¼1

M
D0

nm

n corresponds to a number of plots on the scatterplot.
xij denotes a coordinate at the center of block(i,j) (block
at row i and column j). Dij denotes the density of the
plots in block(i,j) and is represented by the probability

A B C D

Fig. 4 Detection of target clusters using non-target sequence and genome sequence of related species. a Scatterplots of contigs generated from
single amplified genome (SAG) sequences of Escherichia coli. b Scatterplot of published genome sequences of E. coli in RefSeq. c Scatterplot of
non-target sequences. d Scatterplot in which all sequences are overlapped

A C

D EB

Fig. 5 Inference of highly confident region on scatterplot using non-target sequence. a Scatterplot based on sequence composition. b Heat map
showing density of the plots. The densities were calculated by Gaussian kernal distribution estimation. c Sample sequences were composed of
two constitutions target sequences and contaminating sequences. The distribution of target sequences ideally can be estimated by subtracting
the distribution of non-target sequences. d Estimated distribution of target sequence. e Example of confidence map. The map shows confidence,
an indicator reflecting whether a sequence was derived from a target sequence. Users can extract highly confident regions based on this information
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density at coordinate xij. The probability density func-
tion f(x) is approximated with the density matrix D.

x ∈ block i; jð Þ ⇒ f xð Þ ¼ Dij

The bandwidth h for kernel density estimation is
calculated according to Scott’s rule [23] as follows.

h ¼ n
−1
dþ4ð Þ ¼ n−

1
6

SAG samples ideally include fewer contaminant
sequences than samples subjected to experimental pro-
cesses without template DNA (Fig. 5c). This is because
the SAG sequences contain target sequences other than
the non-target sequences. p(n) and p(t) are estimated as
follows.

p nð Þ ¼
X

i;jjD nð Þ
ij>D sð Þ

ijð Þ
D sð Þ

ij=
X

i;jjD nð Þ
ij>D sð Þ

ijð Þ
D nð Þ

ijp
tð Þ ¼ 1−p nð Þ

D(s) and D(n) correspond to the distribution of SAG se-
quences and that of non-target sequences, respectively.
The distribution of target sequences D(t) is estimated by
subtracting distribution D(n) from that of D(s) as follows
(Fig. 5d).

D tð Þ
ij ¼ D sð Þ

ij− p nð ÞD nð Þ
ij

� �
=p tð Þ

x ∈ block i; jð Þ ⇒ f tð Þ xð Þ ¼ D tð Þ
ij

Based on these parameters, confidence c is calculated
as follows. Confidence score c(x) denotes a probability
that a sequence plotted on x is a target sequence.

c xð Þ ¼ p tð Þf tð Þ xð Þ
p tð Þf tð Þ xð Þ þ p nð Þf nð Þ xð Þ

Based on the confidence scores, users can draw a con-
fidence map (Fig. 5e). A confidence map indicates re-
gions that are highly dense with target sequences on a
scatterplot. Let xij denote the coordinate of the jth frag-
ment of sequence i, confidence scores of the sequence ci
are calculated as follows. ni is the number of fragments
originated from sequence i.

ci ¼
X

j¼1

ni
c xij
� �

ni

Confidence scores can be utilized as thresholds for the
extraction of sequences. If confidence score of 0.8 is set as
a threshold, we can extract sequences originated from
target bacterium with a probability of more than 80%.
Additionally, the scores can be utilized to support the re-
sults of subsequent genome analyses. For example, genes
found on sequences with high confidence scores are more
reliable than those on sequence with low scores.

Methods
Sequencing SAG of E. coli
Escherichia coli K-12 were cultured overnight at 37 °C in
LB broth. Escherichia coli cells were washed with
nuclease-free water and stained with SYTO9 Green
Fluorescent Nucleic Acid Stain (Life Technologies,
Carlsbad, CA, USA). Single cells were sorted using FACS
Aria II (BD Biosciences, Franklin Lakes, NJ, USA) with a
488-nm laser and forward scatter light. Genome extrac-
tion and MDA were conducted using the Genomiphi V2
Amplification Kit (GE Healthcare, Little Chalfont, UK)
according to the manufacturer’s protocol. The amplified
products were screened by sequencing the 16S rRNA
genes. PCR amplifications of 16S rRNA genes were per-
formed using universal primer 27F-338R. The PCR
products were sequenced by Sanger sequencing. Taxo-
nomic classifications were conducted by BLAST search-
ing against the NCBI nr database. We have prepared
three MDA products whose 16S rRNA genes are anno-
tated as E. coli were selected for the following steps. In
the meantime, to acquire non-target sequences, we
performed MDA without template DNA of E. coli.
The MDA products were purified with Zymo Research

Genomic DNA Clean & Concentrator-10 (Zymo Re-
search, Irvine, CA, USA). Debranching was conducted
on the purified samples with S1 nuclease (TaKaRa,
Shiga, Japan). Thereafter, the samples were purified
again using the Zymo Research Genomic DNA Clean &
Concentrator-10. Sequence libraries were prepared with
Nextera XT (Illumina, San Diego, CA, USA). The librar-
ies were sequenced on an Illumina MiSeq in 2 × 300 bp
mode. We sequenced three SAGs of E. coli and single
no-template MDA product in this experiment.

Preprocessing of SAG sequences
The sequence reads were preprocessed through several
steps. We first removed reads whose half of quality
scores was below 25 using the fastx-toolkit (fastq_quali-
ty_filter –q 25 –p 50). Sequence regions with quality
scores below 20 were trimmed from the 3′ end by using
PRINSEQ (prinseq-lite.pl –trim_qual_right 20) [24]. Se-
quence reads including ambiguous bases (“N”) more
than 1% of the whole were also discarded using PRIN-
SEQ (prinseq-lite.pl -ns_max_p 1). Sequence reads
shorter than half of the average read length were re-
moved using an in-house python script. Finally, we
excluded reads whose pair-reads were discarded using
the above steps with an in-house R script.

De novo assembly of SAG sequences
We conducted de novo assembly of the preprocessed
sequence reads using SPAdes [25]. We set options rec-
ommended for assembling from sequences amplified
through MDA (spades.py –sc –careful –disable-rr).

Maruyama et al. BMC Bioinformatics  (2017) 18:152 Page 6 of 11



Contig sequences shorter than 500 bp were discarded
from subsequent analyses.

Performance test with simulated SAG sequences
SAG sequences were simulated using publicly available
genome sequences. Two bacterial species, E. coli and
Magnetospirillum magneticum, were used as target spe-
cies in this simulation. These bacteria were selected to
examine whether this method is applicable to wide var-
iety of species because their genomes exhibit quite dif-
ferent GC contents. Their genome sequences
NC_000913 (E. coli) and NC_007626 (M. magneticum)
were downloaded from the NCBI Genome database
(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/).
Contigs of the target bacteria were simulated by sam-
pling sequence fragments randomly from the genome
sequences. We also downloaded all genome sequences
of genera Pseudomonas and Delftia, which are com-
monly observed as contaminants in SAG sequences [7].
Non-target sequences were simulated by randomly sam-
pling sequence fragments from the genome sequences of
Pseudomonas and Delftia. The average and standard de-
viations of the sampled sequence lengths were set
3000 bp and 500 bp, respectively. Subsequently, the
datasets simulated as target and non-target sequences
were mixed in several different proportions to simulate
contaminated SAG sequences (Table 1). Total numbers
of simulated SAG sequences were set to 1000 for all pro-
portions of contamination.
Using the simulated SAG sequences, we examined the

accuracy of estimating the contamination rate p(n),
distribution of target sequences f(t), and confidence
scores. The simulated SAG sequences, target sequences
(contamination rate 0%), and non-target sequences (con-
tamination rate 100%) were respectively divided into
fragments of 1000 bp and projected on a single scatter-
plot. The proportions of non-target sequences p(n) and
distributions of target sequences D(t) were predicted by
subtracting the distribution of non-target sequences D(n)

from that of sample SAG sequences D(s). The accuracy
of predicted proportions p(n) was evaluated by examining
the correlations with simulated contamination rates. The
accuracy of the predicted distribution D(t) was evaluated
from the correlation with the distribution of the simu-
lated target sequences. Thereafter, we calculated confi-
dence scores based on the predicted distributions D(t)

and distributions of the non-target sequences D(n). To
assess the potential of the confidence score to distin-
guish between target sequences and contaminant se-
quences, receiver operating characteristic (ROC) curves
were generated and areas under curves (AUC) were
calculated with R package pROC [26]. We constructed
simulated datasets and conducted performance tests
5 times.

Performance test using real SAG sequences
We evaluated the accuracy of predicting the distribution
of target sequences D(t) by utilizing real SAG sequences
that were acquired from E. coli experimentally. Non-target
sequences were simultaneously collected from sequence
libraries that were amplified by MDA without template
DNA. Contigs of both E. coli SAG sequences and non-
target sequences were divided into fragments of 1000 bp
and mapped onto a scatterplot together. Additionally, we
randomly sampled 1000 sequences from a published gen-
ome sequence of E. coli and projected them onto the scat-
terplot. The average length and standard deviation of the
sequence lengths were set to 3000 bp and 500 bp, respect-
ively. The distribution of target sequences D(t) was pre-
dicted based on the sample SAG sequences and non-
target sequences. The accuracy of the prediction was eval-
uated by comparing the predicted distribution D(t) and the
distribution of the published genome sequence.
To evaluate the performance of the confidence score,

we attempted to identify target sequences from the
contig sequences. Contigs of the SAG sequences were
aligned with the genome sequence of E. coli using
MUMmer [27]. We regarded contigs as target sequences
if the regions that aligned with the E. coli genome were
longer than the half-length of the contigs. Based on the
alignment results, the performance of the confidence
score was evaluated. Confidence scores were computed
from the predicted distribution D(t) and the distribution
of non-target sequences D(n). We generated ROC curves
to examine whether the confidence scores correctly
reflected the annotation results.

Table 1 Number of target and non-target sequences in
simulated SAG data

Target Contamination Proportion of
contaminant
sequence [%]

E. coli/M. magneticum Pseudomonas Delftia

1000 0 0 0

900 75 25 10

800 150 50 20

700 225 75 30

600 300 100 40

500 375 125 50

400 450 150 60

300 525 175 70

200 600 200 80

100 675 225 90

0 750 250 100

We utilized public bacterial sequences to simulate SAG datasets. We defined
Escherichia coli and Magnetospirillum magneticum as target species in this
simulation. We mixed their sequences with sequences of Pseudomonas and
Delftia to simulate sequences of contaminated samples. The sequences were
mixed in several proportions to simulate datasets with different
contamination levels.
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Results and discussion
Performance test using simulated SAG sequences
The accuracy of our method for predicting the proportion
of non-target sequences p(n) and distribution of target se-
quences D(t) was evaluated from simulated SAG se-
quences. From the simulated distribution of SAG
sequences and non-target sequences, the proportions of
non-target sequences p(n) in the simulated SAG sequences
were predicted. The predicted proportions were strongly
correlated with the true proportions in both E. coli and M.
magneticum (r = 0.99) (Fig. 6a and d). These results sug-
gest that our method can be used to accurately predict the
proportion of contaminant sequences in SAG sequences
and cope with various types of target bacteria.
We also predicted the distributions of target sequences

D(t) by subtracting the distribution of simulated non-
target sequences from that of the simulated SAG se-
quences. When the proportions of the target sequence
were more than 20% in the datasets, the predicted dis-
tributions were strongly correlated (r > 0.9) with true
distributions, although the raw distribution represented
much lower correlations (Fig. 6b and e). Therefore,
SAG-QC can predict the distribution of target se-
quences accurately unless the SAG sequences are
extremely contaminated.

Confidence scores were estimated based on the pre-
dicted contamination rate p(n) and distribution of target
sequences D(t). To examine the performance of the con-
fidence score for predicting target sequences, we gener-
ated ROC curves and calculated the AUC. We created
ROC curves for confidence scores calculated from the
samples simulated with 90% contamination. The AUC
was quite high (AUC = 0.986, 0.998) in both E. coli and
M. magneticum. Therefore, these results suggest that
our method can be used for the quality control of SAG
sequences.

Performance test with real SAG sequences
We evaluated the performance of SAG-QC using real
SAG sequences derived from E. coli. We firstly run Kra-
ken and performed taxonomic classification of the SAG
sequences. Pseudomonas, Delftia, Serratia, Stenotropho-
monas and several other taxa were confirmed as con-
tamination from the SAGs of E. coli (Additional file 1:
Table S1). Those taxa were commonly detected in
sequences of no template control, indicating that the
contaminating constitients were identical among the
SAGs and the no template control.
Therefore, we predicted the distribution of target

sequences D(t) by subtracting the distribution of non-

A B C

D E F

Fig. 6 Results of performance test using simulated SAG. a, d Plot representing performance of estimating contamination rate. b, e Plot showing
capacity for predicting distribution of target sequences. The vertical axis represents Pearson’s correlation with true distribution. c, f ROC curve
showing accuracy for the prediction of a target sequence
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target sequences from that of SAG sequences (Fig. 7a–d).
The predicted distributions showed high correlations
(r = 0.984–0.990) with the true distribution. Since the
correlations were low (r = 0.704–0.788) before subtracting
the distribution of non-target sequences, these results sug-
gest that the method enables the accurate prediction of
the distribution of target sequences.
Additionally, we calculated confidence scores based

on the predicted distribution D(t) and the distribution
of non-target sequences. ROC curves were generated
based on the scores for evaluating their potential
to distinguish target sequences from non-target
sequences (Fig. 7f ). The target and non-target se-
quences were determined by alignment to the genome
sequence of E. coli. The target sequences denote se-
quences aligned to the genome. We observed that
confidence scores correctly worked as an indicator
(AUC = 0.913). The performance was inferior to the
results observed in the test using simulated datasets.
This may reflect that the real SAG sequences in-
cluded artifact sequences produced through MDA.
However, our method still showed good performance
for extracting target sequences from SAGs without
any existing information.

We extracted contigs with confidence scores higher
than 70 and evaluated sensitivity and specificity. The
sensitivities, proportions of target sequence retained
after the selection, were 77.4 – 89.9%. The specificities,
proportion of non-target sequences discarded by the se-
lection, were 84.1 – 86.1% (Additional file 2: Table S2).
Thereafter, we run ProDeGe on the datasets with a
mode not dependent on similarity search and estimated
its sensitivity and specificity. Although ProDeGe demon-
strated high specificities (96.9 – 98.3%), its sensitivity
was much lower (7.3 – 8.7%) than that of our method
(Additional file 2: Table S2). We believe this result also
promises performance of our method when the target
belongs to unexplored taxa and similarity-search-based
method is inapplicable.

Limitation of the method
We used Kraken and confirmed that non-target se-
quences were derived from various bacterial species
(Additional file 1: Table S1). The species were distinct
from E. coli in order-level (e.g. Pseudomonas), class-level
(e.g. Delftia) and genus-level (e.g. Serratia) respectively.
Confidence scores were calculated for the non-target se-
quences. We found that the averages of confidence

Fig. 7 Result of performance test using real SAG data Distribution of (a) raw single-cell sequences, (b) sequence of negative control, (c) target
distribution predicted from single-cell sequence, and (d) true target distribution calculated based on publicly available genome sequence.
e Pearson’s correlation between predicted and true target distributions. f ROC curve representing accuracy for predicting sequence of the
target bacterium
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scores in non-target sequences derived from different
class and order were 16.3 and 14.8. They were remark-
ably low compared to target sequences since its average
score was 80.6 (Additional file 3: Figure S1). On the
other hand, score of non-target sequences originated
from different genera were relatively high. The aver-
age and third quantile of the scores were 54.4 and
84.5. Those results indicate the limitation of our ap-
proach to distinguish sequences of closely related spe-
cies. However, the performance would be enough to
discriminate non-target sequences derived from differ-
ent order and class.
In this study, we performed quality control of SAG

sequences by using sequences of no template control. It
was feasible because contaminating constituents were
almost identical between SAGs and no template control
(Additional file 1: Table S1). The performance of our
tool will be influenced when the contaminating constitu-
ents are different between them. The contaminating
constituents are possible to be different if no template
control was processed independently. Therefore, we
strongly recommend users to acquire no template con-
trols in parallel with SAGs under the same experimental
conditions (e.g. performing experiments with same re-
agents in same time and same place) as possible.

Conclusions
We presented SAG-QC, a computational tool for the
quality control of bacterial SAG sequences. SAG-QC
possesses functions for both similarities search-based
and binning-based quality control methods. In binning-
based quality control, SAG-QC utilizes no template
control sequences to assign a confidence score to SAG
sequences. The confidence score indicates whether the
sequence is derived from the target bacterium and can
be used as a threshold for extracting sequences during
binning. Based on the results of the test using both sim-
ulated and real SAG sequences, we demonstrated that
the score can be used to distinguish target sequences
from SAG sequences. Unlike the conventional metage-
nomic binning methods [28], our approach can deter-
mine bins of target sequences without any existing
information. Therefore, the method is available even
when a target bacterium belongs to a minor taxonomic
group that has not well-studied.

Availability and requirements
Project name: SAG-QC
Project home page: https://sourceforge.net/projects/sag-qc/
Operating systems: Mac OS X
Programming language: Python
Licence: None

Additional files

Additional file 1: Table S1. Sensitivity and specificity of our approach
to discriminate non-target sequences. (XLSX 34 kb)

Additional file 2: Table S2. List of taxa confirmed from contigs of E.
coli SAGs and no template control. (XLSX 60 kb)

Additional file 3: Figure S1. Confidence scores for the non-target
sequence of different genus, order and class. Box plot representing
confidence scores of the non-target sequences derived from E. coli, taxa
different from E. coli in genus-level, order-level and class-level. Lower and
upper hinges correspond to the first and third quantiles. (PDF 17 kb)

Abbreviations
AUC: Areas under curves; MDA: Multiple displacement amplification;
ROC: Receiver operating characteristic; SAG: Single-cell amplified genome;
WGA: Whole genome amplification
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