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Muscle and adipose tissue produce irisin during exercise. Irisin is thermogenic
adipomyokine, improves glucose and lipid metabolism, and ameliorates the effects of
obesity-driven inflammation, metabolic syndrome, and diabetes. In addition, exercise-
induced irisin activates anti-inflammatory pathways and may play an essential role in
improving the outcomes of inflammatory conditions, such as coronavirus disease (COVID-
19). COVID-19 infection can activate different intracellular receptors and modulate various
pathways during the course of the disease. The cytokine release storm (CRS) produced is
significant because it promotes the context for systemic inflammation, which increases the
risk of mortality in patients with severe acute respiratory syndrome coronavirus 2 (SARS-
CoV2). In addition, viral infection and the resulting organ damage may stimulate the
mitogen-activated protein kinase(MAPK) and toll-like receptor 4 (TLR4)/toll interleukin
receptor (TIR)-domain-containing adaptor (MyD88) pathways while negatively modulating
the AMP-activated protein kinase (AMPK) pathway, leading to increased inflammatory
cytokine production. Exercise-induced irisin may counteract this inflammatory modulation
by decreasing cytokine production. Consequently, increased irisin levels, as found in
healthy patients, may favor a better prognosis in patients with SARS-CoV2. This review
aims to explore the molecular mechanisms underlying the anti-inflammatory properties of
irisin in mitigating CRS and preventing severe outcomes due to infection with
SARS-CoV2.
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INTRODUCTION

In 2012, a group of researchers reported the discovery of irisin, a previously uncharacterized
hormone derived from the transmembrane protein fibronectin type III domain-containing protein
5 (FNDC5), which is widely expressed in numerous tissues (1). Based on the functional
characterization of irisin, it may be defined as a myokine (1) and an adipokine released during
exercise (2). Further research has found that irisin mediates the conversion of white adipose tissue to
brown adipose tissue, resulting in a thermogenic effect (1). In addition, irisin improves glucose and
lipid metabolism (3–5) and ameliorates the effects of obesity-driven inflammation, metabolic
syndrome, and diabetes (6–8). As a result, several beneficial effects on human health derived from
exercise, such as reduced inflammation in pathological states, may be ascribed in part to irisin
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secretion (9, 10). Given these positive effects of exercise-induced
irisin, it may play a role in mitigating the effects of other
conditions that trigger systemic inflammation.

Coronavirus disease 2019 (COVID-19) is a highly infectious
disease caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV2), which has reached alarming proportions during the
pandemic (11). Its pathological features include exacerbated
inflammation and induction of a cytokine storm, which
contribute to the development of severe immune reactions (12–
14). Therefore, one of the main therapeutic strategies targets the
hyperactivation of immune responses (12). Multiple studies
hypothesize exercise to be a protective factor against COVID-19
through the downregulation of the cytokine storm and reduction of
sequelae (15, 16). It can also mitigate the progress of the infection,
improve immune response and even work as a coadjutant therapy
for COVID-19 (17). In this way, one observational study was able
to associate moderate levels of exercise with a lower prevalence of
COVID-19-related hospitalization (18). However, the role of irisin
as a potential mechanism mediating exercise’s benefits in COVID-
19 outcomes has yet to be uncovered.

In this review, we aim to discuss the anti-inflammatory effects
of irisin, focusing on the MAPK, AMPK, and TLR4/MyD88
intracellular pathways, and examine how exercise-induced irisin
may improve the outcomes of inflammatory conditions, such as
COVID-19.
IRISIN

Irisin has 112 amino acid residues and is a proteolytic cleavage
subproduct of the FNDC5 protein (1). FNDC5 is a type 1
membrane protein that contains 209 amino acids in mice and
212 in humans. The FNDC5 precursor has five domains: the
signal sequence (29 aa), fibronectin type III (94 aa), functionally
unidentified region (28 aa), transmembrane (19 aa), and
cytoplasmic (39 aa) domains. The N-terminal signal sequence
is located in the extracellular environment, and the cytoplasmic
domain is located at the C-terminus (1, 19, 20).

Irisin has a very similar structure to fibronectin type III
(FNIII) domains: a b-sandwich domain with four b-strands on
one side and three on the other (19). However, irisin forms
continuous antiparallel eight-stranded b-sheet dimers, a feature
rarely found in other FNIII domains. Thus, irisin dimerization is
associated with structural stability, receptor binding, and
triggering signaling cascades (19).

In rodents, irisin was identified in different tissues: muscle,
lung, liver pancreas, adrenal glands, kidneys, and even in the
central nervous system (21, 22). In humans, FNDC5 is
predominantly expressed in muscle tissue, and its expression
patterns establish a few primary predictors of circulating irisin,
such as muscle mass and age (23). Therefore, increased muscle
tissue due to a resistance training program could be a way to
increase circulating irisin levels, and these observations are
substantiated by studies showing an increase in circulating
irisin levels after aerobic and resistance exercise sessions (24,
25). Furthermore, lower circulating irisin levels in older people
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have been noted because human muscle tissue mass decreases
annually after 50 years of age (26).

Because older adults (> 60 years old) have lower physiological
irisin levels, their circulating irisin levels tend to increase at a
higher rate than in younger adults after training sessions, with a
higher increase noted after intense training (24). Although
exercise frequency is positively associated with increased irisin
blood levels (25) populations that frequently exercise did not
receive equal benefits from training interventions (23, 24). Thus,
further research is necessary to understand the relationship
between exercise and circulating irisin levels in trained and
untrained populations. Interestingly, participants with a greater
body mass index were less influenced by the acute irisin response
due to exercise, a condition termed “irisin resistance syndrome”
(25). Therefore, subjects who showed lower body mass index
(BMI) levels throughout the intervention also experienced
notable increases in circulating irisin levels (24).

Both irisin and its precursor are N-glycosylated proteins (1). In
FNDC5, two asparagines (Asn36 and Asn81) were identified as
the glycosylation sites. The modification is associated with critical
functions such as cellular stability and localization of FNDC5. In
addition, glycosylation increases the half-life and membrane
incorporation of the protein. In contrast, unglycosylated FNDC5
has a shorter half-life and is abundantly retained in the
endoplasmic reticulum (27).

Irisin has two additional potentially glycosylated asparagine
residues (Asn7 and Asn52). Glycosylation may stimulate irisin
secretion because FNDC5 membrane incorporation depends on
it. In addition, adipose tissue browning is intensified with
glycosylated irisin, and glycosylation does not impact irisin
dimerization (19, 27, 28).

The mechanisms associated with FNDC5 cleavage into irisin
and its release are still uncertain, but a disintegrin and
metalloproteinase (ADAM) family member are purportedly
involved. ADAM family inhibitors caused irisin levels to
decrease, even though FNDC5 expression did not change (29).
The first characterized binding partners for irisin were found in
adipocytes and osteocytes, and irisin was identified as a potential
modulator of bone metabolism (30). In binding assays, integrins
such as aV/b5, and to a lesser extent a1/b1, possess a high
affinity for irisin. Furthermore, the expression of integrin-like
signaling mediators increased with irisin stimulation.
Conversely, irisin signaling decreased with the use of integrin
inhibitors. Thus, the proposed receptors for irisin in tissues are
the aV-integrin family of proteins (30, 31).

Irisin may act through an alternative pathway in the lungs of
mice with ischemia/reperfusion-induced injury. Irisin may enter
injured cells, protecting them by targeting the mitochondrial
uncoupling protein 2 (UCP2), reducing cellular oxidative stress.
Remarkably, this effect appears to be mediated by lipid raft
endocytosis of irisin from the bloodstream, indicating that irisin
may act regardless of the presence of the receptor (32).

FNDC5 and irisin expression are regulated by the
transcriptional coactivator peroxisome proliferator-activated
receptor-gamma coactivator 1 alpha (PGC1-a). An increase in
PGC1-a expression in the muscle of transgenic mice is
June 2022 | Volume 13 | Article 879066
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associated with the browning of white adipose tissue (WAT) in a
process mediated by irisin (1). Additionally, PGC1-a is
associated with exercise-mediated benefits and energy
metabolism, leading to the hypothesis that exercise may
stimulate irisin release (1)

PGC1-a interacts with several transcription factors to regulate
FNDC5 synthesis during exercise. In particular, the transcription
factors estrogen-related receptor alpha (ERRa) and cAMP
response element-binding protein (CREB) are two presumed
PGC1-a partners that increase FNDC5 synthesis (33, 34).
Furthermore, nuclear hormone receptors such as glucocorticoid
receptor (GR), constitutive androstane receptor (CAR), and
farnesoid X receptor (FXR) also increase FNDC5 mRNA levels
in cell cultures. Notably, cortisol can modulate FNDC5/irisin
transcription in some human hepatoma cell lines (35–37).
Because cortisol suppresses inflammation, we asked whether
irisin could function alongside cortisol as an anti-inflammatory
myokine in response to high-intensity exercise or inflammation.

Further, mothers against decapentaplegic homolog 3
(SMAD3) reduced FNDC5/irisin and PGC1-a expression
because SMAD3 ablated mice showed increased serum irisin
and high PGC1-a and FNDC5 expression in muscle.
Additionally, TGF-b signaling activates SMAD3 signaling and
blocks FNDC5 and PGC1-a transcription (38).
COVID-19

In 2020, the world witnessed the rise of a new infectious disease
caused by viral pneumonia, named COVID-19. Disease
outbreaks began in 2019 in Wuhan, China, and spread to
other countries and continents (39). As a result, the World
Health Organization declared the disease a public health
emergency in January 2020 and a pandemic in March 2020. As
the pandemic progressed, over 400 million cases of COVID-19
and over 5.5 million deaths have been reported worldwide (11).
Although a few infected individuals remain healthy and
asymptomatic, the clinical spectrum of COVID-19 varies
greatly, with increasing severity found in groups presenting
comorbidities, including obesity, hypertension, diabetes,
cardiovascular diseases, and old age (40, 41). The main clinical
symptoms include fever, cough, respiratory distress/pneumonia,
headache, anosmia, and ageusia, although atypical symptoms
may also occur (39, 42).

SARS-CoV-2 causes the COVID-19 (42–44). It is a single-
stranded RNA virus capable of infecting humans and other
mammals, and it promotes disease due to the virus’s features
and interaction with the host’s immune system (45). The
interaction of the viral capsid protein S (spike protein) and
human receptor proteins, mainly ACE-2 (angiotensin-converting
enzyme 2) and TMPRSS2 (transmembrane protease, serine 2)
enable virus entry into host cells (46). Indeed, ACE-2 levels are
correlated with SARS-CoV-2 invasiveness potential and tropism
in specific tissues. Tissues and organs expressing ACE-2, such as
the lungs, heart, adipose tissue, and gastrointestinal tract, are the
preferred targets for viral invasion (39, 47).
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After viral uptake and fusion, its genetic material is uncoated
and expressed, resulting in viral life cycle progression and
replication (46). In the replication state, few or no symptoms
are prevalent because tissue damage and immune responses are
minimal, whereas organ damage and increasing severity of
symptoms may occur as the infection progresses (14, 48). With
immune cell recruitment, cytokine production begins to occur
during immune response exacerbation. The expression of several
types of cytokines may be increased in patients with COVID-19,
such as IL1b, IL1RA, IL6, IL7, IL8, IL9, IL10, IFNg, and TNFa (49,
50). Hence, one of the hallmarks of COVID-19 pathophysiology,
hyperimmune activation, leads to a cytokine storm that is directly
linked to disease severity (51). Although considerable research has
been done, the COVID-19 literature evolves with new data
released, and further research will continue while the
pandemic persists.
COVID-19-RELATED INFLAMMATORY
PATHWAYS MODULATED BY IRISIN

AMP-Activated Protein Kinase Pathway
Studies have investigated the intracellular signaling cascades
involved in irisin activity. For example, one study associated
the AMPK/mTOR signaling pathway with irisin’s reported
effects such as improved glucose uptake by muscle cells,
reduced inflammation and insulin resistance, reduced blood
pressure, conversion of WAT to brown adipose tissue (BAT),
promotion of autophagy, and inhibition of pancreatic cancer cell
growth (52). Herein, we will focus on the signaling pathways
involved in the modulation of immune responses, leading to
reduced inflammation and cytokine release. Furthermore, we
hypothesized that irisin treatment could mitigate the effects of
the cytokine storm in patients with severe COVID-19 by
modulating the AMPK pathway (53).

The AMPK pathway is activated in response to an increase in
adenosine monophosphate (AMP) concentration which can result
from several circumstances, such as exercise, decreased adenosine
triphosphate (ATP) production, and activation by crosstalk with
other pathways. AMPK activation leads to the phosphorylation of
intracellular targets, regulating glucose and lipid metabolism, cell
growth, gene transcription, and other functions such as mTOR
activation blockage, which is an intracellular pathway linked to
irisin signaling (54). Furthermore, integrin aV/b5 signaling may
be involved in irisin-mediated AMPK activation (55), and the
pathway is associated with the protective role of irisin against
cellular damage/cytokines, in addition to suppressing
inflammation (56). Exercise activates AMPK pathway. However,
the effect magnitude will depend on exercise intensity, duration,
glycogen availability, and training status (57). Interestingly, high-
intensity training did not improve AMPK activation in
hypertensive rats, which contrasts with low- and medium-
intensity exercise (58).

Xiong et al. (2018) described the effects of FNDC5/irisin on
inflammation and macrophage function in mouse adipose
tissues. FNDC5 ablation resulted in inflammation, AMPK
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inhibition, and M1 polarization. The administration of FNDC5
and its overexpression alleviated these effects. M1 macrophages
support inflammatory responses through proinflammatory
cytokine secretion of factors such as tumor necrosis factor-a,
and interleukin-1b (59). Macrophage dysregulation is observed in
chronic inflammatory diseases, such as obesity, and the induction
of M1 polarization triggers cytokine release, impairing adipose
tissue function (60). Obesity and other chronic proinflammatory
conditions are COVID-19 comorbidities that influence
disease severity. Therefore, avoiding M1 polarization via
irisin-AMPK pathway activation could protect against COVID-
19 disease development.

The AMPK and mTOR signaling pathways are intimately
related, with opposite effects on immune system regulation (61).
Irisin activates AMPK and blocks the mTOR pathway (29),
resulting in decreased NF-kB activity and a consequent
decrease in innate and adaptive immune responses (62, 63).
Therefore, these pathways were linked to COVID-19 hyper
inflammation and may serve as a potential therapeutic target
(64), and the anti-inflammatory effects of irisin may result due to
AMPK/mTOR regulation.
Mitogen-Activated Protein
Kinase Pathway
The MAPK pathway is extensively studied in association with
irisin, comprising p38 and extracellular signal-regulated kinase
(ERK)-mediated signaling. These pathways are related to several
beneficial effects such as adipose tissue browning, glucose uptake,
decreased insulin resistance, bone cell proliferation, and neural
differentiation (52).

The activation of p38 MAPK induces cytokine release in
individuals with COVID-19 (13, 65, 66). In addition, MAPKs are
upregulated under several proinflammatory conditions and
induce IL-6, IL-1b, and TNF-a secretion (67). Remarkably,
irisin reduced inflammation and alleviated lung injury and
acute respiratory distress syndrome in mice by decreasing the
levels of the same cytokines released through MAPK pathway
activation (68). Furthermore, irisin treatment decreased p38 and
NF-kB activation induced by lipopolysaccharide (LPS) (68).
Zhang et al. (2016) also reported anti-inflammatory effects of
irisin treatment in treatment in mice for atherosclerosis, and
found that IL-6 expression was reduced by p38 MAPK/NF-kB
suppression (69).

Curiously, exercise triggers MAPK and NF-kB signaling
pathways (70–75), and both promote proinflammatory states
(67). P38 MAPK is an essential component in the cellular stress
response that may act in physiological and pathological
conditions, such as exercise and inflammatory states (67, 73).
In addition, nonesterified fatty acid concentration may increase
during exercise, stimulating TLR4/MAPK pathway, with no
effect on NF-kB (73). Conversely, exercise may downregulate
MAPK and NF-kB pathways. For instance, aerobic exercise
attenuated proinflammatory macrophage polarization while
decreased NF-kB and MAPK activation in LPS-exposed mice
(76). Also, decreased p-p38 levels in rats’ lung inflammation
Frontiers in Endocrinology | www.frontiersin.org 4
submitted to aerobic exercise-trained (77). In addition, resistance
training decreased MAPK activation after exercise (78, 79).
Different aspects will change MAPK levels during and after
exercise, such as age and exercise modality (80). The effects of
irisin and exercise on MAPK/NF-kB are still controversial.
However, a recent study sheds light on this debate: exercise-
induced irisin counteracted inflammatory states by disturbing
MD2-TLR4 complex formation and inhibiting MAPK and NF-
kB pathways activation (81).

Toll-Like Receptor 4/MyD88 Pathway
Toll-like receptors (TLRs) in immune cells recognize pathogen-
associated molecular patterns (PAMPs) or danger-associated
molecular patterns (DAMPs) (82). For example, TLR4 recognizes
LPS present on the wall of Gram-negative bacteria, whereas viral
dsDNA activates TLR3 (83, 84). In addition, the Toll interleukin
receptor (TIR)-domain-containing adaptor (MyD88) is part of the
TLR signaling pathway in all TLR family members and triggers
inflammatory responses (84). However, TLRs are known to act
differently. For instance, TLR3 and TLR4 activate MyD88-
independent signaling pathways to induce proinflammatory
responses, whereas cells from MyD88-knockout mice are
unresponsive to TLR7 activation (84, 85).

Another signaling pathway reportedly modulated by irisin
and related to the regulation of inflammatory responses is the
TLR4/MyD88 pathway (86, 87). High concentrations of irisin in
mice decreased TLR4 and MyD88 mRNA levels, consequently
reducing NF-kB activation (86, 87). In this context, a decrease in
proinflammatory cytokine secretion for IL-1b, IL-6, and TNF-a
in macrophages was observed (86). Studies have shown that
irisin can reduce brain ischemic/reperfusion injury and the
proinflammatory activity of macrophages (86, 87). Hence,
through the negative modulation of the TLR4/MyD88
pathway, irisin could improve the condition of patients with
COVID-19 and their outcomes.

With the progression of SARS-CoV2 infection, a CRS may
occur, which is significantly associated with the mortality of
patients with COVID-19 (13). CRS is generated by the release of
viral components in infected cells, leading to the uncontrolled
activation of inflammatory signaling pathways (88). CRS causes
oxidative stress, disseminated intravascular coagulation, severe
metabolic acidosis, and multi-organ failure, inducing “viral
sepsis” (13).

The second stage of injury, induced by CRS during influenza
infections, can be mediated by DAMP-TLR4 dependent
activation that results in pulmonary injury (89). We
hypothesized that similar events occur during SARS-CoV2
infection, in which DAMP released during the second stage of
SARS-CoV2 infection can further damage the lungs (88–90).
Therefore, as irisin reduces TLR4 expression levels, which could
decrease patient immune responses to PAMPs and DAMPs, and
maybe COVID-19 patient prognosis. A similar therapeutic
approach has been proposed to enhance adenosine signaling
and inhibit the TLR/NF-kB pathway, diminishing the associated
adverse effects (88). Additionally, the SARS-CoV2 spike protein
can activate TLR4 and induce IL-1b production (91). Therefore,
June 2022 | Volume 13 | Article 879066
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irisin effects may be extended, potentially acting on the
prevention of patient conditions deterioration and interfering
with macrophage viral recognition.

Obesity is a comorbidity of SARSCoV2 infection, resulting in a
poor prognosis that implicates other signaling pathways. First, the
TLR4 pathway, which is activated by saturated fatty acids, is one of
the primary triggers for obesity-induced inflammation (92–95).
Second, obese patients show increased levels of fatty acids in the
serum, making them susceptible to systemic non-esterified fatty
acid (NEFA) cytotoxicity which is responsible for increased
oxidative stress and tissue damage (93). In addition, NEFA
cytotoxicity may be further accentuated in obese patients with
severe COVID-19 due to decreased albumin levels, contributing to
more free fatty acids in serum because these are transported in the
plasma by albumin (93, 96). In addition to obesity, hypertension
also is clinical comorbidity associated with higher mortality risk in
COVID-19 patients (97). In hypertension, the renin-angiotensin-
aldosterone system (98, 99) and LPS-TLR4-MyD88 pathway are
activated (100–102) and might be a propensity to inflammatory
events during SARS-CoV-2 infection. Also, proinflammatory
cytokines may trigger TLR4/MyD88/NF-kB pathways activation,
contributing to hypertensive response in the hypothalamus (103).
Considering exercise effects on hypertension, low- and medium-
intensity exercise effectively improved blood pressure through
TLR4/NF-kB suppression (58) and improved hypertension in
rats (103). Exercise modulates TLR4 and NF-kB expressions,
depending on the training intensity: acute, moderate, low, and
on the training frequency: acute and regular (104). Acute training
could be potentially inflammatory, stimulating an increase in
TLR4 levels on the cell surface (104, 105); while resistance
training presents an anti-inflammatory pattern, leading to
MyD88 and TLR4 downregulation of mRNA expression and
protein levels (106, 107). Moderate regular exercise has anti-
inflammatory properties, downregulating TLR4 and MyD88
(108–110). TLR4 downregulation by irisin could play a
prominent role in preventing or decreasing hyperinflammation
in obese and hypertensive patients, and healthy individuals who
undergo regular moderate exercise. Thus, we suggest that
activation of the TLR4 pathway in patients with COVID-19 may
be linked to poor patient outcomes (3, 111).

Pseudomonas aeruginosa is the most common bacterial
coinfection in patients with COVID-19 (112). P. aeruginosa is a
Gram-negative bacterium associated with severe hospital-acquired
infections and is a fundamental cause of sepsis (Ramachandran,
2014; Shafran et al., 2021). Irisin can ameliorate inflammation in
mice with LPS-induced lung injury (68), which may be critical for
patients with COVID-19 because they are prone to contracting
bacterial infections during hospitalization (90, 112). Thus, irisin
may prevent secondary Gram-negative bacterial immune response
exacerbation and sepsis.

Besides regulating the activation of inflammatory pathways,
irisin can modulate gene transcription and may potentially
reduce the transcriptional levels of several genes related to
COVID-19 (113). For example, irisin decreased the expression
of TLR3, which is upregulated in COVID-19 patients, which
prevented the hyperactivation of innate immunity. TLR3
Frontiers in Endocrinology | www.frontiersin.org 5
ablation in mice resulted in increased susceptibility to other
coronavirus infections, indicating the prevalence of unwanted
outcomes for the irisin/TLR3 relationship (113, 114).
DISCUSSION

Figure 1 briefly summarizes the inflammatory pathways that
irisin may modulate during SARS-CoV2 infection, while Table 1
assembles the different effects of COVID-19, irisin, exercise, and
sedentarism/aging over the inflammatory pathways discussed in
this paper. In the first stage of the disease, SARS-CoV2 stimulates
an innate immune response mediated specifically by
macrophages, through pathogen-associated molecular patterns
associated with TLR3, TLR7, and TLR8. In addition, the SARS-
CoV-2 spike glycoprotein binds and activates TLR4 (3). Irisin
can reduce TLR3 and TLR4 expression and possibly alleviates the
innate immune response in the first stage of the disease,
inhibiting the release of proinflammatory cytokines
(Figure 1A) (29, 86).

In the second stage, the viral infection may result in a cytokine
release storm that produces severe systemic inflammation.
Increased cytokine levels activate tyrosine kinase receptors in
macrophages, inducing MAPK pathway activation (67). In
addition, severe systemic inflammation causes organ damage,
inducing the production of DAMPs, which further activates the
TLR4/MyD88 pathway (88, 90). Both the TLR4/MyD88 andMAPK
pathways stimulate NF-kB, inducing an increase in the production
of proinflammatory cytokines (Figure 1B) (13). Irisin has several
modulation targets, including TLR4, MyD88, MAPK, and NF-kB.
By reducing their expression levels, irisin reduces proinflammatory
cytokine production (Figure 1B) (68). In addition, patients with
COVID-19 may develop a bacterial coinfection that releases LPS
and activates the TLR4/MyD88 pathway (112). Irisin causes a
decrease in TLR4 and MyD88 levels, which could prevent the
development of sepsis (Figure 1B).

Exercise increases energy expenditure and AMP levels,
activates AMPK, and suppresses the mTOR pathway (54). On
the other hand, sedentarism and aging may have the opposite
effects, with a decrease in AMPK activation observed, whereas
mTOR activation and proinflammatory cytokine production
are induced (Figure 1C). Thus, irisin modulation is of
particular interest as it counteracts the suppression of the
AMPK pathway. In addition, irisin may also ameliorate the
proinflammatory state by reducing mTOR and NF-kB
activation (Figure 1C) (29, 59).

Even though irisin levels may vary following muscle mass,
age, and involvement in physical activities, healthy and active
people would benefit from irisin’s counterbalance mechanism,
considering they would at least present physiological levels.
For instance, obese, elderly, and sedentary subjects present loss
of muscle mass and consequently lower irisin levels. These
groups present a higher risk of developing COVID-19, with a
lack of inflammatory counterbalance mechanism. Thus we
suggest a potential role of irisin in preventing COVID-
19 complications.
June 2022 | Volume 13 | Article 879066
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One limitation of the present work is that exercise, irisin,
and inflammatory status are unveiled. Therefore, further
studies have to be made to fulfill the gap in the current
knowledge in the field. Furthermore, despite data on irisin
and inflammation, COVID-19, and inflammation, the relations
between irisin and COVID-19 are still poor. Furthermore, the
knowledge about COVID-19 pathophysiology continues to
Frontiers in Endocrinology | www.frontiersin.org 6
evolve concerning the differences between current and future
variants. So further studies will help to understand the role of
irisin on COVID-19 outcome. Therefore, this review highlights
the potential relation between irisin, inflammation, and
COVID-19.

Together, increased irisin levels may counteract the adverse
effects of COVID-19 during the various disease stages. Therefore,
TABLE 1 | COVID-19, Irisin, Exercise, Sedentarism/Aging, and Obesity influence related inflammatory pathways: TLR4, MyD88, MAPK, AMPK, NF-kB, and cytokine production.

COVID-19 Irisin Exercise*

TLR4 Activates (3,
91)

Decreases levels and downregulates its signaling
pathway (86, 87)

Decreases levels in the cell surface and mRNA expression (110)

MyD88 Activates (3,
91)

Decreases levels and downregulates its signaling
pathway (86, 87)

Decreases levels (108, 109)

MAPK Activates (65,
66)

Inhibits (63, 64) Activates signaling pathways responsive to exercise-induced cellular
stress (70–72, 75)

AMPK Activates
(115)

Activates (55, 59) Activates and increases expression (58)

NF-kB Activates (3,
91)

Inhibits (56, 86) Increases NF-kB activation through MAPK signaling (73)
Downregulates expression through TLR4 signaling downregulation
(108, 109)

Proinflammatory cytokine
production

Increases
(67)

Decreases (6, 56, 59, 63, 64, 86) Decreases (20, 21, 50, 55)
*We included only studies with regular training exercises of moderate intensity.
A B C

FIGURE 1 | Macrophage inflammatory pathways modulated by irisin during different SARS-CoV2 infection stages and lifestyle contexts. (A) The first stage of SARS-CoV2
infection activates innate immune responses through the recognition of PAMPs by TLR3 and TLR4, which are downregulated by irisin. (B) The second stage of SARS-CoV2
infection causes cellular damage and induces a cytokine release storm, which activates the MAPK/p38/NF-kB pathway through TKR. CRS results in further organ damage,
leading to DAMP release and MyD88/NF-kB pathway activation. Irisin can downregulate both these pathways, decreasing inflammatory cytokine production. In addition, the
TLR4 and MyD88/NF-kB pathways can be stimulated by LPS, which can be released due to potential bacterial coinfection. (C) Although sedentarism and aging lead to
AMPK downregulation and consequent mTOR activation, exercise produces the opposite effect. Exercise-derived AMP and irisin can stimulate AMPK, inhibiting mTOR and
downregulating the NF-kB pathway while decreasing cytokine production (#) Cytokine transcription modulation by inflammatory pathways. (*) Cytokine transcription
modulation by irisin.
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we hypothesized that irisin could prevent excessive inflammation,
perhaps decreasing organ damage and dysfunction and secondary
bacterial infection during hospitalization. Irisin’s anti-
inflammatory modulation properties may also explain, at least in
part, why healthy patients generally have a better prognosis for
SARS-CoV2 infection. Further research isneeded tounderstand the
role of irisin on COVID-19 patients and may help develop new
prevention and treatment strategies.
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