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Deep learning approach for quantification of 
organelles and misfolded polypeptide delivery 
within degradative compartments

ABSTRACT  Endolysosomal compartments maintain cellular fitness by clearing dysfunctional 
organelles and proteins from cells. Modulation of their activity offers therapeutic opportuni-
ties. Quantification of cargo delivery to and/or accumulation within endolysosomes is instru-
mental for characterizing lysosome-driven pathways at the molecular level and monitoring 
consequences of genetic or environmental modifications. Here we introduce LysoQuant, a 
deep learning approach for segmentation and classification of fluorescence images capturing 
cargo delivery within endolysosomes for clearance. LysoQuant is trained for unbiased and 
rapid recognition with human-level accuracy, and the pipeline informs on a series of quantita-
tive parameters such as endolysosome number, size, shape, position within cells, and occu-
pancy, which report on activity of lysosome-driven pathways. In our selected examples, Lyso-
Quant successfully determines the magnitude of mechanistically distinct catabolic pathways 
that ensure lysosomal clearance of a model organelle, the endoplasmic reticulum, and of a 
model protein, polymerogenic ATZ. It does so with accuracy and velocity compatible with 
those of high-throughput analyses.

INTRODUCTION
Lysosomes (hereafter endolysosomes, EL) have for long time been 
considered static organelles ensuring degradation and recycling of 
cellular wastes. However, they are all but static and their activity, in-
tracellular distribution, and number, as well as their capacity to 

welcome cargo, are regulated by various signaling pathways and 
cellular needs (Huotari and Helenius, 2011; Bright et  al., 2016; 
Ballabio and Bonifacino, 2019). By clearing damaged organelles 
and proteins from cells, they make a substantial contribution to tis-
sue and organ homeostasis. Cumulating knowledge expands the 
number of diseases directly and indirectly linked to their dysfunc-
tion, from rare lysosomal storage disorders (Marques and Saftig, 
2019) to more frequent cancers, metabolic and neurodegenerative 
diseases (Fraldi et al., 2016; Kimmelman and White, 2017; Gilleron 
et al., 2019). Quantitative approaches to monitoring the magnitude 
of the delivery to EL of proteins or organelles to be removed from 
cells or the accumulation of unprocessed material within their lu-
mina are expected to contribute to understanding of the mechanis-
tic details of lysosomal-driven pathways and may find application for 
diagnostic and therapeutic purposes.

Here, we used confocal laser scanning microscopy (CLSM) to 
monitor delivery and/or luminal accumulation of cargo within 
LAMP1- or RAB7-positive EL. As cargo, we selected a model or-
ganelle (the endoplasmic reticulum [ER]) and a model disease-
causing aberrant gene product (the polymerogenic ATZ variant of 
the secretory protein α1-antitrypsin), since their lysosomal turnover 
has clear connection with human diseases (Marciniak et al., 2016; 
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Bergmann et al., 2017; Hubner and Dikic, 2019). As such, the cata-
bolic pathways under quantitative investigation were recov-ER-
phagy, which ensures lysosomal removal of excess ER during reso-
lution of ER stresses (Fumagalli, Noack, Bergmann, Presmanes, 
et al., 2016; Loi et al., 2019), ER-to-lysosome-associated degrada-
tion (ERLAD) (Fregno and Molinari, 2019) that removes protea-
some-resistant misfolded proteins from cells by delivering ER 
portions containing them to the EL (Forrester, De Leonibus, 
Grumati, Fasana, et al., 2019, Fregno, Fasana, et al., 2018) as well 
as conditions that mimic starvation-induced, FAM134B-driven ER-
phagy (Khaminets, Heinrich, et al., 2015, Liang, Lingeman, et al., 
2020). Quantitative analyses of CLSM images were first performed 
with classic segmentation algorithms, which rely on a set of manu-
ally defined features and the training of machine learning. Despite 
careful optimization, these tended to fail with objects of heteroge-
neous signal intensity and morphology (Kan, 2017), as EL in mam-
malian cells are. The performance of machine learning approaches 
remained well below human accuracy, for example, when the quan-
tification tasks had to distinguish empty EL from EL capturing select 
material to be cleared from cells, such as an organelle (e.g., the ER) 
or a disease-causing polypeptide. We therefore turned to deep 
learning (DL), a set of machine learning techniques that involves 
neural networks with many layers of abstraction (LeCun et  al., 
2015). Supervised DL methods are computational models that ex-
tract relevant features from sets of human-defined training data 
and increasingly adapt with multiple iterations to perform a specific 
task (Marx, 2019). DL has been applied to many cellular image 
analysis tasks (Moen et al., 2019) and the application of DL tech-
niques to morphometric studies of subcellular structures (in our 
study organelles, organelle portions and protein aggregates) is 
sought after (Moen et al., 2019).

Among the neural network architectures, U-Net has been used 
for detection and segmentation of medical and light microscopy 
images (Ronneberger et al., 2015; Falk et al., 2019). U-net is espe-
cially useful due to its training ability with limited annotated data 
sets (Van Valen et al., 2016; Bulten et al., 2019; Nguyen et al., 2019; 
Oktay and Gurses, 2019; van der Heyden et al., 2019; Zhuang et al., 
2019). Additionally, U-Net automatically finds the representation of 
an image, which optimizes the segmentation performances through 
the use of the typical architecture of a convolutional network on 
subsequent abstraction levels, while adding an up-sampling path 
that increases network optimization by propagating context infor-
mation to higher resolution layers (Ronneberger et al., 2015). In this 
study, we developed a novel DL approach to perform detection and 
segmentation of endolysosomal degradative compartments. For 
this, we constructed a dataset of images fully annotated manually by 
operators and built an optimized neural network architecture based 
on U-Net. We then integrated this DL framework into an ImageJ 
plugin, which we provide, to streamline the segmentation and anal-
ysis tasks. We challenged the neural network architecture for its ca-
pacity to quantitatively assess three catabolic pathways with proven 
involvement in maintenance of cellular homeostasis and proteosta-
sis (recov-ER-phagy, ERLAD and ER-phagy). We evaluated the net-
work performance with different metrics: Intersection over Union 
(IoU), Receiver Operating Characteristic (ROC) curve, and F1 scores 
for segmentation and detection tasks (Sokolova and Lapalme, 2009; 
Moen et al., 2019). LysoQuant determined the magnitude of recov-
ER-phagy, ERLAD, and ER-phagy and the consequences of gene 
editing inactivating crucial regulatory elements of the pathways. It 
did so with high accuracy and provided information on a series of 
parameters such as number, size, shape, and position of empty and 
loaded EL that are instrumental to understanding the pathways 

under investigation and the consequences of their modulation in 
the finest detail. Its analytic speed makes LysoQuant useful for high-
content screening.

RESULTS
Manual detection of endolysosomes
Ectopic expression of the ER-phagy receptor SEC62 in mouse embry-
onic fibroblasts (MEF) triggers delivery of ER portions within LAMP1-
positive EL for clearance (Fumagalli, Noack, Bergmann, Presmanes, 
et al., 2016; Loi et al., 2019). SEC62-labeled ER portions accumulate 
within EL upon inhibition of lysosomal activity with bafilomycin A1 
(BafA1) (Klionsky et al., 2016). We reasoned that this is a paradigmatic 
experiment to set up an approach that performs automated, image-
based, quantitative analyses of EL features and function.

We first established a gold standard of EL detection accuracy in 
confocal laser scanning microscopy (CSLM) by asking three opera-
tors to manually annotate 1170 LAMP1-positive EL from 10 cells (in 
four biological replicates). We generated a lab consensus image, 
defined as the pixelwise regions annotated by at least two out of 
three operators. We then calculated the average IoU for each op-
erator. Here, we were interested in segmentation differences be-
tween single operators, so we quantified the performance in draw-
ing all EL irrespective of their content. This resulted in an average 
IoU of 0.850 ± 0.040 or a relative standard error of 12.9 ± 3.2%.

Automatized detection of endolysozymes: available 
approaches
Next, we assessed the capacity of available image analysis ap-
proaches to faithfully recognize individual EL dispersed in the mam-
malian cells’ cytosol. EL are revealed in CSLM with antibodies to the 
endogenous surface protein LAMP1 (Figure 1A, green and its inset). 
Their size, the intensity of their surface signal, their intracellular dis-
tribution, and the distance between individual EL vary within a cell 
and among different cells (Figure 1A, inset). Thus, automatized anal-
yses aiming at establishing the number of EL (detection task) and 
defining their shape (segmentation task) often fail when applied to 
biological samples. For example, common standard image analysis 
approaches that rely on automatic threshold with IsoData algorithm 
followed by watershed segmentation (Soille and Vincent, 1990; IoU 
0.641, F1 score 0.782. Figure 1B, Supplemental Figure 1B), machine 
learning approaches such as iLastik Random Forest (Berg et  al., 
2019; IoU 0.599, F1 score 0.749. Figure 1C, Supplemental Figure 
1C), Support Vector Machine (Sommer et al., 2011; IoU 0.512, F1 
score 0.677. Figure 1D, Supplemental Figure 1D), Trainable Weka 
Segmentation (Arganda-Carreras et al., 2017; IoU 0.487, F1 score 
0.655. Figure 1E, Supplemental Figure 1E), but also state-of-the-art 
algorithms previously developed for quantifying endosomes, such 
as Squassh (Helmuth et al., 2009; IoU 0.696, F1 score 0.821. Figure 
1F, Supplemental Figure 1F), Icy spot plugin detection (de Chaumont 
et al., 2012; IoU 0.187, F1 score 0.315. Figure 1G, Supplemental 
Figure 1G), cmeAnalysis (Aguet et  al., 2013; IoU 0.504, F1 score 
0.671. Figure 1H, Supplemental Figure 1H) and object-based colo-
calization algorithms, such as the Interaction Analysis plugin 
(Helmuth et al., 2010; IoU 0.229, F1 score 0.372. Figure 1I, Supple-
mental Figure 1I) or the Colocalisation Pipeline plugin (Woodcroft 
et  al., 2009; IoU 0.651, F1 score 0.789. Figure 1J, Supplemental 
Figure 1J), fail to satisfactorily distinguish individual EL if these are 
located in close proximity to each other. The Circular Hough Trans-
form (IoU 0.573, F1 score 0.728. Figure 1K, Supplemental Figure 1K; 
Atherton and Kerbyson, 1999), when applied to detect circular 
bright (EL membrane) or circular dark regions (EL lumen), fails to 
detect EL in samples with heterogeneous intensity of their surface 
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signal and to segment their shape (Figure 1K, Supplemental Figure 
1K, inset). Finally, the application of Stardist star-convex polygons, 
which involves the training of a deep learning network (Schmidt, 
Weigert, et al., 2018; Weigert et al., 2020), correctly recognizes the 
positions of most of the individual EL with strong membrane signals 

but fails to recognize those with low intensity (IoU 0.351, F1 score 
0.719. Figure 1L, Supplemental Figure 1L). Stardist also exaggerates 
EL size, resulting in poor shape definition, which would prevent the 
recognition of differences in shape factors and the overlapping of EL 
boundaries when in close proximity.

FIGURE 1:  Standard segmentation approaches. (A) CLSM image where LAMP1 decorates the limiting membrane of 
EL and its inset. (B) Automatic IsoData thresholding followed by watershed segmentation; (C) random forest machine 
learning with iLastik; (D) Support Vector Machine (SVM); (E) trainable Weka segmentation; (F) Squassh region 
competition segmentation; (G) Icy spot detection plugin; (H) cmeAnalysis; (I) Interaction Analysis ImageJ plugin; 
(J) Colocalisation Pipeline ImageJ plugin; (K) circular Hough transform (CHT); (L) Stardist star-convex polygons ImageJ 
plugin. In all images, true positives are in white, false negatives in yellow, and false positives in blue with respect to 
manual segmentation. F1 score for segmentation and Intersection over Union (IoU) are indicated.
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The unsatisfactory results obtained with the approaches pre-
sented above prove the need for more reliable and accurate 
methods for rapid, automatic segmentation and quantification of EL 
shape and activity.

Detection and classification of endolysosomes: 
LysoQuant workflow
To tackle the weaknesses of these approaches in identifying and of-
fer quantitative information on number, size, and other properties of 
cellular EL, we developed a supervised DL approach that we named 
LysoQuant. We anticipate here the analysis workflow initially estab-
lished on the same cells analyzed in Figure 1, while leaving the de-
tails of the DL architecture and performance to the next sections. 
The image shows eight cells, where the EL have been labeled with 
an antibody to endogenous LAMP1 (Figures 1A and 2Aa). Three 
cells express variable levels of ectopic SEC62, which is labeled with 
an antibody to the HA epitope at the SEC62’s C-terminus. Cell 1 
produces high, and cells 2 and 3 low levels of SEC62 (Figure 2Aa, 
SEC62). After drawing multiple regions of interest (ROIs), each de-
limiting one of the three cells to be analyzed (Figure 2Ab), we select 
channels corresponding to LAMP1-immunoreactivity (green) to visu-
alize individual EL and to HA-immunoreactivity to show ectopically 
expressed SEC62 (red). All signal outside the ROIs is cleared (Figure 
2Ac). The image is then normalized with min and max in the range 
[0, 1] (Falk et al., 2019; Figure 2Ad), linearly brought to a pixel size 
of 0.025 µm, and sent to the U-Net DL framework (either local or 
remote) for segmentation to generate a 16-bit image. Pixels corre-
sponding to empty and loaded EL (defined as not containing or 
containing SEC62, respectively) take values 1 and 2, respectively 
(Figure 2A, e and f). In Figure 2Ae (and the inset), empty EL are 
colored in cyan and loaded EL in magenta. Given the optical sec-
tioning properties of confocal microscopy, quantification relies on a 
good choice of the acquisition focal plane, where most of the EL are 
luminally cut. For this reason, we added an area threshold step cor-
responding to our minimum annotated EL size. To set this, we plot-
ted a histogram of all annotated sizes from training images and set 
the filter threshold to the minimum value of this dataset (EL area 
larger than 0.13 µm2, Figure 2Ag, corresponding to an approximate 
EL diameter of 0.4 µm). This threshold is configurable.

For each of the previously defined ROIs, the software identifies 
the segmented objects and quantifies total numbers for each class 
(Figure 2Ah). This workflow has been implemented in an ImageJ 
plugin that performs all the steps described above. Segmentation is 
instrumental for the assessment of morphological measurements for 
each EL, which include average size, shape descriptors such as cir-
cularity, position, and fluorescence intensity corresponding to cargo 
load, within EL (Figure 2Ai). Furthermore, and instrumental in analyz-
ing more complex phenotypes, sequential quantification for multi-
ple protein markers on the same cell and simple Boolean algebra 
between segmentation masks can be used to identify multiple posi-
tivity combinations.

Insufficient performance of a five-level neural network
Deep learning segmentation with U-Net architecture was first imple-
mented with a 2D five-level and 64-feature-channel fully convolu-
tional neural network (Falk et al., 2019). We trained this network with 
confocal images of 10 single cells, in which two operators fully an-
notated, at pixel level, 1573 individual EL and defined if they were 
empty or loaded with select cargo (organelle portions or misfolded 
proteins). Training data were augmented with random rotations, 
elastic deformations, and smooth intensity curve transformation 
(Falk et al., 2019). To prevent model overfitting due to data leakage 

(Riley, 2019), we acquired and manually annotated two separate im-
age sets for training and test, so that validation was always occurring 
on unseen data (Jones, 2019).

Low signal-to-noise ratio, size, and position with respect to the 
acquisition plane may hamper recognition of individual EL. To mini-
mize this, two operators verified the annotated images before the 
learning process and confronted them with the output segmenta-
tions after a learning test in order to spot and correct inaccurate or 
missing regions. Also, the pixel size can determine the accuracy of 
manual annotation. To provide consistency in this phase, we linearly 
scaled all training images to a pixel size of 0.025 µm. Segmented 
images were then linearly downscaled to the original pixel size for 
comparison with original images. We anticipate that these steps 
greatly improved the segmentation ability of the network and did 
not introduce any noticeable artifact in the final segmented image 
(Figure 3).

To evaluate the network performance, we first assessed the IoU, 
as a measure of the area overlap, between the automatically seg-
mented EL and human-annotated EL. Both upon transfer learning 
from previously published 2D U-Net network weights (Falk et al., 
2019) and if trained from scratch (Supplemental Figure 2), after 
60,000 iterations, the network reached a plateau corresponding to 
IoUs of 0.722 ± 0.176 and 0.686 ± 0.093 for empty and cargo-loaded 
EL, respectively (Supplemental Figure 2B; metrics expressed as av-
erage ± SD of three test images). These values are in the range of 
those delivered by Squassh (Figure 1F) and the Colocalisation pipe-
line (Figure 1J), the best performers amongst the algorithms tested 
in Figure 1, which were not suited for our quantitative analyses be-
cause they failed to properly distinguish individual EL (both tests 
one-sample Student’s t test, p > 0.05) and were much worse than the 
IoU of 0.850 ± 0.040 for manual segmentation (Student’s t-test, p < 
0.05 and p < 0.001 for empty and loaded EL classes, respectively). 
The neural network showed good performance in avoiding false 
classifications of empty vs. loaded EL by drawing the receiver oper-
ating characteristic (ROC) curve and calculating its area under curve 
(AUC; Sokolova and Lapalme, 2009) as 98.40% and 99.83% for 
empty and cargo-loaded EL, respectively (Supplemental Figure 2C). 
However, assessment of the F1 score (a value in the range [0, 1] ex-
pressing the harmonic mean between precision, the algorithm abil-
ity to avoid false positives, and recall, the ability to avoid false nega-
tives) highlighted insufficient performance of the neural network (F1 
scores for segmentation 0.361 ± 0.211 and 0.404 ± 0.215 for empty 
and cargo-loaded EL, respectively; F1 scores for detection 0.323 ± 
0.104 and 0.370 ± 0.132, respectively, Supplemental Figure 2, D 
and E). In this case, the performance of the neural network was 
worse than those of Squassh and Colocalisation Pipeline (one sam-
ple Student’s t test, p < 0.05). The low IoU values with respect to 
manual segmentation, plus the low F1 values, reveal that the perfor-
mances of the 2D five-level and 64-feature channels network is be-
low human accuracy. We anticipate that the limiting factor is the 
network architecture.

Setting-up LysoQuant, a seven-level fully convolutional 
neural network
To improve segmentation accuracy, we increased the neural net-
work depth to seven levels with 16 base features (Figure 2B). As for 
the five-level neural network, the training data were augmented 
with random rotations, elastic deformations, and smooth intensity 
curve transformation (Falk et al., 2019). To accelerate the learning 
process, we initially ran the iterations with a learning rate of 1 × 10–4, 
and then switched in the last 50,000 steps to 5 × 10–5 for refinement 
(Figure 3, A and B, shows an output example with inset and 
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comparison with manual annotation, Figure 3, C–F the performance 
evolution over training iterations). After a total of 3 × 105 iterations, 
the resulting trained network provided IoUs of 0.881 ± 0.012 and 
0.877 ± 0.014 for empty and cargo-loaded EL classes, respectively 
(Figure 3C, average ± SD of three validation images), which fall 

within the manual annotation accuracy (IoU of 0.850 ± 0.040 as 
reported above, Student’s t test, p > 0.05), thus validating the per-
formance of LysoQuant and largely surpassing the performance of 
Squassh and the Colocalisation Pipeline (one-sample Student’s 
t test, p < 0.01). F1 scores for segmentation (0.752 ± 0.134 and 

FIGURE 2:  Analysis workflow and deep learning architecture. (A) Analysis workflow. (a) Multichannel CLSM image. 
LAMP1 decorates the limiting membrane of EL. SEC62 stains the cargo. (b) Cells to be analyzed are identified as 
regions of interest (ROIs). (c) Signal outside ROIs is cleared and image is converted to RGB color image. (d) This RGB is 
then normalized in the range [0, 1] and rescaled to a pixel size of 0.025 µm. (e, f) Image is segmented into two classes: 
empty (cyan) and loaded EL (magenta). Classes are filtered for a configurable minimum size, which in our case was equal 
to the minimum of all annotated EL (dotted line, n = 1573). Diameter scale was also added as a reference. (g–i) Total 
number of EL for each class and each ROI is listed with a configurable number of individual EL parameters (e.g., average 
size, fluorescence intensity, circularity). (B) Deep learning architecture is a seven–resolution level 2D U-net fully 
convolutional network with 16 base feature channels that takes RGB images as input. Green channel shows the EL 
structure, red channel the protein or the ER subdomain delivered within EL.
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FIGURE 3:  Computational performance of the machine learning architecture. (A) Fully annotated and segmented image 
of wild-type mouse embryonic fibroblasts (MEF) transfected with ATZ-HA (red). LAMP1-positive EL are stained in green. 
The annotated RGB and its inset show empty EL (cyan ROIs) and ATZ-loaded EL (magenta ROIs). The segmented image 
and its inset show empty EL (cyan) and ATZ-loaded EL (magenta). False positives (not annotated but segmented) are in 
blue. False negatives,(annotated but not segmented) are in yellow. (B) Single channels of input image, inset of LAMP1 
channel, and its overlay with annotated ROIs. Scale bars 10 µm. Computational performance is evaluated with different 
metrics. After 3 × 105 iterations, (C) IoU is 0.881 ± 0.012 and 0.877 ± 0.014 for empty and cargo-loaded EL classes, 
respectively (average ± SD of three validation images). (D) ROC curves for both classes show AUCs of 99.43% and 
99.47% for empty and loaded EL, respectively. (E) F1 scores for segmentation task 0.752 ± 0.134 and 0.814 ± 0.100, 
respectively. (F) F1 scores for detection task 0.777 ± 0.136 and 0.790 ± 0.055, respectively.



1518  |  D. Morone et al.	 Molecular Biology of the Cell

0.814 ± 0.100, respectively) and for the detection task (0.777 ± 
0.136 and 0.790 ± 0.055, respectively; Figure 3, E and F) were in 
line with those of Squassh and the Colocalisation Pipeline. Lyso-
Quant achieved AUC values of 99.43% and 99.47% for empty and 
cargo-loaded EL, respectively (Figure 3D).

All in all, the seven-level architecture globally improved the per-
formance of the network, as confirmed by the close correspondence 
of segmented images with manual annotation, and performed sig-
nificantly better than other tested approaches. Thus, LysoQuant 
provides accurate, efficient, and scalable classification and segmen-
tation of lysosomal-driven pathways in living cells.

Testing LysoQuant on biological, lysosomal-driven pathways
recov-ER-phagy.  To challenge the consistency of our automated 
analysis, we applied LysoQuant to quantitatively assess recov-ER-
phagy, an ER turnover pathway that cells activate to recover from 
acute ER stress (Fregno and Molinari, 2018). Recov-ER-phagy relies 
on ER fragmentation and formation of ER-derived vesicles displaying 
the ER-resident LC3-binding protein SEC62 at the limiting 
membrane. These are eventually engulfed by RAB7/LAMP1-
positive EL in microER-phagy pathways relying on intervention of 
the ESCRT-III machinery (Fumagalli, Noack, Bergmann, Presmanes, 
et  al., 2016; Loi et  al., 2019). Recov-ER-phagy is faithfully 
recapitulated in MEF ectopically expressing SEC62 (Fumagalli, 
Noack, Bergmann, Presmanes, et  al., 2016; Loi et  al., 2019). On 
inhibition of lysosomal activity with BafA1, ER portions decorated 
with SEC62 (Figure 4A, red signal) accumulate within LAMP1-
positive EL (Figure 4A, green circles). As a negative control, cells 
were transfected with a plasmid for expression of SEC62LIR, where 
the LC3-interacting motif in the cytosolic domain of SEC62 (-FEMI-) 
has been replaced by an -AAAA- tetrapeptide (Fumagalli, Noack, 
Bergmann, Presmanes, et al., 2016; Loi et al., 2019). This abolishes 
the association of SEC62 with LC3 and substantially reduces ER 
delivery within EL (Fumagalli et al., 2016; Loi et al., 2019; Figure 4B, 
inset, where the green EL do not contain the red ER).

We analyzed 15 cells expressing ectopic SEC62 and 18 cells ex-
pressing ectopic SEC62LIR. The images were segmented into 
SEC62-positive and SEC62-negative EL (magenta and cyan, respec-
tively, in Figure 4, A and B, Segmentation). Three different operators 
and LysoQuant were then asked to establish the occupancy of EL 
with ER portions in cells expressing active (SEC62) or inactive (SE-
C62LIR) forms of the ER phagy receptor. In cells expressing ectopic 
SEC62, the three operators reported an EL occupancy of 85 ± 9% 
(Figure 4C, blue column, Lab mean), which substantially decreases 
to 28 ± 8% in cells expressing ectopic SEC62LIR (Figure 4C, red 
column, Lab mean). LysoQuant revealed an EL occupancy of 68 ± 
9% (Figure 4C, blue column, LysoQuant), which substantially de-
creases to 15 ± 7% in cells expressing ectopic SEC62LIR (Figure 4C, 
red column, LysoQuant).

If compared with the operators, LysoQuant has two major advan-
tages: 1) the variety of information that it can offer in addition to EL 
occupancy, which includes, for example the size, shape, and intra-
cellular distribution of the EL (Figure 2Ai); 2) the much reduced time 
to complete the analyses. In our setup, where an analysis computer 
is remotely connected to a Caffe U-Net framework, LysoQuant com-
pletes analysis of each image in 0.53 ± 0.04 min (Figure 4D) by in-
forming on size, shape, occupancy, intensity of the surface and of 
the luminal signal, and intracellular distribution of the EL. The aver-
age time for operators, who can only inform on number and occu-
pancy of individual EL, is highly variable and about 30-fold higher 
(14.10 ± 3.42 min, Lab mean, Figure 4D). The gain in time and in 
accuracy offered by LysoQuant is expected to increase substantially 

when large numbers of cells are counted, when operators’ perfor-
mance will inevitably decrease due to fatigue, and in high-through-
put screenings. In fact, the time required by Lysoquant corresponds 
to 0.008 CPU hours/image, which is consistent with the rate required 
for high-throughput studies (Carpenter et al., 2006).

To test whether the segmentation output was dependent on the 
confocal acquisition settings, we acquired the same set of cells with 
different pixel sizes and compared the quantification output. Varia-
tions up to twofold in pixel size had no significant effect on the 
measured occupancy and total EL number (one-way ANOVA, N = 5 
cells; Supplemental Figure 3, A and B), while the analysis speed in 
the same pixel size range increased from 0.58 ± 0.05 min to 1.45 ± 
0.04 min (Supplemental Figure 3C). Interestingly, this makes it pos-
sible to optimize the acquisition settings by taking larger fields of 
view with a relatively small increase in analysis time, helping to re-
duce both acquisition times and potential cell selection bias.

Thus, LysoQuant performs fast and accurate classification of EL, 
enabling clear, unbiased discrimination of two different phenotypes 
associated with functional and impaired recov-ER-phagy, respec-
tively. LysoQuant achieves segmentation of EL with operator-like ac-
curacy within a fraction of the time required for manual annotation. 
It offers additional information concerning size, geometrical param-
eters, and distribution and intensities of single EL to further dissect 
unclear or particular phenotypes and to perform high-throughput 
microscopy studies.

ERLAD.  We next challenged LysoQuant to acquire quantitative in-
formation on another biological pathway, the ERLAD pathway de-
vised by mammalian cells to remove misfolded proteins that cannot 
be degraded by cytosolic proteasomes. These are segregated in ER 
subdomains that are eventually shed from the bulk ER and are deliv-
ered to EL for clearance (Fregno and Molinari, 2019). The polymero-
genic Z variant of alpha1-antitrypsin (ATZ) is a classical ERLAD sub-
strate (Fregno, Fasana, et al., 2018), and defective degradation of 
ATZ polymers results in clinically significant hepatotoxicity, which is 
the major inherited cause of pediatric liver disease and transplanta-
tion (Sharp et al., 1969; Eriksson et al., 1986; Wu et al., 1994; Hidvegi 
et al., 2010; Perlmutter, 2011; Roussel et al., 2011; Marciniak et al., 
2016). Lysosomal delivery of ATZ polymers relies on the ER-phagy 
receptor FAM134B, on the LC3 lipidation machinery and on fusion 
of ER-derived vesicles containing ATZ with LAMP1-positive EL, 
which depends on the SNARE complex STX17/VAMP8 (Fregno, 
Fasana, et al., 2018; Fregno and Molinari, 2019). To evaluate the 
performance of LysoQuant and to compare it with manual opera-
tions, we monitored ATZ delivery to EL in 21 wild-type MEF (Figure 
5A, WT) and in 15 MEF that we generated by CRISPR/Cas9 gene 
editing to delete STX17 (Figure 5B, STX17KO). This case is particu-
larly challenging for automatized quantification because in WT cells 
exposed to BafA1 to inactivate hydrolytic enzymes, the cargo under 
investigation (ATZ) accumulates within EL (LysoQuant must identify 
these as “loaded EL”). In cells lacking STX17, ATZ remains in vesi-
cles that dock at the cytosolic face of the EL membrane (Fregno, 
Fasana, et al., 2018), which requires an accurate quantification of the 
EL membrane for a correct result. As reported above for recov-ER-
phagy, LysoQuant correctly reported on the drastic reduction of ATZ 
delivery within EL upon deletion of STX17 (Figure 5C). In particular, 
it was able to classify LAMP1-positive EL displaying ATZ docked at 
their membrane correctly (Figure 5B and Fregno, Fasana, et  al., 
2018) as empty EL. It did so, with high accuracy and about 20× 
faster than manual operators (Figure 5D, 0.81 ± 0.16 min/image vs. 
13.18 ± 4.82). Note that this operation could not have been per-
formed without accurate segmentation of individual EL.



Volume 31  July 1, 2020	 LysoQuant  |  1519 

Mimicking starvation-induced ER-phagy in a different cellular 
model.  To further prove the versatility of LysoQuant, quantification 
of lysosomal activity was also performed in human embryonic kid-
ney 293 (HEK293) cells, which are characterized by smaller size 
than the MEF used so far and are less adherent to surfaces. We la-
beled the EL with ectopically expressed GFP-RAB7 (another differ-
ence from the experiments described so far, where EL were identi-
fied with antibodies to endogenous LAMP1). ER delivery within EL 
was induced upon ectopic expression of FAM134 to mimic starva-
tion-induced ER-phagy (Khaminets, Heinrich, et  al., 2015; Liang, 
Lingeman, et al., 2020).

Here, we analyzed 16 HEK293 cells expressing ectopic 
FAM134B and 25 HEK293 cells expressing ectopic FAM134BLIR, 
which is inactive in driving ER fragments within EL (Khaminets, 
Heinrich, et al., 2015; Liang, Lingeman, et al., 2020). The confo-
cal images were segmented to reveal FAM134-positive and 
FAM134B-negative EL (magenta and cyan, respectively, in 
Figure 6, A and B, segmentation). In HEK293 cells expressing 
ectopic FAM134B, two operators independently established an 
EL occupancy ranging between 65% and 78% (average value 72 
± 9%, Figure 6C, blue column, lab mean). The occupancy 
dropped to 31 ± 12% in HEK293 cells expressing the inactive 
FAM134BLIR (Figure 6C, red column, lab mean). LysoQuant es-
tablished values of 69 ± 10% (Figure 6C, blue column, LysoQuant) 
in HEK293 cells expressing ectopic FAM134B and of 30 ± 14% in 
HEK293 cells expressing the inactive FAM134BLIR (Figure 6C, 
red column, LysoQuant). In this case as well, LysoQuant, with 

0.32 ± 0.04 min per image, was much faster than the operators 
(4.18 ± 3.08 min per cell, Figure 6D). Thus, LysoQuant maintains 
high performance even in quantifying lysosomal-driven pathways 
in small and poorly adherent cells that were a suboptimal choice 
to perform imaging analyses.

DISCUSSION
Quantitative analysis of biological samples is time-consuming 
when it is about collecting a statistically significant number of cells 
and conditions and minimizing operator errors that are inherent to 
manual operations (Grams, 1998). Here, we report on a deep learn-
ing-based approach, LysoQuant, that quantifies and segments 
CSLM images capturing lysosomal delivery of subcellular entities 
such as organelles and proteins. Direct comparison with classic ma-
chine learning approaches clearly shows the superiority of Lyso-
Quant, which was trained to evaluate images rapidly with human-
level performance (Figures 1–3). LysoQuant performance was 
validated on quantification of catabolic pathways that maintain cel-
lular homeostasis and proteostasis by ensuring lysosomal clear-
ance of excess ER during recovery from ER stress (Figure 4), by re-
moving ER portions containing aberrant, disease-causing gene 
products (Figure 5), and under conditions that mimic starvation-in-
duced ER-phagy (Figure 6). It goes without saying that LysoQuant, 
tested here in MEF and HEK293 cells, is applicable to all adherent 
cell lines. Here, we used endogenous and ectopically expressed 
protein markers to monitor and quantify lysosomal properties (size, 
number, distribution, occupancy, shape) and delivery of the ER or 

FIGURE 4:  Mimicking ER delivery within EL during recov-ER-phagy. (A) CLSM shows MEF transfected transiently with 
SEC62-HA and (B) with SEC62LIR-HA, subsequently segmented and quantified with LysoQuant. (C) Quantification of the 
same set of images by three different operators (with the Lab mean) and by LysoQuant to establish the fraction of EL 
containing SEC62-labeled ER in both SEC62- and SEC62LIR-expressing MEF cells. (D) Same as C to compare the time 
required for manual and LysoQuant-operated detection and segmentation tasks.
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of misfolded, disease-causing polypeptides within EL for clearance. 
However, LysoQuant is certainly applicable to quantitative investi-
gation of biological processes involving other organelles and sub-
cellular structures, if high-quality confocal images and appropriate 
tools to fluorescently label actors in the pathway under investiga-
tion are available. Moreover, with appropriate training, this ap-
proach is applicable to images obtained with other techniques, 
such as superresolution or electron microscopy.

Praise for standardization in deep learning methods in biology 
has recently emerged (Jones, 2019). Indeed, quantitative image 
analyses are very suitable tasks for DL approaches because of the 
large number of variables (pixels) and the clear definition of the clas-
sified objects. Given the ability of U-Net to work with a limited set of 
images, at first, we approached the problem of the training dataset 
size by adding a training and validation image in sequential steps 
until maximal performance. Imbalances in the number of data points 
(in this case, EL) between classes can lead to misleading accuracy 
values (Moen et al., 2019). Though U-Net balances classes through 
the use of a loss-weighting function, we choose training images to 
globally have a similar number of EL in both classes. Data leakage 
was avoided in our case by training the network with a different da-
taset than the datasets used for measuring the metrics and pheno-
typical validation.

A point of attention has been raised also on so-called “adver-
sarial images,” i.e. slight alterations in images that may fool a proper 
recognition (Serre, 2019). Confocal images of cells with varying lev-
els of intensity have inherently different signal-to-noise ratios, and 

even in cells with low levels of expression and higher acquisition 
noise, we did not detect alteration in the segmentation accuracy.

Looking forward, LysoQuant’s automatic segmentation with hu-
man-level performance and much faster operations will be instru-
mental in increasing the number of images analyzed and will thus 
enable the identification of subtler phenotypes. The reported analy-
sis time per image makes LysoQuant applicable to high-throughput 
studies, rivaling other reported high-throughput analysis techniques 
in speed (Collinet et al., 2010; Aguet et al., 2013; Rizk et al., 2014).

MATERIALS AND METHODS
Antibodies, expression plasmids, cell lines, and inhibitors
Commercial antibodies used to perform our studies were the follow-
ing: HA (Sigma) and LAMP1 (DSHB). Alexa Fluor conjugated sec-
ondary antibodies (Invitrogen, Jackson Immunoresearch, Thermo 
Fisher) were used for immunofluorescence (IF) analysis. Plasmids 
encoding SEC62, ATZ, and FAM134B were subcloned in a pcDNA3.1 
vector and a C-terminus hemagglutinin (HA) tag was added. 
SEC62LIR was generated by site-directed mutagenesis of the LIR 
motif by replacing the -FEMI- residues with -AAAA-. These plasmids 
and GFP-Rab7 are described in Fumagalli, Noack, Bergmann, 
Presmanes, et  al. (2016). FAM134B-HA and FAM134BLIR-HA 
(DDFELL to AAAAAA) expression plasmids were purchased from 
GenScript. MEF STX17KO were generated in our lab using CRISPR-
Cas9 technology as described in Fregno, Fasana, et al. (2018). BafA1 
was administered to MEF for 12 h at the final concentration of 50 nM 
and to HEK293 for 6 h at 100 nM.

FIGURE 5:  Quantification of misfolded protein delivery to lysosomes. (A) CLSM shows delivery of ATZ within LAMP1-
positive EL in wild-type MEF. (B) Same as A in STX17KO MEF. (C) Quantification of ATZ delivery within EL in both 
wild-type and STX17KO MEF. (D) Time required for manual and LysoQuant-operated detection and segmentation tasks.
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Cell culture and transient transfection
MEF and HEK293 cells were grown at 37°C and 5% CO2 in DMEM 
supplemented with 10% FCS. Transient transfections were per-
formed using JetPrime transfection reagent (PolyPlus) according to 
the manufacturer’s instructions. Twenty-four hours after transfection 
and after a 12-h treatment with BafA1, MEF cells were fixed to per-
form IF. HEK293 cells were treated for 6 h with 100 nM BafA1 24 h 
after transfection and then fixed for IF.

Confocal laser scanning microscopy
Either 1.5 × 105 MEF or 3 × 105 HEK293 were seeded on alcian 
blue–covered (MEF) or uncoated (HEK293) glass coverslips in a 
12-well plate, transfected, and exposed to BafA1 as specified 
above. After two washes with phosphate-buffered saline (PBS) 
supplemented with calcium and magnesium (PBS++), they were 
fixed with 3.7% paraformaldehyde at room temperature for 20 
min, washed three times with PBS++, and incubated for 15 min with 
a permeabilization solution (PS) composed of 0.05% saponin, 10% 
goat serum, 10 mM HEPES, and 15 mM glycine for intracellular 
staining at room temperature. The cells were then incubated with 
the aforementioned antibodies diluted 1:100 (HA) and 1:50 
(LAMP1) in PS for 90 min at room temperature. They were washed 
three times (5 min each) using PS and subsequently incubated with 
Alexa Fluor–conjugated secondary antibodies diluted 1:300 in PS 

for 30 min at room temperature. After three washes with PS and 
deionized water, coverslips were mounted using Vectashield (Vec-
tor Laboratories) supplemented with 40,6-diamidino-2-phenylin-
dole (DAPI). Confocal images were acquired using a Leica TCS SP5 
microscope with a 63.0 × 1.40 OIL UV objective. FIJI ImageJ was 
used for image analysis and processing. These protocols are ex-
plained in more detail in (Fumagalli, Noack, Bergmann, Presmanes, 
et al., 2016; Fregno, Fasana, et al., 2018).

Manual annotation accuracy
Three operators manually annotated 10 cells from four different 
experiments for a total of 1170 EL. These ROIs were used to cre-
ate annotation masks where annotated regions took the value 1 
and background regions 0. Masks from the three operators where 
then summed to get images in the range [0, 3]. Lab consensus 
was defined as regions higher or equal to 2, that is, pixelwise 
regions that were drawn by at least two out of three operators. 
We then computed the intersection and union masks and calcu-
lated the IoU. For the relative standard error, we calculated the 
difference mask between the lab consensus mask and each opera-
tor and measured the area of the lab consensus and differences. 
From these values we then calculated variance, standard error, 
and relative error for each cell. All image processing was per-
formed in Fiji/ImageJ.

FIGURE 6:  Quantification of ER remodeling in HEK293 cells. (A) CLSM showing HEK293 cotransfected transiently with 
the late endosomal/lysosomal marker GFP-Rab7 and FAM134-HA. (B) Same as A in cells transfected for expression of 
FAM134BLIR-HA. Nuclei are shown to identify transfected and nontransfected HEK293 cells. (C) Same as 4C to quantify 
ER delivery within GFP-RAB7-positive EL in cells expressing FAM134B and FAM134BLIR, respectively. (D) Same as 4D.
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Classic and machine-learning segmentation
Automatic thresholding was performed comparing all the threshold-
ing algorithms available in ImageJ (Supplemental Figure 4). Results 
were then compared with manual segmentation to evaluate F1 
scores for segmentation and Intersection over Union, choosing the 
algorithm closest to ground truth.

Trainable Weka Segmentation was performed with Random For-
est, a widely adopted algorithm for image and data classification in 
the Fast Random Forest implementation provided with the plugin 
(Schroff et al., 2008; Glory-Afshar et al., 2010; Liang et al., 2016). 
Training was performed with the LAMP1 channels of the same data-
set used for deep learning training and the same annotations used 
for deep learning. After balancing the classes, we selected all avail-
able features and performed the training.

Random forest segmentation was also performed with iLastik 
version 1.3.3rc2. Training was performed with the LAMP1 channels 
of the same dataset used for deep learning training and the same 
annotations. As classification algorithm, we used the VIGRA Parallel 
Random Forest algorithm. Features were selected with an automatic 
feature selection method based on the default algorithm (Jakulin, 
2005).

Support Vector Machine was performed with the Weka LibSVM 
library (Fan et al., 2005) and the Trainable Weka Segmentation 
ImageJ plugin. Training was performed with the LAMP1 channels 
of the same dataset used for deep learning training and the same 
annotations used for deep learning. After balancing the classes, 
we selected all available features and performed the training.

The circular Hough transform was performed with MATLAB 
R2019a by recognizing bright regions on dark background. We ex-
trapolated the range of sizes from the sizes of the annotated data 
as shown in the histogram in Figure 2Ag. Processing the images 
with a background subtraction in this case did not improve the re-
sults, due to the high signal-to-noise ratio of the original images. 
We performed the analysis with Two Stage and Phase code 
methods. Two parameters can be controlled, sensitivity and edge 
recognition factors. These values have the range [0,1]. We then se-
lected the image with the lowest values of errors, evaluated as false 
negatives and false positives. To assess this, we scanned both pa-
rameters with a step size of 0.1 and evaluated the F1 score and In-
tersection over Union for each condition. We then chose the pa-
rameters corresponding to the best F1 score and IoU (Supplemental 
Table 1).

Squassh segmentation was performed following the method 
previously described (Rizk et al., 2014) on the LAMP1 channel. After 
background subtraction with a rolling ball radius of 10 pixels, seg-
mentation was performed with subpixel accuracy, Automatic local 
intensity estimation and PSF model were derived from the acquisi-
tion settings. Regions below two pixels in size were excluded.

Icy spot detection plugin segmentation was performed on the 
LAMP1 channel with the UnDecimated Wavelet Transform detector, 
recognizing bright spots on a dark background with spot scales 2, 3 
and 4.

CmeAnalysis was performed on MATLAB R2019a on the LAMP1 
channel, with wavelength and camera pixel size estimated from the 
acquisition settings.

The Stardist convolutional neural network was trained from the 
same training dataset used for the deep learning techniques pre-
sented in this paper, with the stardist Docker container, based ten-
sorflow/tensorflow:1.13.2-gpu-py3-jupyter, Ubuntu 18.04 with 
CUDA 10.0 and Python 3.6.8 (github: mpicbg-csbd/stardist). Labels 
were imported from the annotations masks generated for the DL 
computations described in the results. After normalization, eight 

images were randomly selected for training and two for model vali-
dation. The network was set with 32 rays, one channel, and a 2 × 2 
grid. The model was trained for 400 epochs. We then calculated the 
threshold optimization factors for this training (probability threshold: 
0.4, NMS threshold: 0.5) and exported the Tensorflow model to the 
Stardist Fiji plugin, with which we performed the segmentation.

Interaction analysis segmentation was performed with radius size 
ranging from three to seven pixels, cutoff of 0.001. Percentile values 
were tested in a range from 0.3 to 0.9.

Colocalisation Pipeline was performed with a watershed toler-
ance of 5, threshold 1, and a local autothreshold method.

ImageJ plugin and deep learning computations
The ImageJ plugin takes as an input a CSLM image (Figure 2Aa), the 
ROIs of the selected cells (Figure 2Ab), and the channels to analyze. 
It then performs the conversion to RGB, clears the signal outside the 
selected ROIs (Figure 2Ac), and calls the U-Net plugin, which nor-
malizes the image (Figure 2Ad) and performs segmentation with the 
specified weight file. The segmented image (Figure 2Ae) is then 
recalled by the plugin and for each class (Figure 2Af) the objects 
above the minimum size (Figure 2Ag) are quantified (Figure 2A, h 
and i) through the use of the Analyze Particles class. Deep learning 
computations were performed on a single graphical processing unit 
(GPU, nVidia GTX 1080 with 8GB of VRAM). The Caffe framework 
was patched with U-Net version 99bd99_20190109 and compiled 
on a Linux CentOS remote server with cuda 8.1 and cudNN 7.1.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 8 software. 
An unpaired two-tailed t test, ordinary one-way ANOVA with Tukey’s 
multiple comparisons test, or two-way ANOVA with Sidak’s multiple 
comparisons test was used to assess statistical significance. A 
p-value corresponding to 0.05 or less was considered statistically 
significant. All values are expressed as average ± SD unless other-
wise stated.

Data availability
All data needed to evaluate the conclusions in the paper are present 
in the paper and/or in the Supplemental Information. The described 
plugin, the training network, and the model are available on the 
github platform (https://github.com/irb-imagingfacility/lysoquant) 
and through the ImageJ update site. Training datasets of the experi-
ments will be available on request. Additional data related to this 
paper may be requested from the authors.
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