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Abstract: In general, aerospace structures manufactured using fiber reinforced polymer composites are
exposed to fluctuating temperatures and subjected to cyclic loading during their service life. Therefore,
studying the temperature-frequency dependent properties of composites for different fiber orientations
is essential. However, such experiments are expensive, time-consuming and labor-intensive while
theoretical models minimize these issues, but temperature-frequency-dependent viscoelastic models
for predicting the full-range of the storage and loss moduli curves of composites are limited. In this
study, the dynamic mechanical properties of a neat epoxy resin, unidirectional ([0◦]6, [45◦]6 and
[90◦]6), symmetric angle-ply [+45◦/−45◦/+45◦]s and quasi-isotropic [±45◦/0◦/90◦]s carbon/epoxy
and glass/epoxy composite panels were investigated. Experiments were performed from room
temperature (approximately 35 ◦C) to 160 ◦C at five different frequencies (1, 10, 20, 33 and 50 Hz).
Two parameter viscoelastic models as function of temperature and frequency were used, and their
applicability in predicting the storage and loss moduli for the entire region of the temperature curve is
shown. The storage modulus values were compared and validated against the static flexural modulus
values coupled with scanning electron microscopy analysis. The flexural and storage moduli values
were found to be higher for [0◦]6 carbon/epoxy composites, while the activation energy values were
found to be higher in the case of [+45◦/−45◦/+45◦]s carbon/epoxy composites compared with epoxy
resin and other laminates in different orientations. The predicted results were in reasonably good
agreement with the experiments. Both experimental and modeling approaches used in this study are
highly valuable for designing aerospace composites for harsh in-service loading conditions.

Keywords: laminate; mechanical properties; dynamic mechanical analysis; viscoelastic properties;
glass transition temperature; activation energy

1. Introduction

The use of fiber reinforced polymer composites (FRPCs) for liquid propellant rockets [1], aircraft
landing gear components and jet and turboprop engine cowlings [2] has been increasing in recent
times. In particular, carbon/epoxy and glass/epoxy composites are nowadays being widely used for
automobile drive shafts, helicopter rotor blades, offshore ship applications, active and passive damping
technologies [3,4]. This is due to their excellent corrosion resistance, light weight, high strength and
stiffness, high natural frequency and better damping properties compared to conventional metallic
materials [5,6]. However, the strength and stiffness of FRPCs can drastically decrease above the
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glass transition temperature (Tg) of the polymer [7]. On the contrary, it is well known that metallic
components possess superior thermal properties than FRPCs [8]. Grigoriou and Mouritz [9] reported
that the surface plies of carbon/epoxy composites absorb heat much more rapidly than aluminum
alloys. However, the heat flow through the thickness direction is very slow for the former, which
might be attributed to its lower thermal conductivity. Moreover, carbon/epoxy composites retain their
mechanical properties (strength and stiffness) over a wider range of temperatures than aluminum
alloys. In a later study, the authors [10] concluded that the quasi-isotropic (QI) laminates having 45◦

surface plies and 0◦ middle plies possess higher thermal surface protection than those of 0◦ surface
plies and 45◦ middle plies.

There is research in progress to replace aluminum alloys with FRPCs for high-temperature
applications owing to many reasons. The thermal behavior of FRPCs relies on many parameters,
such as the type of fiber and matrix used, and their fiber volume fraction, orientation, stacking
sequence, temperature, frequency, etc., [11–14]. More importantly, the thermal properties of FRPCs
vary with the type of manufacturing process. Khan et al. [15] found higher Tg values in aerospace
graded carbon/epoxy composite panels manufactured by quickstep processing owing to increased
cross-linking, compared to Tg values of such panels manufactured by autoclave processing.

The failure mechanisms are different for composites containing different fiber orientations [16].
Therefore, selecting the appropriate lay-up orientation for the desired application is critical for designers,
though the fiber orientation effect saves the material wastage by eliminating the fibers in a particular
direction [17,18]. The transverse ply (90◦) cracking is a major concern for FRPCs for high-temperature
applications. The detection of these cracks is difficult during the NDT assessment. NASA X-33 launch
vehicle operation was canceled due to leakage found in the pressure vessel due to transverse ply
cracks. These cracks can cause primary leakage in pressure vessels at cryogenic temperatures and
delamination at high temperatures [19–21]. However, the advantage of using QI laminates for most
of the high-temperature applications is that they are less affected by stress concentrations caused by
transverse plies [22]. QI and angle-ply laminates possess pseudo-ductility features in all-fiber directions,
as a result, the catastrophic failure of the composite can be reduced [23,24]. The pseudo-ductility effect
can change the failure mode from delamination to fiber breakage. The laminates fabricated with (±45◦)
plies can possess high fracture toughness and delay the crack propagation [25,26]. However, high
fracture toughness is a desired property for the time-temperature-frequency dependent behavior of
materials. Hence, the fabrication of QI laminates with (±45◦) plies is desirable, particularly placing 45◦

plies on the outer surface improves structural performance.
The Ground Vibration Test (GVT) is an important test to certify new or heavily modified

aircraft, which can be performed at different frequencies to investigate the dynamic aero-elastic
behavior [27]. Dynamic Mechanical Analyzer (DMA) is a widely used instrument for characterizing
the time-temperature-frequency dependent behavior of materials. The input data can be obtained with
the aid of a DMA to generate the frequency-dependent numerical models for GVT. FRPCs possess
excellent vibrational properties and usually can avoid resonance conditions, which depend on fiber
orientation, viscoelastic properties and the Tg.

In the past, many researchers [28–32] used DMA for characterizing the viscoelastic behavior
of polymers and their composites. However, only a few studies are available in the literature
on the dynamic mechanical properties of FRPCs containing different fiber orientations [13,33–36].
Bergent et al. [37] recently studied the dynamic mechanical properties of woven roving carbon/epoxy
composites of cross-ply and QI configurations, over a temperature range of 30 ◦C to 220 ◦C, and the
frequency range of 1 Hz to 50 Hz. The activation energies were estimated using the Arrhenius model.
The activation energy values were reported to be higher for cross-ply laminates than QI laminates.
It was also found that the Tg increases up to 14 ◦C within the frequency range of 1 Hz and 50 Hz.
Guo et al. [34] correlated the static flexural modulus of 0◦ and (0◦/90◦) with dynamic mechanical
properties using DMA, equipped with three-point bending fixture over a temperature range from
room temperature to 120 ◦C, and at a constant frequency of 1 Hz. They developed a single parameter
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viscoelastic model based on kinetic parameters [38] for predicting the complete history of storage
modulus and found good agreement with the experiments. In a recent study, Xu and Gupta [39]
introduced a novel approach to estimate the strain rate effect at different temperatures on the elastic
modulus of ethylene-vinyl acetate using frequency-domain dynamic mechanical properties. They have
used a radial basis neural network to obtain the strain rate dependent mechanical properties from the
frequency-dependent viscoelastic properties. The studies related to frequency or strain rate sensitivity
of carbon/epoxy composites are not clear. Some researchers reported that carbon/epoxy composites are
insensitive to rate effects [40] while others [3] reported that carbon/epoxy composites are less sensitive
to rate effects, compared to glass/epoxy composites. In a recent study [4], it was found that the strain
rate sensitivity of carbon/epoxy composites relies on fiber orientations. Further studies are required to
fill this research gap.

In this study, the dynamic mechanical properties of neat epoxy and different fiber orientations
of carbon/epoxy and glass/epoxy composites are investigated experimentally and theoretically,
by performing several parametric studies using temperature-frequency dependent viscoelastic models.
A new type of symmetric angle-ply laminate (45◦/−45◦/45◦)s for high-temperature applications was
introduced in this study, in contrast to conventional (±45◦)s laminates. The effect of frequency on
storage modulus is investigated using a frequency-dependent empirical equation. The effect of
frequency on both the loss modulus and loss factor Tg values are investigated using the Arrhenius
model. Mechanical (flexural, tensile and Izod impact) properties of previous studies [21,41,42] are used
to compare the dynamic mechanical properties of the present study. Also, tensile properties are used
to determine the interfacial strength indicator value of the composite. The room temperature flexural
modulus values are correlated with initial storage modulus values.

2. Materials and Methods

2.1. Materials

In this study, unidirectional carbon fabrics of 400 g/m2 and glass fabrics of 450 g/m2 were used as
reinforcements, and epoxy resin (LY 556) supplied by Sigma-Aldrich (Chennai, Tamil Nadu, India)
was used as the resin system for fabricating different fiber orientation laminates ([0◦]6, [45◦]6, [90◦]6,
[45◦/−45◦/45◦]s and [±45◦/0◦/90◦]s) using the compression molding technique. The motivation behind
choosing of 45◦ plies as surface plies in symmetric angle ply and quasi-isotropic laminates was mainly
for enhancing the structural integrity [10,24,43]. The samples were manufactured according to the
manufacturer’s recommended cure cycle. Temperature and pressure profiles used for fabricating the
laminates are given in Figure 1a. Temperature used in the dwell region was 80 ◦C for 4 h. A constant
pressure of 10 bar was maintained throughout the cycle. All laminates were post cured at room
temperature for 24 h.

These composite panels are schematically represented in Figure 1b. Fiber volume fractions of the
laminates with the range of 40% to 54% obtained in this study, which are given in Table 5. Neat epoxy
resin specimens were made using a resin casting technique in a mold with a cavity of 3 mm.
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Figure 1. (a) Cure cycle used in this study to fabricate the laminates. (b) Schematic representation of
different fiber orientations of FRPCs.

2.2. Experimental Details

2.2.1. Static Mechanical and Impact Studies

Flexural, tensile and notched Izod impact tests were performed in our previous studies [21,41,42],
according to ASTM D790, D3039 and D256, respectively. The dimensions such as length and width
used were 125 mm × 12.7 mm for flexural tests with a span length of 50 mm and for tensile tests
these values were 250 mm × 20 mm. Flexural and tensile tests were performed at the displacement
rate of 5 mm min−1 using an Instron universal testing machine and a FIE universal testing machine,
respectively. An EE-2 clip-on extensometer was placed in the gauge portion of the specimens and
recorded the displacement of the specimens during tensile loading. The dimensions of the notched
impact tests used were 63 mm of length × 12.7 mm of width.

2.2.2. Scanning Electron Microscopy (SEM) Studies

The fractured surfaces of three-point bending tested specimens of neat epoxy, glass/epoxy and
carbon/epoxy composites were investigated at the voltage of 10 kV using a scanning electron microscope
(EVO MA 15, ZEISS, Germany)). These specimens were gold-coated before SEM for 120 s, using an ion
sputter instrument. This is for increasing the electrical conductivity of the specimens and thus to avoid
charging of the specimens during analysis. SEM micrographs were captured at the magnification of 300×.

2.2.3. Dynamic Mechanical Analysis

A DMA 242 E instrument (NETZSCH, Ahlden, Germany) was used in three-point bending mode
for performing the temperature-frequency dependent dynamic mechanical experiments. The neat
epoxy and different fiber orientation composite specimens were subjected to a temperature ramp from
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atmospheric temperature (~35 ◦C) to 160 ◦C, at five different frequencies, namely 1, 10, 20, 33 and
50 Hz. Liquid nitrogen was not used since all tests were performed from atmospheric temperature
to positive elevated temperatures (up to 160 ◦C). The experiments were performed on a rectangular
specimen having a width and span of 11.2 mm and 42 mm respectively, at a constant applied load of
12 N, with a displacement amplitude of 100 µm. The thickness of the samples ranged from 3 mm to
3.1 mm for composite plates having six layers, and 3.3 to 3.4 mm for eight layer laminates. The samples
were heated at a rate of 3 ◦C/min. Figure 2 shows a schematic representation of a three-point bending
fixture used for DMA studies.
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epoxy composites.

3. Theoretical Modeling

Experimental studies are expensive, time-consuming and require manpower while theoretical
studies reduce the cost, time and manpower. Therefore, further theoretical studies are required for
characterizing the vibration performance of different fiber orientations of FRPCs [44]. In this section,
the challenges associated with the existing theoretical models and the better possible ways to enhance
those challenges are discussed.

3.1. Viscoelastic Properties:

The vibro-acoustics response of viscoelastic material relies on the delay between the input strain
and the output stress, as a function of applied frequency [45,46]. The dynamic modulus Ed(ω) of
viscoelastic material is a function of the storage modulus and loss modulus, which is written as:

Ed(ω) = E′(ω) ± i E′′(ω) (1)

where E′(ω) and E′′(ω) are the storage and loss moduli, respectively. The storage modulus is the
essential viscoelastic parameter which determines the elastic response of the viscoelastic material
during mechanical loading. Storage modulus is a function of both temperature and frequency. Storage
modulus at room temperature is considered as the initial or maximum storage modulus in this study.
When the viscoelastic material is subjected to a sinusoidal load for a longer time, the sample loses its
mechanical energy. The amount of mechanical energy dissipated as heat in the viscoelastic material is
called as loss or viscous modulus. This loss modulus represents the viscous response of the material.
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The amount of damping depends on the ratio of E′′(ω) and E′(ω) values, which is called as loss
tangent and given by:

tan δ =
E′′(ω)

E′(ω)
(2)

The viscoelastic properties of FRPCs follow three regions such as glassy (β), transition (α) and
rubbery (γ). The magnitude of the drop in properties is higher in the transition (α) region compared to
glassy region. This is due to changes in molecular state, from immobile at room temperature to mobile
in the transition region. The mobility of molecular chains further increases in the rubbery region, where
the curve is a plateau, which can be clearly seen in Figure 3. The glass transition temperature can be
divided into three types, namely Tg (E’)middle or Tmg, Tg (E”)max and Tg (tan δ)max, corresponding to
the inflection point of E’, peak values of E” and tan δ. Out of all three glass transition temperature
values, Tg (E’)middle is the least and Tg (tan δ)max is the highest. These glass transition temperature
values are the functions of the applied frequency. Arrhenius model connects the frequency with the
activation energy and glass transition temperature [47,48], which can be written as:

ln (f) = −
(

Ea

RTg

)
+ ln (P) (3)

where f, Ea, R and P are the frequency, activation energy, gas constant and pre-exponential factor,
respectively. Henceforth, the activation energy is directly proportional to the slope of ln (f) vs. 1/

(
Tg

)
from Equation (3) [49], which can be given by:

Ea = −R
d (ln f )

d (
(
1/Tg

) (4)

3.1.1. Modeling Approaches for Predicting the Storage and Loss Moduli

As mentioned earlier, the viscoelastic properties of polymers and FRPCs depend on temperature
and frequency. Therefore, it is essential to use a theoretical model that accounts for these effects.
Drozdov [50] proposed a temperature-dependent model to estimate the instantaneous storage modulus
(E′i ). However, this model is capable to predict the E′ in the glassy region but not to capture the
rubbery plateau. Mahieux et al. [51,52] developed the temperature-dependent statistical model (based
on the Weibull parameter (wi)) to predict the E′i for the whole range of curve, which can be written as:

E′(T) =
(
E′1 − E′2

)
e
−( T

Tβ
)

wβ

+
(
E′2 − E′3

)
e−(

T
Tα

)
wα

+
(
E′3

)
e−(

T
Tγ

)
wγ

(5)

However, the effect of frequency was not considered in this model. Later, Richeton et al. [53]
modified the Equation to consider both the temperature and frequency effects which can be given by,

E′(T, f) =
[(

E′1 (f) − E′2 (f)
)

e
−( T

Tβ (f) )
wβ

+
(
E′2 (f) − E′3 (f)

)
e−(

T
Tα (f) )

wα

+
(
E′3 (f)

)
e
−( T

Tγ (f) )
wγ

]
(6)

where E′1 (f) is the initial storage modulus at the starting point of E′(T, f) curve, E′2 (f) and E′3 (f) are
the instantaneous storage moduli at the beginning of the transition and rubbery regions, respectively.
Tβ(f), Tα (f) or Tg(f) and Tγ (f). are the transition temperatures in theβ,α andγ regions. wβ, wα and
wγ are the Weibull moduli for the corresponding regions. These statistical parameters can be estimated
through a nonlinear least square method using a trust-region algorithm. The procedure to estimate the
Weibull moduli are reported elsewhere [54]. The Weibull moduli remain the same as in Equation (5)
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while the change was made by considering the frequency effect into the parameters E′i (f) and
Ti (f), i.e., Tβ(f), Tα(f) and Tγ (f) :

E′(f) = E′ref (f)
(
1 + mlog (

f

fref
)

)
(7)

1
Tβ(f)

=
1

Tβ
ref

+
k

(Ea)β
ln (

fref

f
) (8)

Tα(f) = Tα
ref +

−C2
reflog ( fref

f )

C1
ref + log ( fref

f )
(9)

Tγ (f) = Tγ
ref

(
1 + 0.01log (

f

fref
)

)
(10)

where E′ref, Tβ
ref, Tα

ref and Tγ
ref are the storage modulus and transition temperatures in the β, α and

γ regions, respectively at the reference frequency (fref) of 1 Hz. These reference values can be obtained
from DMA experiments. (Ea)β is the activation energy corresponding to Tβ (f). k is the Boltzmann
constant. C1

ref and C2
ref are the Williams-Landel-Ferry (WLF) model parameters [55]. m is the

frequency sensitivity coefficient. Though this model (Richeton et al. [53]) has great potential to predict
the temperature-frequency dependent properties, it requires several instantaneous storage modulus
values as inputs from the experimental curve. Gu and Asaro [56] proposed a simple temperature-based
empirical power-law model. However, in this model, the storage modulus is assumed to be zero
when the curve reaches the reference temperature. In the actual cases, the storage modulus never
becomes zero.

Though Einstein’s and Nielson models [13,49,57] predict well the viscoelastic properties of short
fiber and nanofiller composites, these models are not so effective to capture the fiber orientation effect
on viscoelastic properties (storage modulus and loss factor or loss tangent) since the only variable in
these models are fiber volume fraction. Henceforth, other models are required to predict the viscoelastic
behavior of FRPCs for different fiber orientations. Also, the above- discussed models are only for
predicting the storage modulus. However, it is vital to predicting the instantaneous loss modulus E′′i as
well since the temperature corresponding to loss modulus and loss tangent peak values are considered
as the Tg in most other research work [13,49]. The loss tangent curve can be predicted from E′i and
E′′i curves.

Feng et al. [36,37] developed the two-parameter viscoelastic model for predicting the storage and
loss modulus and Tg values. The model predictions were validated with the experiments performed
on epoxy and glass/epoxy composites of different fiber orientations using three-point bending, single
and dual cantilever fixture and, obtained a good agreement.

The degree of glass transition
(
αTg

)
can be expressed in terms of storage, glassy and rubbery

modulus values, which can be written as [38]:

(
αTg

)
=

E′G − E′i
E′G − E′R

(11)

where E′G and E′R are the glassy and rubbery storage modulus, respectively. Equation (11) can be
written as

E′(T, f) = E′G −
(
αTg

) (
E′G − E′R

)
(12)

In order to consider the temperature effect, the two parameters, namely L(f) and S(f) are introduced
in Equation (11) and can be written as [35]:

dαTg

dT
= L(f)

(
1−αS(f)

Tg

)
αTg (13)
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where L(f) and S(f) are the intrinsic growth rate and the symmetry of the glass transition region,
respectively. When Limit

T→Tmg

αTg = 0.5 , therefore, the solution of Equation (13) is given by:

(
αTg

)
=

1[
(2S − 1)eL(f) S(f) (Tmg(f)−T) + 1

]( 1
S(f) )

(14)

Substituting Equation (14) into Equation (12) and is given by:

E′(T, f) = E′G −
E′G − E′R[(

2S(f) − 1
)
eL(f) S(f) (Tmg(f)−T) + 1

]( 1
S(f) )

(15)

When S(f) = 1,
(
αTg

)
= 1[

eL(f)(Tmg(f)−T)+1
] , therefore, Equation (15) becomes:

E′(T, f) = E′G −
E′G − E′R[

eL(f)(Tmg(f)−T) + 1
] (16)

Similarly, the loss modulus can be written in terms of temperature [36]:

E′′(T, f) = C
L(f)

(
2S(f)

− 1
)
eL(f) S(f) (Tmg(f)−T)[(

2S(f) − 1
)
eL(f) S(f) (Tmg(f)−T) + 1

]( 1
S(f)+1)

(17)

where C =
( E′′)max[

L(f) S(f)
S(f)+1

]( 1
S(f) +1)

; L(f), S(f) and Tmg(f) are the functions of the frequency. The linear relationship

between ln (f) vs. 1
Tg

is established from the Arrhenius model. Similarly, the linear relationship between

ln (f) vs. 1
L(f) and ln (f) vs. 1

S(f) are written as [35,36]:

ln (f) = A1
1

L(f)
+ ln (B1) (18)

ln (f) = A2
1

S(f)
+ ln (B2) (19)

where A1 and ln (B1) are the slope and intercept, respectively of the curve ln (f) vs. 1
L(f) ; Similarly,

A2 and ln (B2) are the slope and intercept, respectively of the curve ln (f) vs. 1
S(f) ; Interestingly,

the values 1
L(f) and 1

S(f) of epoxy, glass/epoxy and carbon/epoxy vary linearly with the frequency, which
can be seen in Tables 1 and 2, respectively.

3.1.2. Interfacial Damping and Strength Indicator

The interfacial damping (tan δi) parameter measures the adhesion between fiber and matrix in
terms of matrix volume fraction and ratio of elastic modulus of the matrix and composite (H), which
can be written as [58]:

tan δi = (α−Vm H) (tan δm)max (20)

where α =
(tanδc)max
(tanδm)max

; (tan δc)max and (tan δm)max are the maximum loss tangent values of composite
and matrix, respectively; Vm is the matrix volume fraction = 1 − Vf; Vf is the fiber volume fraction;
H = Sm

Sc
; Sm and Sc are the matrix and composite Young’s moduli, respectively, obtained from the

uniaxial tensile test. Higher the value of α, better would be the interfacial damping. The interfacial
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strength indicator σi can be written in terms of the matrix volume fraction, and the maximum loss
tangent values of composite and matrix [47], which is given by:

σi =
1− α

(1−Vm)
(21)

4. Results and Discussions

4.1. Mechanical Properties

The comparison between flexural, tensile and impact properties of different fiber orientations
of glass/epoxy and carbon/epoxy composites are shown in Figures 3–6, respectively. In Figure 3,
the flexural stress-strain traces indicate the combination of brittle and ductile modes of failure.
In contrast, from Figure 4, a sudden drop in stress is observed in the tensile stress-strain curves after
reaching the maximum stress, which indicates the brittle failure. The magnitude of flexural strength
and flexural strain (%) values are higher in all fiber oriented glass/epoxy and carbon/epoxy composite
specimens compared to their tensile strength and tensile strain (%) values. However, it is observed
from Figure 5 and Tables 1 and 2 that the average tensile modulus values are higher in all fiber oriented
glass/epoxy and carbon/epoxy composite specimens compared to their average flexural modulus
values. This could be due to the difference in loading direction in both tests.
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In contrast to single failure mode (brittle failure) in tensile loading, a combination of compression
and tension modes of failure occurs in composites during flexural loading. Three variations are
observed in the flexural stress-strain curves: (1) a linear variation in the stress and strain (%) until the
maximum stress is reached; (2) a sudden drop in the stress due to initiation of the failure which can be
fiber-matrix interface cracking. Besides, slight reductions in the stress with the further increase in the
strain (%), due to progressive failure of composite layers; (3) plateau region.
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It is worth observing from Figure 3a,b that the degree of non-linearity in the flexural stress-strain
curves after reaching the maximum stress is lower for GFRP composites compared to CFRP composites.
This indicates that the failure in all laminate configurations of CFRP composites is more brittle compared
to that in GFRP composites. As a result, the strain (%) is higher in all laminate configurations of GFRP
composites compared to that in CFRP composites whereas strength and modulus are found to be
higher in CFRP composites compared to that in GFRP composites.

It is observed that the (45◦/−45◦/45◦)s (Type IV) glass/epoxy laminate has the highest %strain in
both flexural and tensile test cases amongst the other combinations. As a consequence, (45◦/−45◦/45◦)s

glass/epoxy laminate possesses the highest energy absorption [Figure 6a]. Hence, the newly proposed
laminate can be recommended for crashworthiness applications.

The tensile strength, strain and modulus are higher in the case of (0◦) (Type I) carbon/epoxy
laminate than in the case of (45◦/−45◦/45◦)s (Type IV) carbon/epoxy laminate. Therefore, this leads to
slightly lower energy absorption characteristics in (45◦/−45◦/45◦)s laminate compared to that in (0◦)
laminate. [Figure 6b]. However, both laminate configurations possess excellent mechanical properties,
followed by QI laminate. The QI (Type V) laminate possesses combined properties, such as taking
higher %elongation from (±45◦) plies and higher strength and stiffness from 0◦ plies. On the contrary,
(90◦) (Type III) laminate possesses the least properties compared to other laminates, due to the matrix
dominated failure.
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4.2. Dynamic Mechanical Analysis

In this section, the viscoelastic properties of epoxy and different types of unidirectional GFRP
and CFRP composites subjected to different frequencies ranging from 1 Hz to 50 Hz over the
temperature range from room temperature to 160 ◦C are presented. Predicted storage modulus and
loss modulus values for the corresponding temperature and frequency ranges were also determined
using Equations (16) and (17), respectively. The predicted loss tangent values were determined from
the theoretical storage and loss moduli values. The viscoelastic parameters L(f) and S(f) were obtained
by curve fitting αTg vs. T [Equation (14)], using MATLAB. The decrease in L(f) and S(f) values with
the increase in frequency was observed and values given in Tables 1 and 2. A similar kind of trend
was observed elsewhere [35]. The predicted Tg values were obtained from modeling curves of E′′i and
tan δ. An excellent correlation was obtained between the experimental and predicted results, which
are shown in Figures 7–9.

It was observed from Figure 7a,b and Table 1, that the difference between the experimental and
predicted storage and loss moduli and Tg values of neat epoxy samples were less than 10%, 5% and
1.5%, respectively. It was also observed from Figure 7a and Table 1, that the experimental (E’)max

increases from 2.572 GPa at 1 Hz to 2.715 GPa at 50 Hz (5.56% increase) whereas, the predicted (E’)max
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increases from 2.350 GPa at 1 Hz to 2.580 GPa at 50 Hz (9.79%). A reason for this increment in the
storage modulus in higher frequencies is due to less availability of time for rearrangement of molecules
in the resin than in the lower frequencies [13,59]. Similarly, for the same frequency range of 1 HZ
and 50 Hz, the increase in experimental and predicted Tg values were observed from Figure 7b that
the difference being 19.61% and 18.66%, respectively. This shows excellent agreement between the
experimental and predicted results. A similar kind of trend (increase in storage modulus and Tg

values with the increase in frequency) was observed for different fiber orientations of GFRP and CFRP
composites from Figures 8 and 9 and Tables 1 and 2.
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Figure 7. Comparison between predicted and experimental results for different frequencies of neat
epoxy resin: (a) storage modulus and (b) loss modulus.

It can be observed from Figures 7a and 8a–d that the storage modulus decreases dramatically,
when the temperature exceeds the Tg, mainly owing to material softening. The temperature at which
the storage modulus starts to decrease is low for epoxy samples compared to FRPCs. This can be
attributed to an increase in rigidity of the structure when fibers are added in the epoxy resin.

Further observations can be made from Figures 7b and 9 that initially the loss modulus curve is
slightly horizontal, which is mainly due to immobility of molecules in the polymer matrix. For these
low temperatures, there will not be any translational and rotational movements occurring in the
molecular chains. As the temperature increases, the molecules start moving in the resin, which leads to
a change in the shape of the curve. In contrast to storage modulus, the loss modulus curve increases
up to Tg. After reaching the Tg, the resistance to molecular motion decreases, due to a combination of
translational and rotational motion of molecules in the resin.

Adverse effects occur at elevated temperatures which are due to softening of the resin, as there is
almost no control over molecular transport phenomena in the matrix. Consequently, the curve starts
to decrease up to the rubbery region, where a plateau-shaped distribution is seen. This drop-in loss
modulus can be minimized by stiffening the structure through the incorporation of fibers. Figure 9
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indicates the higher loss modulus values of FRPCs compared to the loss modulus values of the neat
epoxy samples seen in Figure 7b.Polymers 2020, 12, x FOR PEER REVIEW 14 of 33 
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Figure 8. Comparison of predicted storage modulus values with the experimental values for different
frequencies: (a) Type I GFRP, (b) Type V GFRP, (c) Type I CFRP and (d) Type V CFRP.
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4.2.1. The Effect of Frequency on Storage Modulus (E’)

Investigating the frequency effects on storage modulus is essential, which provides the vibrational
response of the structure during dynamic loading conditions. The frequency sensitivity coefficient
(m) is determined by a linear curve fitting procedure using Equation (7), to determine the frequency
effects on the initial storage modulus of neat epoxy and different fiber orientations of CFRP and GFRP
samples, which are shown in Figure 10a,b, respectively. The higher the sensitivity coefficient, the lower
the resistance to cyclic loading of the structure during service life.
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Figure 10 confirms that the sensitivity coefficient is higher for epoxy samples followed by Type III
laminates in both CFRP and GFRP samples. The neat epoxy and Type III laminates fail rapidly due
to their weaker structure indicated by higher m values. The fewer amount of fibers underneath the
three-point bending fixture in Type III laminate (Figures 11e and 12) lead to higher m values compared
to the composites of different fiber orientations. Therefore, these structures are not recommended for
applications where dynamic loading (e.g., gust wind or turbulence) situations predominantly occur.
The stiffer CFRP composites have lower m values compared to GFRP composites. In both GFRP and
CFRP composites, Type IV laminates exhibit lower m values. This emphasizes that Type IV laminates
possess more stable laminate configuration, which can bear cyclic loads effectively to a larger extent,
and can perform better in vibration isolation structure for any drive-shaft, due to higher flexural strains
offered by ±45◦ plies.
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Figure 11 (fractured samples) and Figure 12 (SEM micrographs) show that laminates having layers
of different ply angles demonstrate a strong interlocking effect compared to laminates with layers of
identical ply angles. In particular, 45◦ (Type II) and 90◦ (Type III) laminates show weaker networks due
to matrix dominated failures. Higher bending strain could be possible in laminates of different plies
(Type IV and Type V) compared to laminates with identical plies (Figure 3a,b). As a result, the crack
propagation can be delayed in these composites and therefore, catastrophic failure is not occurred [40].
This is due to the criss-cross fiber patterns presented in Type IV and Type V laminates observed from
the fractured surfaces of glass/epoxy and carbon/epoxy composites in Figure 11c,d and can also be
seen from SEM micrographs (Figure 12).
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Figure 11. Fractured surfaces after flexural testing of glass/epoxy and carbon/epoxy composite
specimens for different fiber orientations: (a) 0, (b) 45, (c) (45/−45/45)s, (d) (±45/0/90)s and (e) 90.
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Polymers 2020, 12, 1700 18 of 31

Table 1. The effect of frequency on initial storage modulus of epoxy and glass/epoxy composites.

Material
Frequency

(Hz)

Parameters Initial Storage Modulus
(GPa) (Experiment)

Initial Storage Modulus
(GPa) (Prediction) %error

Flexural Modulus
(GPa)L(f) S(f)

Epoxy

1 0.0875 2.941 2.572 2.350 9.447
10 0.087 2.530 2.652 2.503 5.953
20 0.085 2.278 2.673 2.518 6.156 2.85 ± 0.07
33 0.0843 2.124 2.692 2.527 6.529
50 0.0839 2.118 2.715 2.580 5.233

Avg 2.660 ± 0.054 2.4956 ± 0.086

TYPE I

1 0.150 1.250 24.052 23.797 1.072

26.25 ± 0.6

10 0.109 1.119 23.935 23.535 1.699
20 0.105 1.110 23.917 23.543 1.589
33 0.102 1.109 23.915 23.540 1.593
50 0.099 1.090 23.934 23.638 1.252

Avg 23.950 ± 0.057 23.610 ± 0.112

TYPE II

1 0.172 1.560 7.950 7.907 0.543

8.11 ± 0.57

10 0.134 1.525 8.043 7.349 9.443
20 0.129 1.514 8.082 7.379 9.527
33 0.115 1.510 8.132 7.413 9.700
50 0.095 1.50 8.177 7.429 10.00

Avg 8.076 ± 0.087 7.495 ± 0.232

TYPE III

1 0.110 2.490 4.737 4.256 11.301

4.45 ± 0.63

10 0.096 2.440 4.904 4.367 12.297
20 0.0955 2.438 4.964 4.413 12.486
33 0.095 2.437 5.012 4.453 12.553
50 0.094 2.436 5.058 4.488 12.700

Avg 4.935 ± 0.124 4.395 ± 0.1

TYPE IV

1 0.094 2.497 9.269 8.868 4.522

7.67 ± 0.29

10 0.093 2.482 9.283 8.894 4.374
20 0.0929 2.441 9.284 8.915 4.139
33 0.0927 2.432 9.296 8.931 4.087
50 0.0925 2.430 9.305 8.956 3.897

Avg 9.287 ± 0.013 8.913 ± 0.033

TYPE V

1 0.159 2.75 16.117 15.937 1.129

14.31 ± 1.84

10 0.125 1.579 16.258 15.942 1.982
20 0.120 1.550 16.348 15.984 2.278
33 0.110 1.499 16.458 15.922 3.366
50 0.109 1.497 16.223 16.036 1.166

Avg 16.281 ± 0.129 15.964 ± 0.046
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Table 2. The effect of frequency on initial storage modulus of carbon/epoxy composites.

Material
Frequency

(Hz)

Parameters Initial Storage Modulus
(GPa) (Experiment)

Initial Storage Modulus
(GPa) (Prediction) %error

Flexural Modulus
(GPa)L(f) S(f)

TYPE I

1 0.165 2.461 62.332 61.801 0.859

73.75 ± 1.9

10 0.101 2.214 62.500 62.001 0.805
20 0.099 1.975 62.413 62.097 0.509
33 0.098 1.953 62.232 61.741 0.795
50 0.097 1.939 62.948 61.187 2.878

Avg 62.485 ± 0.277 61.765 ± 0.354

TYPE II

1 0.099 2.65 9.277 8.671 6.989

10.5 ± 0.7

10 0.092 2.567 9.314 8.748 6.470
20 0.087 2.548 9.331 8.830 5.674
33 0.086 2.298 9.346 8.925 4.717
50 0.085 2.15 9.380 8.979 4.466

Avg 9.330 ± 0.038 8.831 ± 0.126

TYPE III

1 0.105 3.557 5.837 5.377 8.555

6 ± 0.77

10 0.073 3.154 5.972 5.784 3.250
20 0.059 3.125 6.006 5.722 4.963
33 0.055 2.990 6.059 5.760 5.191
50 0.050 2.550 6.095 5.411 12.641

Avg 5.994 ± 0.099 5.611 ± 0.199

TYPE IV

1 0.075 2.870 11.234 10.396 8.061

9.5 ± 0.86

10 0.074 2.849 11.233 10.441 7.5851
20 0.072 2.829 11.237 10.447 7.562
33 0.0719 2.480 11.230 10.457 7.392
50 0.071 2.469 11.272 10.501 7.342

Avg 11.241 ± 0.017 10.448 ± 0.037

TYPE V

1 0.130 2.799 40.233 37.324 7.794

38.53 ± 1.17

10 0.106 1.679 40.533 39.902 1.581
20 0.105 1.667 40.658 39.958 1.752
33 0.104 1.658 40.627 40.434 0.477
50 0.094 1.598 40.827 40.401 1.054

Avg 40.576 ± 0.219 39.604 ± 1.298
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Tables 1 and 2 show that average flexural modulus values correlate very well with the experimental
and predicted storage moduli values of neat epoxy and different laminate types of GFRP and CFRP
samples. Amongst all types, Type I laminates exhibited higher flexural modulus and (E’)max values
in both GFRP and CFRP composites, while neat epoxy resin samples exhibited lower flexural and
storage moduli values. This behavior is attributed to long and aligned fibers offering more resistance
to deformation, which can be confirmed from fractured specimens and SEM micrographs illustrated in
Figures 11 and 12, respectively.

4.2.2. Experimental and Predicted Loss Tangent and Corresponding Tg

Figures 13–15 show the experimental and predicted (tan δ)max values and their corresponding
peak temperature values, taken as Tg values for neat epoxy and different types of GFRP and CFRP
composites, respectively. These figures indicate a reasonably good agreement between the experimental
and predicted values. It is observed from Figure 14 that the (tan δ)max values are lower for composites
compared to epoxy (Figure 13), in all frequencies. The decrease in (tan δ)max values is due to the
incorporation of fibers in the matrix as the storage modulus of the structure increases by the addition
of fibers. The loss tangent is inversely proportional to the storage modulus from Equation (2).
Similar observations were made in [30,47].
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However, the Tg values increase significantly when the fibers are introduced in epoxy resin.
In particular, Type IV laminates in both GFRP and CFRP samples showed higher Tg values compared
to other laminate configurations as shown in Figure 15a,b. A similar trend was observed in both
experimental and predicted values. The substantial increase in Tg due to the incorporation of fibers in
the epoxy matrix was also observed elsewhere [12,13].

Figure 13 shows the Tg ((tan δ)max) increases from 68.668◦C at 1 Hz to 82.168 ◦C at 50 Hz for
neat epoxy samples (19.66% increase). Similarly, the predicted Tg ((tan δ)max) value increases from
65.968 ◦C at 1 Hz to 77.668 ◦C at 50 Hz for neat epoxy samples (17.74% increase).
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In general, the Tg value cannot be fixed for FRPCs, there should be some range given. The fiber
orientation effect can play a significant role to attain maximum Tg value and a range. There is an
approximately 10 ◦C difference obtained from different fiber oriented samples by Coban et al. [60].
Similarly, in the present work, the deviation in Tg values between different fiber orientated samples of
GFRP and CFRP composites of frequency range 1 Hz and 50 Hz obtained was less than or equal to
10 ◦C (Figure 13). Since all samples were fabricated using the same epoxy resin.Polymers 2020, 12, x FOR PEER REVIEW 21 of 33 
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In Figure 15, the increase in Tg value with the increase in frequency from 1 Hz to 50 Hz was
also observed in all samples, as similar to the trend seen in the epoxy matrix in Figure 13. This is
due to an increase in the speed of the test as the frequency is directly proportional to the test speed
and inversely proportional to the molecular relaxation time. The deviation between the minimum Tg

value at the frequency of 1 Hz and the maximum Tg value at the frequency of 50 Hz, obtained was
less than or equal to 15 ◦C (Figure 15) in GFRP and CFRP composites. Similar results were found by
Bergent et al. [37] for different fiber orientations of woven CFRP composites. The experimental and
predicted Tg values are in good agreement.
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4.2.3. The Effect of Frequency on Tg

Figures 16–18 show the variation in Tg values corresponding to (E”)max and (tan δ)max with
the increase in frequency (f) from 1 Hz to 50 Hz for neat epoxy resin, GFRP and CFRP composites,
respectively. From these figures, it is worth noting that Tg values increased with increasing frequency.
These curves show a slope: ln (f) vs. 1/

(
Tg

)
for estimating the activation energy using Equation (4)

through the Arrhenius model. Higher values (~>0.9) of the coefficient of determination (R2) are
obtained, which confirm an excellent correlation between the experimental values and the curve fit.
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It was observed from Figures 16–18 that the FRPCs have larger slopes compared to neat epoxy
resin samples, as a result, higher activation energy values were obtained, which are shown in Tables 3
and 4. In particular, Type IV laminates have higher activation energy values compared to other
laminates. The activation energy corresponding to (E”)max and (tan δ)max of Type IV CFRP laminates
were 6.6% and 8% higher respectively, as compared to corresponding activation energy values of Type
IV GFRP laminates. These results emphasize that the higher thermal stability of Type IV laminates can
be a better choice for future aerospace and other high-temperature applications. It was also observed
from Tables 3 and 4 that (Ea)(E”)max values are higher than (Ea)(tan δ)max values in neat epoxy and FRPCs.
Similar kinds of observations were found elsewhere for different fiber orientations of woven roving
composites [13].
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Table 3. Activation energy of epoxy and glass/epoxy composites.

Material Frequency
(Hz)

Tg ((E”)max)(◦C)
(Experiment)

(Ea)(E”)max
(kJ/mol)

Tg ((tan δ)max)(◦C)
(Experiment)

(Ea)(tan δ)max
(kJ/mol)

Epoxy

1 59.668

319.598

68.668

294.332
10 65.068 75.868
20 66.868 78.568
33 69.568 80.368
50 71.368 82.168

TYPE I

1 79.987

356.346

85.027

314.310
10 85.027 92.227
20 87.907 95.107
33 90.067 97.267
50 91.507 98.707

TYPE II

1 76.241

567.713

85.241
10 80.741 92.441
20 81.641 95.141 335.445
33 82.541 96.941
50 83.441 97.841

TYPE III

1 75.555

521.271

82.555
10 78.555 88.555
20 79.055 92.055 328.577
33 81.555 94.055
50 83.055 95.055

TYPE IV

1 78.646 89.386
10 81.380 95.484
20 82.285 634.865 98.025 344.207
33 84.085 100.541
50 84.977 102.202

TYPE V

1 80.417

417.196

84.107
10 84.107 92.245
20 86.508 94.453 313.861
33 88.845 96.601
50 89.995 97.659

Table 4. Activation energy of carbon/epoxy composites.

Material Frequency
(Hz)

Tg ((E”)max)
(◦C) (Experiment)

(Ea)(E”)max
(kJ/mol)

Tg ((tan δ)max)
(◦C) (Experiment)

(Ea)(tan δ)max
(kJ/mol)

TYPE I

1 78.985

458.691

82.985

370.870
10 82.485 88.985
20 84.985 91.485
33 85.985 92.985
50 87.985 94.485

TYPE II

1 75.724

492.380

86.403

303.369
10 80.543 93.003
20 81.737 97.148
33 82.920 99.166
50 84.093 100.160

TYPE III

1 75.421 83.215

291.937
10 79.337 89.722
20 81.290 452.713 92.426
33 83.216 95.963
50 84.165 97.702
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Table 4. Cont.

Material Frequency
(Hz)

Tg ((E”)max)
(◦C) (Experiment)

(Ea)(E”)max
(kJ/mol)

Tg ((tan δ)max)
(◦C) (Experiment)

(Ea)(tan δ)max
(kJ/mol)

TYPE IV

1 86.774

676.784

96.774

371.935
10 88.774 103.774
20 90.774 106.774
33 91.774 107.774
50 92.774 108.774

TYPE V

1 81.221 83.396

312.706
10 83.396 88.671
20 85.533 641.134 90.714
33 85.535 92.717
50 87.634 94.676

4.2.4. The Effect of Frequency on Strength Indicator and Interfacial Damping

The strength indicator (σi) and interfacial damping (tan δi) are essential parameters which provide
the information related to interfacial strength and bonding between fibers and matrix. These parameters
rely mostly on matrix properties. σi and tan δi are determined using Equations (20) and (21), respectively,
and are given in Table 5. The decrease in σi and an increase in tan δi, with the increasing frequency
are observed from the table. However, these values depend on fiber and matrix volume fractions.
The decrease in σi with the increase in frequency, is less for Type IV CFRP, followed by Type I GFRP
composites compared to other laminate configurations.

Table 5. Strength indicator and interfacial damping parameters of GFRP and CFRP composites.

Frequency
(Hz)

GFRP
Laminate Type

Fiber Volume
Fraction σi tanδi

CFRP
Laminate Type

Fiber Volume
Fraction

1
10
20
33
50

Type I 0.487

0.971 0.286

Type I 0.449

0.681 0.411
0.859 0.314 0.548 0.441
0.843 0.311 0.528 0.435
0.817 0.314 0.505 0.434
0.807 0.312 0.504 0.428

1
10
20
33
50

TYPE II 0.511

0.650 0.305

TYPE II 0.527

0.586 0.335
0.488 0.351 0.324 0.414
0.440 0.356 0.264 0.422
0.396 0.364 0.199 0.435
0.360 0.369 0.151 0.443

1
10
20
33
50

TYPE III 0.529

0.875 0.154

TYPE III 0.540

0.716 0.252
0.709 0.204 0.667 0.264
0.676 0.209 0.652 0.262
0.650 0.214 0.633 0.264
0.629 0.217 0.623 0.264

1
10
20
33
50

TYPE IV 0.418

0.739 0.278

TYPE IV 0.491

1.00 0.334
0.485 0.338 0.951 0.393
0.437 0.342 0.945 0.396
0.376 0.350 0.935 0.403
0.326 0.357 0.918 0.410

1
10
20
33
50

TYPE V 0.40

0.589 0.388

TYPE V 0.415

0.880 0.358
0.518 0.401 0.779 0.378
0.467 0.402 0.758 0.374
0.457 0.398 0.723 0.376
0.441 0.396 0.712 0.374
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5. Conclusions

In this study, static and dynamic mechanical properties of neat epoxy and different laminate
configurations of GFRP and CFRP composites were investigated and compared. The novel approach
is made for predicting the temperature-frequency dependent viscoelastic properties of neat epoxy
and composite panels. The obtained results show a good agreement between the predicted and
experimental values. The Tg values obtained from the experimental results and modeling curves, agree
reasonably well. An excellent correlation between static flexural modulus and frequency-dependent
initial storage modulus values was obtained. Further, the strength indicator and interfacial damping
parameters were determined using both static and dynamic mechanical properties.

The neat epoxy samples exhibit high loss tangent and low Tg and activation energy values
compared to the composite laminates. Type I CFRP laminates exhibit high storage modulus values,
whereas Type IV CFRP laminates exhibit high Tg and activation energy values compared to other
laminate configurations. Storage modulus values of Type IV laminates were less sensitive to frequency
compared to neat epoxy and other laminate configurations. These important findings are very useful
for dynamic properties of composite structures such as, GVT and the designing and manufacturing
of automobile drive shafts. In particular, Type IV laminates are recommended for vibration isolation
applications, owing to their better impact energy absorption capabilities, higher activation energy and
Tg values, and lower frequency sensitivity coefficient. It can also be a better material for composite
structures, which are exposed to harsh loading conditions. Also, the experimental data presented in
this study will be useful to develop artificial neural network-based viscoelastic models.
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Nomenclature

E’ Storage modulus
E′G Glassy storage modulus
E′R Rubbery storage modulus
E” Loss modulus
tan δ Loss tangent
tan δi Interfacial damping
T Temperature
Tg Glass transition temperature
αTg Degree of glass transition
f Frequency
R Gas constant
Ea Activation energy
k Boltzmann constant
m Frequency sensitivity coefficient
σi Strength Indicator
L(f) Intrinsic growth rate of the glass transition region
S(f) Symmetry of the glass transition region
Vf Fiber volume fraction
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