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Components of circadian rhythm maintenance, or “clock genes,” are endogenous
entrainable oscillations of about 24 h that regulate biological processes and are found in the
suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are
influenced by external cues, or Zeitgebers, such as light and heat, and can influence such
diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac
myocytes, and vasodilator regulation by vascular endothelial cells. While it is known
that the central master clock in the SCN synchronizes peripheral physiologic rhythms,
the mechanisms by which the information is transmitted are complex and may include
hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related
to the observed periodicity of events, or whether they are simply epi-phenomena is
not well established, but a few studies suggest that the circadian effects likely are real
in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers
of predisposition and subsequent response to acute and chronic cardiac injury, and
identifying the complex interactions of circadian rhythms and myocardial infarction may
provide insights into possible preventative and therapeutic strategies for susceptible
populations.
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CLINICAL ASSOCIATIONS FOR CIRCADIAN RHYTHMS IN
MYOCARDIAL INFARCTION
The ability to properly synchronize with the external environ-
ment is an essential element of animal survival. The predation rate
of free-living chipmunks increased over time in suprachiasmatic
nucleus (SCN)-lesioned animals due to their reduced burrowing
during the nighttime (Decoursey et al., 2000). On the other hand,
rats kept in total darkness during the first 48 h following brain
injury exhibited improved recovery (Corwin and Vargo, 1993;
Vargo et al., 1998, 1999). In humans, disruptions in rhythms are
associated with reduced survival of patients with metastatic can-
cers (Mormont et al., 2000; Sephton et al., 2000) and alterations
in expression of clock genes have been shown to be responsible
for unregulated cell growth (Granda et al., 2005; Chu et al., 2008;
Clairambault, 2008; Yang et al., 2008).

The significance of circadian rhythms to myocardial infarction
has been identified in several studies in which onset of non-Q-
wave angina, unstable angina, myocardial infarctions, and sudden
cardiac death all show marked elevations in occurrence between
the hours of 0600 and 1200 (Muller, 1999a,b; Willich et al., 2004;
Mosendane and Raal, 2008). Ethnic genetic, medications, co-
morbidities, lifestyle, cultural, and/or social factors may shift the
time of highest incidence (Kanth et al., 2013). Lopez et al. (2005)
and Savopoulos et al. (2006) each reported a significant shift to
the 1800–2400 h window for increased incidence of sudden death
in Mediterranean populations. The incidence of ischemic stroke,
has been reported to follow the same patterns (Gupta and Shetty,
2005), with highest incidence in the 0600–1200 window and
diurnal variation in ventricular arrhythmias have recently been
demonstrated to be related to abnormal repolarization (Jeyaraj

et al., 2012). The time of day when an event occurs also may influ-
ence the severity of the outcome (Mukamal et al., 2000) and also
may extend to the timing of salvaging intervention. The time of
day when mechanical reperfusion by percutaneous transluminal
coronary angioplasty (PTCA) is performed influences subsequent
1 year mortality rates, with patients treated between 0400 and
0800 having worse outcomes than all others, even after correcting
for confounding variables (De Luca et al., 2005).

Blood pressure normally follows a diurnal pattern, with
pressures lowest at night, and rising to a peak in the hours
0600–1000. Several ambulatory blood pressure studies have iden-
tified that failure to decrease blood pressure at night, so called
“non-dipping,” is associated with increased cardiovascular risk
(Morgan, 2002; Lee et al., 2005; Izzedine et al., 2006), and optimal
efficacy in relation to time of day is a major factor consid-
ered in anti-hypertensive drug development (Lemmer, 2006).
More recently, it has been shown that Per2 mutation dimin-
ishes blood pressure and heart rate dipping (Vukolic et al., 2010).
Many intrinsic vasoactive and cardioactive substances, such as
angiotensin II, melatonin, plasminogen activator inhibitor 1 (pai-
1), glucocorticoids, epinephrine, norepinephrine, and nitric oxide
follow distinct circadian patterns (Ding et al., 1994; Balsalobre
et al., 2000; McNamara et al., 2001; Nonaka et al., 2001; Naito
et al., 2003; Tsuchiya et al., 2005; Tsujino et al., 2005; Vaughan,
2005; Kanth et al., 2013). To the extent that diabetes and obe-
sity are contributing factors to cardiovascular risk, recent reviews
associating circadian genes with metabolic dysfunction in periph-
eral tissues are noteworthy. And whether these many circadian
patterns are causally related to the observed periodicity of events,
or whether they are simply epiphenomena is not well established,
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but a few studies suggest that the circadian effects likely are real
in their impact on myocardial infarction incidence (Bray and
Young, 2007; Green et al., 2008; Prasai et al., 2008; Ruger and
Scheer, 2009; Durgan and Young, 2010; Maury et al., 2010; Bailey
et al., 2014; Nedeltcheva and Scheer, 2014). Chronic instability
in circadian rhythm in shift worker studies was recognized more
than 20 years ago to produce increased risk of cardiovascular
morbidity and mortality (Knutsson et al., 1986). More recently,
Fujino et al. (2006) reported that the relative risk for ischemic
heart disease in Japanese factory workers on rotating shifts dou-
bles compared to that of workers with either fixed daytime or
fixed night-time schedules. Kawachi et al. reported similar find-
ings in a study of U.S. nurses, with the multivariate risk increasing
commensurate with the duration of rotating shift work (Kawachi
et al., 1995). Notably, in hamsters with a mutation producing a
22 h circadian cycle, premature cardiac mortality was noted, and
corrected when either the animals were converted to a 22 h L/D
cycle matching the phenotype, or the SCN was ablated, abolish-
ing the dys-synchrony (Martino et al., 2008). Further, the same
group also demonstrated that when mice were maintained in
a disrupted light/dark (L/D) rhythm (10/10 vs. normal 12/12),
the hypertrophy response to aortic banding was badly impaired
(Martino et al., 2007).

These findings are consistent with the premise that synchro-
nization between the central and peripheral clocks is a contin-
uous, ongoing process, and that the pressure to maintain this
synchronization involves signaling mechanisms that are energet-
ically demanding for the peripheral target tissues. When coupled
with an underlying pathophysiology that generates a vulnerable
substrate, such as coronary artery disease or pressure overload,
the pressure to normalize desynchronized rhythms increases the
progression of injury.

CIRCADIAN RHYTHM BIOLOGY
Circadian rhythms are daily variations of physiological functions
that are found in every living organism. These daily rhythms
are generated through the integration of oscillatory expression
of multiple circadian clock genes (Harmer et al., 2001; Dvornyk
et al., 2003; Merrow et al., 2005; Granados-Fuentes and Herzog,
2013). In mammals, the circadian rhythms are regulated by the
SCN of the hypothalamus. Neurons in the SCN generate self-
sustained daily oscillations of gene expression and electrical activ-
ity with a frequency of close to 24 h (Herzog and Schwartz, 2002).
The SCN keeps the circadian rhythms of different peripheral
organs synchronized to each other as well as to the environmental
light-dark cycle (Dardente and Cermakian, 2005). Although every
mammalian cell is believed to express the circadian clock genes, it
has been shown that some cells outside the SCN are not able to
maintain self-sustained circadian oscillation in the absence of the
SCN (Fukuhara and Tosini, 2003).

Major progress has been made in identifying genes that regu-
late the circadian clock (Hardin and Glossop, 1999; Reppert and
Weaver, 2002; Hardin, 2006; Hardin and Panda, 2013). The first
circadian clock gene was identified in drosophila, named Period
(per) (Kyriacou and Hall, 1980). The first mammalian coun-
terpart of the Period gene was discovered by Sun et al. (1997).
Molecular components of the circadian clock have been identified

in mammals and interact to contribute to the entrainment and
pace making of the circadian rhythm. These genes include a clock
gene, a gene encoding brain-muscle Arnt-like protein 1 (bmal1)
(Honma et al., 1998), three period genes (per1, per2, and per3)
(Sun et al., 1997; Zheng et al., 1999; Shearman et al., 2000), and
two cryptochrome genes (cry1 and cry2) (Thresher et al., 1998;
Hardin and Glossop, 1999; Sancar, 2000). In addition, there is
evidence that the NPAS2 gene, which encodes a functional analog
of the clock, may play a role in the functioning of the circadian
clock in the brain as well as peripheral organs (Reick et al., 2001;
Hardin, 2006).

These clock genes participate in the pacemaking and phase
regulation of the circadian rhythm. In the mammalian cells,
CLOCK/BMAL1 form heterodimers that are positive regula-
tors which activate the transcription of per1, per2, and per3
through a transcription factor binding site, located in the pro-
moter region of the per genes. Per1, per2, and per3 mRNA are
transcribed and move to the cytoplasm, where they are trans-
lated into PER1, PER2, and PER3 proteins. As the levels of
PER1 and PER2 proteins increase and begin to form PER1/PER2
heterodimers, the protein complex enters the nuclei. However,
nuclear translocation of the PER1/PER2 heterodimers is tightly
regulated. Cryptochrome proteins, CRY1 and CRY2, negatively
regulate clock feedback while PER3 enhances translocation of
PER1 and PER2 to the nucleus (Sangoram et al., 1998; Glossop
et al., 1999; Kume et al., 1999; Shearman et al., 2000; Yagita et al.,
2000; Lee et al., 2001). Doubletime (or casein kinase Ie in mouse),
can bind and phosphorylate PER1 and PER2, thereby masking
PER1’s nucleus localization signaling, promoting its retention
in the cytoplasm and thereby its degradation (Glossop et al.,
1999; Xu et al., 2007). In addition, CRY1/CRY2 act as light-
independent inhibitors of CLOCK/BMAL1, thereby suppressing
the per genes transcriptions (Sancar, 2000). This auto-regulatory
feedback mechanism of clock gene expression serves as the basis
for the temporal oscillation of the circadian clock (Hardin, 2006;
Xu et al., 2007). REV-ERBA forms an accessory loop which peri-
odically represses transcription of BMAL1, serving to stabilize the
oscillator (Guillaumond et al., 2005; Reddy and Maywood, 2007).
Although every mammalian cell is believed to express the circa-
dian clock genes, it was held that cells outside the SCN could not
maintain self-sustained circadian oscillation in the absence of the
SCN (Fukuhara and Tosini, 2003). However, parabiosis studies
and isolated cell culture studies clearly indicate that individual
tissues can produce sustained intrinsic circadian rhythms inde-
pendent of the SCN (Nagoshi et al., 2004, 2005; Davidson et al.,
2005; Durgan et al., 2005; Guo et al., 2005). However, signals
from the SCN or an environmental trigger are required to keep
the individual cell rhythms in synchrony with each other. The
mechanism of communication between the SCN and the bone
marrow which produces regenerative cell populations that may
assist in wound healing, the physiologic implications, and means
to exploit circadian rhythms for clinical purposes are currently
being investigated (Bourin et al., 2002; Tsinkalovsky et al., 2005,
2007; Scadden, 2008). There have been shown to be diurnal varia-
tions in granulocyte-colony stimulating factor (G-CSF) that alter
the levels of circulating stem cells (Jilma et al., 1999). Mendez-
Ferrer et al. (2008) showed that the circadian clock regulates
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bone marrow-derived SDF-1α via neuronal β3-adrenergic
receptors.

It is clear that there is increased understanding of the basic
nature by which a rhythmic gene expression can be produced.
It is also clear that, other than output from a central clock, the
manner by which a given peripheral clock is synchronized with
another, or the extent to which a peripheral clock can estab-
lish feedback to the SCN that it is, in fact, synchronized is
not known. At present, the literature does support the premise
that pathophysiologic conditions can both cause uncoupling of
peripheral oscillators and be caused by uncoupling of periph-
eral clocks (Muller, 1999a,b; Young et al., 2001a,b; Willich et al.,
2004; Lee et al., 2005; Fujino et al., 2006; Maywood et al., 2010;
Tsimakouridze et al., 2012; Reddy and Rey, 2014; Robinson and
Reddy, 2014; Wu and Reddy, 2014).

CIRCADIAN EFFECTS AND ACUTE ISCHEMIA/REPERFUSION
INJURY
Ischemia/reperfusion (I/R) injury occurs when an artery that sup-
plies the ventricular tissue becomes obstructed and limits blood
flow, and thus oxygen and nutrients as well as waste removal. If
this occlusion persists, the damage becomes irreversible. If flow
can be reinstated (reperfusion), tissue can be salvaged but there
is ancillary oxidative stress (Anaya-Prado et al., 2002; Kaminski
et al., 2002; Hamacher-Brady et al., 2006). I/R injury is a complex
process involving vascular and endothelial dysfunction, metabolic
and mitochondrial dysfunction, necrosis, apoptosis, and func-
tional deficits, even in tissue without permanent cellular injury
(Jordan et al., 1999; Giordano, 2005; Seal and Gewertz, 2005;
Cohen et al., 2006). A common feature of I/R injury is an
inflammatory reaction, with infiltration of polymorphonuclear
leukocytes (PMN), predominantly neutrophils which have been
causally linked to myocardial damage during reperfusion injury
(Jordan et al., 1999). Release of elastases, lipases, and proteases
and peroxidases from azurophilic granules of neutrophils as well
as reactive oxygen species (ROS) generated by NADPH oxidase
in neutrophil membranes can result in direct myocyte dam-
age (Rossi, 1986; Frangogiannis et al., 1996; Takayama et al.,
2004). The interaction between neutrophils and endothelial cells
is mediated by interactions at the vascular interface of different
cell adhesion molecules including selectins, β2-integrins, and the
immunoglobulin superfamily (Jones et al., 1999). Hypoxia and
cytokines released from ischemic myocardium result in upregu-
lation of these adhesion markers on endothelial surfaces as well
as on the surface of neutrophils, thereby facilitating neutrophil
recruitment to the tissue during reperfusion (Frangogiannis et al.,
1996).

Inflammation plays a key role in the development and pro-
gression of myocardial infarction and neutrophil infiltration is a
defining feature of ischemic cardiac diseases (Jordan et al., 1999).
Reperfusion injury following revascularization procedures is a
major cause of myocardial tissue damage, and, accordingly, reper-
fusion elevates proinflammatory cytokines and infiltration of
neutrophils into the tissue (Welbourn et al., 1991; Frangogiannis
et al., 1996).IL-1β and TNF-α have direct effects on cardiomy-
ocytes (Suzuki et al., 2001; Chandrasekar et al., 2003), and TNF-α
and IL-6 prime inflammatory cells, increasing their response

to soluble proinflammatory mediators such as N-formyl pep-
tides, C5a, and platelet-activating factors (Jordan et al., 1999).
Infiltrated neutrophils cause tissue destruction by release of elas-
tases, proteases, and superoxide radicals (Rossi, 1986; Rotrosen,
1992; Jordan et al., 1999). Many facets of immune function
demonstrate diurnal patterns (Curtis et al., 2014).

Oxidant stress is a finely modulated event in normal phys-
iology. The most common sources of routine oxidant burdens
result from normal metabolic activity and mitochondrial electron
transfer to molecular oxygen in the mitochondria at complexes
I and III of the electron transport chain, producing superoxide
and other ROS. Normally, excess ROS is scavenged and neu-
tralized by the actions of enzymes like superoxide dismutase
(SOD) and glutathione peroxidase (Taniyama and Griendling,
2003). Melatonin, a hormone with well-established circadian
characteristics, has been reported to be a strong regulator of
nitric oxide synthase (NOS) (Aydogan et al., 2006). Attenuated
increases in night-time melatonin levels in hospitalized patients
following angioplasty were correlated positively with increases in
C-reactive peptide (CRP), an acute phase inflammatory marker,
and were predictive of increased risk of event in the next 6 months
(Dominguez-Rodriguez et al., 2006a,b). These findings, suggest-
ing that melatonin is cardioprotective, and are consistent with
reports that melatonin is an anti-oxidant, and stimulates anti-
oxidant gene production (Hardeland et al., 2003). In isolated rat
hearts, melatonin reduced necrosis and infarct size by inhibiting
the mitochondrial permeability transition pore (MPTP) open-
ing which reduced NAD+ and cytochrome c release (Petrosillo
et al., 2009). However, Genade et al. reported that the addition
of melatonin to isolated, perfused rat hearts abolished the car-
dioprotective effects induced by ischemic pre-conditioning (IPC)
(Genade et al., 2006). The effect was attributed to melatonin’s
free radical scavenging ability, diminishing the level of ROS
below those necessary to trigger the cardioprotective response.
Nitric oxide, when produced in normal amounts, is an impor-
tant signaling molecule, but when present in excess amounts may
contribute to protein nitrosylation and ROS generation. In vas-
cular disease, uncoupled activity of NOS, or production of ROS
in excess of endogenous antioxidant capacity, leads to oxidative
stress which turns into an abnormal vascular response (Cohen,
1995; Taniyama and Griendling, 2003; Lyle and Griendling, 2006).
In I/R, a cascade of events occurs that prevents proper NOS-
protein interactions, altering NOS function and NADPH oxidase
activity, thereby altering myocyte function. However, two recent
reviews highlight the fact that there remains significant disagree-
ment regarding whether and how NO and isoforms of NOS
contribute to, or inhibit cardioprotection, particularly in the set-
ting of IPC (Cohen et al., 2006; Jones and Bolli, 2006). Lapenna
et al. reported that glutathione peroxidase activity displayed cir-
cadian rhythm in the heart, which corresponded with sensitivity
to H2O2-induced oxidative myocardial damage (Lapenna et al.,
1992).

Circadian control of homeostatic functions is controlled by
environmental and endogenous influences. Circadian genes have
the capacity to regulate systems that modulate oxidant bur-
dens, and therefore may potentially contribute significantly to the
outcome of I/R or IPC-induced cardioprotection.

www.frontiersin.org October 2014 | Volume 5 | Article 422 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Physiology/archive


Virag and Lust Circadian influences on myocardial infarction

A central element of ischemia is hypoxia. The principal oxy-
gen sensing molecule within the myocardium is hypoxia inducible
factor 1 alpha (HIF-1α). HIF-1α is a basic helix-loop-helix PAS
domain transcription factor. It is present as a cytosolic protein
that is constitutively degraded, but under hypoxic conditions is
phosphorylated, which stabilizes it, enabling nuclear transloca-
tion. In the nucleus HIF-1α forms heterodimers with the aryl
hydrocarbon nuclear translocase (ARNT), or HIF-1β, and binds
to hypoxia response elements in the promoter region of a wide
range of genes, including those regulating angiogenesis vascu-
lar endothelial growth factor (VEGF), metabolism (especially
genes coding for glycolytic enzymes), apoptosis, and vasomo-
tor reactivity (NOS) (Semenza, 2001; Yamakawa et al., 2003;
Giordano, 2005). Of particular note is that there is thought to
be considerable homology in the binding characteristics of Per2
and HIF-1α, such that cross talk has been reported between
the circadian gene CLOCK, and HIF-1α in the regulation of
vasopressin gene (Ghorbel et al., 2003). In addition, Koyonagi
et al. reported that Per2 expression attenuated hypoxic induc-
tion of VEGF expression in a dose dependent manner (Koyanagi
et al., 2003). The presumed mechanism was that Per2 bound
to HIF-1α, thus blocking nuclear translocation and prevent-
ing HIF-1α induced transcription of VEGF. Constitutively sta-
ble hybrids of HIF-1α were cardioprotective in cultured rat
cardiomyocyctes exposed to simulated I/R injury (Date et al.,
2005) and led to increases in several genes also induced by
IPC, including HSP-70. However, HIF-1α also is known to be
overexpressed in heart failure, which could represent a fail-
ure of a sustained attempt to compensate, or it could be that
long-term expression is maladaptive. The literature does not
yet provide a clear indication which is more likely (Giordano,
2005).

Perhaps the most potent cardioprotection is mediated by sig-
naling cascades activated by IPC, and more recently as described
in association with ischemic post-conditioning as well. As reper-
fusion injury is multi-faceted, it appears that biologic precondi-
tioning is capable of inducing protective responses that also are
multi-faceted. Among many mechanisms associated with IPC,
activation of the AKT, MAPK, Mek-Erk1/2 pathways, PKCε, HSP
70, mitochondrial KATP channels, GSK-3β, and HIF-1α regulated
genes all have been implicated (Murphy, 2004; Hausenloy et al.,
2005; Crisostomo et al., 2006; Zhao and Vinten-Johansen, 2006;
Das et al., 2008; Wong et al., 2010). The mitochondria, the source
of ATP for the cardiomyocyte, also generate ROS when the tis-
sue is damaged and so much research is aimed at improving
mitochondrial energy production and reduce apoptosis to reduce
infarct size (Di Lisa et al., 1998; Oldenburg et al., 2002; Krieg
et al., 2003; Marin-Garcia and Goldenthal, 2004; Costa et al.,
2005; Murphy and Steenbergen, 2007). Inhibiting the phospho-
rylation of glycogen synthase beta (GSK-3β) has been shown to
reduce I/R injury but the mechanism have not yet been fully
elucidated (Tong et al., 2002; Gross et al., 2004, 2006, 2007;
Murphy and Steenbergen, 2005; Mozaffari and Schaffer, 2008;
Omar et al., 2010). Possibilities include modulation of mitochon-
drial function via the MPTP and the voltage-dependent anion
channel (VDAC) but further investigation to illuminate the path-
way is needed (Mattson and Kroemer, 2003; Marin-Garcia and

Goldenthal, 2004; Di Lisa et al., 2007; Schwertz et al., 2007; Costa
and Garlid, 2008; Das et al., 2008; Garlid et al., 2009).

The presumed benefit of independent peripheral oscillators is
the ability to anticipate, at the cellular level, changes driven by the
SCN in response to environmental cues. Cardiac tissue expresses
all known isoforms of cry and per genes, with cry2, per1, and
per2 expressed to the greatest degree (Young, 2006). Elements
of functioning circadian oscillators are present in cardiac tissue
cells:

• Vascular endothelium and smooth muscle show significant cir-
cadian variability in functional response (Nonaka et al., 2001;
Kawano and Ogawa, 2005; Tsujino et al., 2005; Walters et al.,
2006; Viswambharan et al., 2007; Yagita et al., 2010) and dys-
function of these cells types are characteristics of I/R injury
(Hazarika et al., 2004; Cozzi et al., 2006).

• Fibroblasts, cells intimately involved in remodeling post-
infarction myocardium (Chintalgattu and Katwa, 2004; Squires
et al., 2005), show robust circadian responses in culture
(Chintalgattu and Katwa, 2004; Nagoshi et al., 2004, 2005;
Squires et al., 2005).

• Per2 also has been shown recently to modulate cytokine release
in some inflammatory cells (Liu et al., 2006), and inflamma-
tion responses are common feature of I/R injury (Welbourn
et al., 1991; Jordan et al., 1999; Albert, 2000; Frangogiannis
et al., 2002; Albert et al., 2003; Hazarika et al., 2004; Cozzi et al.,
2006; Liu et al., 2006).

• Circadian genes appear to regulate a panel of genes encod-
ing for cardiac metabolic enzymes, and it has been postulated
that a major role for circadian genes in heart is to synchro-
nize cardiomyocyte metabolic activity (fatty acid vs. glycolytic
preferences) with dietary meal induced oscillations in plasma
substrate availability. The ability to shift substrates from fatty
acid to glycolytic sources is an important characteristic deter-
mining functional recovery from I/R injury (Stanley, 2004;
Sambandam et al., 2006).

Recent studies examining the role of mPer2 in vivo are conflicting.
We have shown that mPer2-mutant mice had less severe injury in
acute I/R and chronically non-reperfused MI (Virag et al., 2010,
2013). Conversely, Eckle’s group has shown that Per2 is cardiopro-
tective and this tolerance may be by virtue of adenosine-elicited
stabilization of Per2, modulation of metabolism, and/or inflam-
mation (Eckle et al., 2012; Bonney et al., 2013a,b; Eltzschig et al.,
2013). Lipkova et al. showed that Per3 VNTR polymorphism in
humans influences the onset of pain associated with acute MI
(Lipkova et al., 2014). Alibhai et al. recently demonstrated that
post-MI remodeling is worsened by circadian rhythm disruption
(Alibhai et al., 2014).

There is clearly a strong confluence between cascades par-
ticipating in I/R injury and those regulated by circadian genes.
Specific and comprehensive studies examining the effects of each
circadian gene and/or circadian rhythm variations on myocardial
I/R injury, its modulation by IPC, and how these acute responses
might influence the subsequent post-infarction remodeling are
only recently beginning to be addressed.
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CHRONIC MYOCARDIAL INFARCT REPAIR AND CIRCADIAN
RHYTHM GENES
Myocardial infarction is an inflammatory disease. Irreversible
ischemic injury begins within 20 min of severe ischemia in vivo
and is complete within an hour (Holmes et al., 2005). Myocyte,
fibroblast, vascular smooth muscle, and endothelial cell death
progresses as a wavefront from subendocardial to subepicardial
wall (Reimer and Jennings, 1979). Within 24 h, neutrophils infil-
trate from the periphery and macrophages follow within 48 h.
Neutrophils gradually apoptose by 5 days but macrophages persist
in the infarct throughout repair. The breakdown of intercel-
lular collagen fibrils begins by post-translational activation of
matrixmetalloproteinases (MMPs). The increased ratio of MMPs
relative to tissue inhibitors of matrixmetalloproteinases (TIMPs)
propagates this degradation that begins within hours and pro-
ceeds for 3–4 days (Vanhoutte et al., 2006). As the matrix
disintegrates, myocyte slippage occurs (Cleutjens et al., 1995).
Myocyte necrosis, evidenced by contraction bands and pykno-
sis, as well as dead vascular elements are completely phago-
cytosed by macrophages within 2 weeks (Baroldi, 1988; Virag
and Murry, 2003; Holmes et al., 2005). Between 4 and 7 days
granulation tissue, comprised of proliferating fibroblasts and
endothelial cells, forms by migration of these cells from the bor-
der zone into the infarct core (Virag and Murry, 2003). During
this process, a variety of factors are evolved from macrophages,
including chemokines such as MCP-1, cytokines such as IL-1
and G-CSF, and ROS such as nitric oxide and superoxide anion
(Byrne et al., 2003; Kumar and Jugdutt, 2003; Nian et al., 2004;
Frangogiannis and Entman, 2005; Frangogiannis, 2006; Maulik,
2006). These molecules can also cause considerable damage to
surrounding viable cells and result in further spreading of the
infarct. By 2 weeks, the young scar is characterized by the par-
allel organization of fibroblasts and predominance of Type I
fibrillar collagen (Sun et al., 2002; Virag and Murry, 2003). As
the matrix becomes increasingly more fibrotic, endothelial cells,
fibroblasts and macrophages begin to apoptose, resulting in vas-
cular regression (Frangogiannis et al., 2002; Virag and Murry,
2003). Further, perivascular fibrosis and disarrayed hypertrophy
will not be balanced by the coronary blood flow reserve and
the consequent hypoperfusion may cause myocardial ischemia.
Progressive thinning and stretching of the non-contractile scar
tissue continues, resulting in increased chamber dimensions
and increased wall stress. Subsequent volume-overload hyper-
trophy of the surviving myocardium ensues, but this is insuf-
ficient to maintain pressure development. Ultimately, this leads
to inadequate pumping and overt heart failure (Pfeffer and
Braunwald, 1990; Opie et al., 2006). Cardiac hypertrophy and
failure also entail dysfunction of mitochondrial energy and sub-
strate metabolism. Impaired mitochondrial function is associated
with a decline in high-energy phosphates, reduced oxygen con-
sumption, and decreased expression and activity of complexes
I through IV of the respiratory chain. Therefore, the signaling
cascades described above that are active during precondition-
ing should also be investigated as remodeling progresses. Since
circadian clocks in peripheral tissues can disturb and be dis-
turbed by genetic and/or lifestyle- related pathologies, modu-
lation of these mediators may be potentially exploited as novel

chronotherapeutic targets for treatment and prevention of these
conditions.

CONCLUSION
A complex sequence of various cellular activities orchestrate
myocardial infarct injury and healing. The importance of circa-
dian genes and/or rhythms is also evident, however, the precise
mechanisms are only beginning to be addressed. In depth analy-
ses of macrophage, endothelial cell, and fibroblast behavior in vivo
in both the acute and chronic phases of infarct repair in geneti-
cally modified mice (tissue-specific and global) as well as carefully
constructed approaches to sort out cause and effect with respect
to circadian genes, rhythm variations, and injury will illuminate
signaling cascades that may potentially be exploited to yield more
efficacious myocardial infarct healing. This information can then
be applied to mitigate myocardial infarction in the presence of
pathologies and other confounding variables that may be involved
in governing disease severity and progression.
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