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Abstract

Structural variation (SV) has been reported to be associated with numerous diseases such as cancer. With the advent of next
generation sequencing (NGS) technologies, various types of SV can be potentially identified. We propose a model based
clustering approach utilizing a set of features defined for each type of SV events. Our method, termed SVMiner, not only
provides a probability score for each candidate, but also predicts the heterozygosity of genomic deletions. Extensive
experiments on genome-wide deep sequencing data have demonstrated that SVMiner is robust against the variability of a
single cluster feature, and it significantly outperforms several commonly used SV detection programs. SVMiner can be
downloaded from http://cbc.case.edu/svminer/.
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Introduction

Genomic structural variation refers to the rearrangement,

duplication, deletion, or insertion of DNAs in the human genome

[1–4]. Recent studies have shown that in addition to single-

nucleotide polymorphisms (SNPs), genomic structural alterations

may be responsible for much of the phenotypic variation that

currently exists amongst human populations. These genomic

structural variants are ubiquitous and some are likely responsible

for increased susceptibility to diseases such as cancer [5–7], as well

as other conditions such as obesity and infertility [7,8]. Given the

impact of structural variation on individuals, locating and

mapping these regions can provide better understanding of the

genetic mechanisms that define phenotypic differences and those

that can potentially trigger diseases and disorders [4]. Among the

platforms used to detect structural variation are array comparative

genomic hybridization (aCGH), SNP genotyping arrays, and high

throughput next generation sequencing (NGS). Sequencing

technologies (e.g., Illumina Genome Analyzer, ABI SOLiD, and

Roche’s 454) not only allow for genome-wide screening of

structural variants at the nucleotide resolution [4,9,10], but also

allow for detection of different types of structural variation (SV)

events using paired-end sequencing (for reviews, see Refs [11–13]).

To detect structural variants using paired-end NGS data,

millions of paired sequence reads of roughly known lengths are

first generated from a donor genome. For a given read pair, the

distance from a read to its mate is known as the insert size, and

these paired reads are computationally mapped to specific

locations on a reference genome. When a pair of reads does not

overlap with any structural variant, the mapped distance between

them should approximately be the same as the library insert size

and should have a different orientation. On the other hand, when

the pair does overlap a structural variant, the mapping distance will

deviate from the insert size or its orientation will be different from

that of a normal pair of reads, or both, depending on the types of

structural variants. One advantage of using paired-end sequence

data is that it allows for detection of many types of SVs. Read pairs

with normally mapped distances and correct orientation are

known as concordant pairs, else the pairs are discordant and suggest a

possible variant. The relationships between discordant pairs and

three types of possible structural variants are shown in Figure 1.

Most existing computational approaches were developed based

on mapping distance and/or orientation for high coverage data

from a single genome [11–13]. A few groups [14–16] have

provided the first studies in which a human genome was

sequenced using next generation technology, and called structural

and other genetic variation, mainly using their in-house tools. In

addition, many algorithms have been proposed recently [12].

Hormozdiari et al. [17] presented three algorithms for detecting

structural variation in a donor sequence using NGS technology

based on two different formulations. Their first formulation is

called the ‘‘Maximum Parsimony Structural Variation’’ (MPSV)

problem, the goal of which is to compute a unique mapping for

each discordant read pair in the reference genome such that the

total number of implied structural variants is minimized. Two

algorithms (named VariationHunter_unweighted and Variation-

Hunter_weighted, or VHU and VHW for short) were developed,

both of which were based on an approximation algorithm for the

Set-Cover problem. Their second formulation aims to calculate

the probability of each event and an iterative algorithm was
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proposed (named VariationHunter_Probabilistic or VHP). They

further developed their algorithms for transposons [18]. Lee et al.

[19] presented an algorithm called ‘‘MoDIL’’, which primarily

focuses on detecting insertions and deletions of small sizes ranging

from 20 to 50 base pairs (bps). The main idea is to compare the

distribution of insert sizes in the library to the distribution of the

observed mapped distances, utilizing an iterative Kolmogorov-

Smirnov (KS) test. MoDIL can determine heterozygosity of

deletions by observing the distribution of mapped distances within

a variant cluster, though it does not consider read depth for this

process. Chen et al. [20] presented two algorithms for detecting

structural variation using NGS technology. The first algorithm,

BreakDancerMax, can potentially detect large deletions, large

insertions, inversions, and translocations. Their second algorithm,

BreakDancerMini, focuses on small indels that are between 10–

100 base pairs in length. BreakDancerMax identifies SV events by

grouping together overlapping discordant pairs of a certain type,

and the region is called as a structural variant based on a

confidence score that is a function of the number of discordant

pairs, the coverage of the reads, and the size of the region defined

by the discordant pairs. The BreakDancerMini algorithm, which is

in principle similar to the MoDIL algorithm [19], locates small

indels by dividing the genome into non overlapping windows and

comparing the distribution of mapped distances for read pairs in

the window with the distribution of mapped distances in the entire

genome using the KS test.

However, in most cases, it is not enough to call a structural

variant based only on these two characteristics (i.e., mapping

distance and orientation). First of all, the distribution of the insert

size is usually estimated. In many cases, it is difficult to distinguish

whether a deviation of mapping distance from the mean insert size

is due to a structural variant or due to the fact that the segment of

this particular pair happens to be far from/close to the mean. In

addition, sequencing errors and mapping uncertainties all add to

the complexity of identifying structural variants. The aforemen-

tioned challenges are what motivate existing approaches

[17,19,20] that address this problem.

In this paper, we present a model-based approach for SV

detection named SVMiner. SVMiner uses as input the mapping of

DNA paired-end reads to a reference sequence, which can be

obtained using existing mapping tools (e.g., MAQ [21] and BWA

[22]). It consists of four steps, namely, a) classification of paired-

end reads into different categories according to their separation

distances and orientations; b) candidate SV generation by

grouping overlapped read pairs of the same type and similar

lengths that are in close proximity; c) feature collection based on

types of SV candidates; and d) a model-based clustering approach

to separate candidates into final predicted events or normal

regions. SVMiner has three distinct features: 1) in addition to

separation distances and orientations, SVMiner automatically

collects new features for different types of events; 2) SVMiner

further utilizes these new features for classification and can predict

heterozygosity for deletion events; 3) the model-based clustering

approach also reports membership probabilities, which could be

interpreted as confidence scores. We implement the approach and

apply it on two recently generated datasets [14] as well as a

simulated dataset. In addition, we also apply the method to a

dataset of the same individual, but with a longer read length. In

our experiments, we investigate the effect of mapping tool, insert

size, read length and assess its capability in reporting heterozygous

deletions and event membership probabilities. We compare our

results with those from the original papers, experimentally

validated events of the same sample using a different technology

[23], results from the 1000 genome project [3,24], as well as

prediction results of three popular programs for detecting SV

using paired-end reads: BreakDancerMax [20], VariationHunter

[17], and MoDIL [19]. Although the ground truth of structure

variant events is generally not available for real data, we construct

several highly reliable event sets based on 1) the reported results

from the original papers; 2) predictions that overlap with events

from the 1000 genome project; 3) events predicted by at least two

independent algorithms. Based on these reliable event sets,

SVMiner significantly outperforms all the three approaches in

detecting deletions. Furthermore, it achieves much higher

accuracy than MoDIL in predicting heterozygous deletions.

Simulation results on deletions also show that SVMiner has the

best overall performance. For inversions, the overlaps among

different programs are low, indicating it is much hard to detect

inversions for all the programs tested.

Results

Outline of the algorithm
SVMiner takes as input a set of alignment results and outputs a

list of likely SV events with probability scores. It is worth

mentioning that there exist many different mapping algorithms

with different characteristics, and in principle, mapping results

from any algorithm can be used in our approach. In our

implementation, SVMiner can take alignment results from

MAQ [21] and BWA [22], or any other mapping tools that

support BAM format. As previously stated, SVMiner consists of

four steps. Firstly, the insert size and its standard deviation will be

estimated based on data and each pair will be classified based on

either 1) its separation distance relative to the insert size or 2) its

orientation. Table 1 summarizes all different types of read pairs. In

this study, we only focus on deletion and inversion events, thus

only discordant pairs for deletions and inversions will be studied.

Secondly, SVMiner generates SV candidates by grouping

overlapped discordant read pairs of the same type and similar

lengths that are in close proximity. Thirdly, for each type of

candidate SVs, we define a feature space to be used in step 4 by

our model-based clustering method. Finally, we use a model-based

clustering approach to separate candidates into predicted variants

or predicted regions of no variation. The first two steps of our

algorithm are shared by many existing approaches. Our major

contribution is to infer variant heterozygosity, to develop a

procedure to automatically collect different features for different

types of SV events (step 3) and to assign membership probabilities

for each candidate SV (step 4). Feature spaces are different for

Figure 1. Structural variants and the read pairs that support them. Pairs from a donor genome ‘‘D’’ have distinct characteristics when
mapped to a reference genome ‘‘R’’ for different types of structure variants.
doi:10.1371/journal.pone.0052881.g001
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different types of events, but mainly based on the number of

discordant pairs, the coverage of normal pairs, and the number of

singletons (i.e., only one read of a pair being mapped to the

reference), with the aim to distinguish real events from false ones

and to distinguish heterozygous events from homozygous ones.

The exact definitions of features for deletions and inversions will

be discussed in the section of Materials & Method.

Once a feature set is defined and collected for each candidate

SV, each candidate is viewed as one observation generated from a

mixture distribution, which can then be predicted as either a true

variant, or a false event (i.e., region of no variation). For a

predicted true event, there are also two possibilities: a homozygous

event where both homolog chromosomes/haplotypes bear the

same type of SV, or a heterozygous event where only one

chromosome/haplotype has the event. We construct features such

that for different types of events (homozygous, heterozygous and

normal), they exhibit different characteristics and represent

different mixture components. Therefore, in our framework, the

number of mixture components, G, is naturally defined as 3.

However, for inversions, the data is so noisy that one cannot really

distinguish heterozygous events from homozygous events in

practice. Therefore, we only infer heterozygosity for deletions.

For inversions, we consider a candidate SV can be predicted as

either a true event or a normal region (i.e., G = 2). For our model-

based approach, we adopt the one described in [25]. More details

of the approach can be found in the Materials & Methods section.

Experimental design
We evaluated our method on three real datasets as well as on

simulated datasets for both deletion events and inversion events,

and mainly compared our approach with three existing algo-

rithms, i.e., MoDIL, BreakDancer, and VariationHunter. The

three real datasets are an African male (NA18507) whole genome

data with read lengths of 36–41 bps and an insert size of 200 bps

[14] (dataset I), the same sample (NA18507) with different read

lengths (,100 bps) and different insert size (,500 bps) (dataset II),

and a Caucasian female (NA07340) chromosome X data with read

lengths of 30–35 bp and an insert length of 130 bps [14] (dataset

III). The reads for these datasets were generated using the Illumina

Genome Analyzer II, and downloaded from the NCBI short read

archive (NA18507) and European Bioinformatics Institute

(NA07340). For dataset III, the original study [14] also predicted

homozygous and heterozygous deletions by manual examinations,

which therefore was used to assess capability of SVMiner in

detecting heterozygous deletions. The simulated datasets were

generated following the procedure presented in the Materials &

Methods section and were used in testing the functionalities of the

software and in comparing with other tools. For deletions, we

evaluated the performance of SVMiner by examining its results

using different mapping tools, the effect of using membership

probabilities as a reliability measure, its prediction on heterozy-

gosity, and the effect of different insert sizes and read lengths. We

compared its results with the results reported in the original papers

as well as results reported from the three existing programs,

namely, BreakDancer, VariationHunter and MoDIL. The three

programs were chosen not only because of their functionality,

popularity and availability, but also because they have been used

in studying dataset I. Not all programs were tested on all datasets

or all parameter settings, because 1) programs may have some

special requirements, which makes some experiments unnecessary

or infeasible (e.g., VariationHunter uses its own mapping tool;

some other programs do not distinguish heterozygous deletions

from homozygous ones); 2) due to the huge amount of sequence

data, computational resources limit the number of possible

combinations. When comparing results from two programs on a

dataset or comparing predictions with events in the reliable sets,

we examine the overlaps between corresponding events. Two

events are considered the same one if they have at least 50%

reciprocal overlap with each other.

Results using different alignment tools
Structural variation prediction critically depends on the quality

of mapping results. Therefore, we first tested SVMiner on dataset I

using two alignment tools: BWA and MAQ. MAQ provides three

types of mapping quality scores for paired-end reads: a single-end

mapping quality score for each read, a mapping quality score (Q)

for each pair, and an alternative mapping quality score (AltQ) for

each pair [21]. The single-end score of each read is a measure of

mapping quality of the read, defined as 10X ({log10P), where P is

probability that the read is erroneously mapped. AltQ is defined as

the minimum of the two single-end mapping quality scores. The

mapping quality score Q for a pair of reads is defined differently

for different types of read pairs. For properly mapped pairs (i.e.,

uniquely mapped pairs with correct orientations and a proper

mapping distance), it is the summation of the single-end mapping

quality scores of both ends. For all other cases (including

discordant pairs or pairs with multiple mapping positions), it is

defined as the minimum of the two single-end mapping quality

scores, which is the same as AltQ in such a case. BWA only

provides one mapping quality score for each pair, which is more or

less close to the definition of mapping quality score of each pair in

MAQ. Although the quality scores from the two programs are

conceptually related, they do not always correlate well (Figure S1).

To retain highly reliable mapped reads, a threshold is normally

used to filter out low quality reads. We first investigated the effect

of both Q and AltQ for MAQ, and the mapping quality score for

BWA on mapping results.

In terms of mapping results of the two programs, around 96.5%

(MAQ) and 98.1% (BWA) reads out of total 3.77B reads have been

mapped to the genome (Table 2). Among them, BWA has

,72.4% of mapped read pairs with quality score . = 30; MAQ

has about 76.3% read pairs with mapping quality score Q. = 30.

However, if one uses the alternative quality score of MAQ, only

49.5% mapped read pairs have AltQ. = 30. The number of

discordant pairs also varies significantly (from 414 K to 797 K) for

these thresholds (Table 2). In addition to algorithmic differences,

another possible reason is that the two mapping tools have

different error models in calculating mapping probabilities, and

the two quality scores cannot easily map to each other. As noted

Table 1. Classification of read pairs.

d,m-x*s m-x*s#d#m+x*s m+x*s#d
Different
Chromosomes

FR I N D, Tra Tre

RF Ta Ta Ta, Tra Tre

FF Iv C

RR Iv C

The relationship between paired-end reads and structural variants according to
a partition based on their separation distances and orientations. The meanings
of symbols: F: forward read; R: reverse read; d: separation distance; m: insert size
(mean); s: standard deviation; x: a user-defined parameter; N: normal; D:
deletion; I: insertion; Iv: inversion; Ta: tandem duplication; Tra:
intrachromosomal translocation; Tre: interchromosomal translocation; C: other
complex structure event.
doi:10.1371/journal.pone.0052881.t001
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by Li et al. [22], the actual quality score of MAQ tends to be

underestimated, while the quality score of BWA tends to be

overestimated, although the concept of the mapping quality scores

of both alignment tools is the same. Therefore, using different

mapping tools and different (or even the same) thresholds for

quality control, the mapped results, which are also the inputs to

our program SVMiner, are different. It is expected that the results

of SVMiner will also be different. Nevertheless, a significant

majority of the events are still the same. For example, 4384

deletions are in common between the results using BWA with

quality scores$30 (6279 deletions in total) and the results using

MAQ with quality scores Q$30 (5209 deletions in total). For

MAQ with alternative mapping quality score AltQ$30, our

approach identified 5251 deletions. The numbers of total

candidate events and the numbers of predicted homozygous

deletions, heterozygous deletions and normal events based on the

three thresholds of the two alignment tools are shown in Table 2.

Although the numbers of initial candidates based on MAQ with

two different thresholds differ much, the numbers of final

predicted events are close (Table 2). However, the numbers of

homozygous/heterozygous events are quite different (Table 2).

This is mainly because when using the mapping quality score Q,

more concordant read pairs, which may not be of high quality and

would be removed when using AltQ, will be retained, which result

in more concordant pairs across the genome, including candidate

regions. SVMiner therefore predicted more heterozygous events.

The results of SVMiner are inevitably affected by the results of

alignment tools. Nevertheless, the inconsistency mostly happens

for events with weak signals. From this point of view, SV

prediction approaches that can provide reliability scores, such as

SVMiner proposed here, are desirable, because one can poten-

tially use the reliability score to filter low quality events. We

decided to use mapping results from BWA for the remaining

experiments, mainly because of its efficiency.

Membership probabilities as reliability scores
The membership probabilities provided by SVMiner for each

predicted event can be used as reliability scores to rank and filter

predicted events. Figure 2A displays classification results on

dataset I and Figure 2B shows the corresponding prediction

uncertainty score of each data point, which is defined as one minus

the maximum of the three membership probabilities. The general

shape of the clusters suggests that SVMiner results are generally

robust to the variability amongst feature values within the same

class. Consequently, classification results tend to be robust against

differing levels of sequence coverage. It is also apparent that a

candidate variant with accentuated features is very likely to be

predicted as a true variant. This can be seen from the uncertainty

plot. Points of higher uncertainty tend to accumulate near the

cluster boundaries, especially near the origin. Because data points

near the origin have low concordant pair depths and low numbers

of discordant pairs, they have reasonably moderate probabilities of

being any event. In particular, it is difficult to separate

heterozygous predictions from normal predictions in these regions

(Figure S2). Otherwise, Figure S2 shows that the distributions of

features of the three different types of events generally agree with

expectations. We further examined the membership probability

distributions of predicted normal events. In general, the member-

ship probabilities for data points with weak feature values are

lower than those with prominent features (Figure S3). This

suggests that one can utilize our reported membership probabil-

ities in distinguishing high quality events from events with high

uncertainly. A simple threshold on the maximum membership
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probability can be adopted to return only events with high

confidence.

Genotyping results
Among all the other methods considered, MoDIL [19] is the

only tool that can predict heterozygous deletions. However,

MoDIL and SVMiner are not directly comparable in the sense

that MoDIL was originally designed to detect small to medium

sized deletions. Nevertheless, to evaluate the performance of

SVMiner in predicting heterozygous deletions, we compare the

results of SVMiner and MoDIL on three different datasets:

genome-wide data of specimen NA18507 (dataset I), chromosome

X data of specimen NA07340 (dataset III) and a simulated dataset.

For dataset I, we directly obtained the results from the authors of

MoDIL (who used mrFast as their mapping tool). Because MoDIL

focused mostly on detecting small to medium size indels

(20,50 bps), only a small portion (6.3%) of their 10,397 reported

deletions with high confidence have sizes greater than 50 bps and

may directly comparable with our results. Among them, 380

deletions called by MoDIL overlap (50% reciprocal) with events

predicted by SVMiner. Figure 3 (top) illustrates the number of

overlaps of two different types of deletion events. Among the

overlapped events, results show the two programs have a high

degree of consistency. For example, for homozygous deletions, 269

common events were found by SVMiner (total 305 predictions)

and MoDIL (total 280 predictions). For heterozygous deletions, 64

common events were found by SVMiner (total 75 predictions) and

MoDIL (total 100 predictions). SVMiner and MoDIL had a

higher degree of mutual overlap for homozygous deletions as

compared to heterozygous deletions, which is expected because

heterozygous events are more difficult to distinguish from normal

events.

One should notice that MoDIL may not be able to precisely

predict the two breakpoints of an event. In the result file of

MoDIL, both the size of an event and its start/end positions (i.e.,

breakpoints) were given. However, the distance between the two

breakpoints of an event in general is much greater than the event

size, which may affect values of those features, based on which

MoDIL made its predictions. We examined some of the

inconsistent calls by SVMiner and MoDIL, they often disagree

on the two breakpoints. Figure S4A shows an example of an event

called by SVMiner as a ‘‘homozygous deletion’’, but a ‘‘hetero-

zygous deletion’’ by MoDIL. According to the breakpoints of

SVMiner (dashed lines), there are apparently no concordant pairs

within the deletion region, therefore, it concluded that this event is

a homozygous deletion. However, according to the predicted

breakpoints of MoDIL (dotted lines), this region included enough

concordant pairs for the program to predict this event as a

heterozygous deletion (Figure S4B). Another possible reason of

inconsistency might be due to the fact that two programs had used

Figure 2. Predicted deletion events and their uncertainty
scores. (a) The clustering results of the candidate deletions of dataset
I (NA18507). (b) Plot of uncertainty for predicted results from the same
dataset. Uncertainty is defined as 12z, where z is the greatest of the
class membership probabilities after clustering. The larger, darker circles
indicate lower membership probabilities for the given data point. The
highest degrees of uncertainties are around cluster boundaries and
around the origin where the data features are not prominent enough to
allow for a more confident prediction. Data points with prominent
features (i.e. high concordant pair depth and/or high number of
discordant pairs) are generally classified with high confidence. (c) The
clustering results of the candidate deletions of dataset III (chromosome
X of NA07340).
doi:10.1371/journal.pone.0052881.g002
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different mapping tools, which is known to affect the calling results

as shown earlier.

Dataset III was originally studied by Bentley et al. [14] and the

authors manually separated the predicted 77 deletion events into

49 homozygous and 28 heterozygous deletions, which should be of

high quality and therefore were regarded as the ‘‘ground truth’’ in

comparing SVMiner and MoDIL in this study. Running both

programs on this dataset, SVMiner predicted 55 homozygous

deletions and 42 heterozygous deletions (Figure 2C), while MoDIL

predicted 12 homozygous deletions and 55 heterozygous deletions.

A predicted event is treated as a true positive if the region has at

least 50% reciprocal overlap with one of Bentley’s events.

Although 30 out of 67 predictions made by MoDIL overlap with

true events, the number of correctly predicted genotypes is very

low, with 5 correctly predicted homozygous genotypes and 9

correctly predicted heterozygous genotypes. In contrast, 69 out of

97 predictions made by SVMiner overlap with the true events. In

particular, SVMiner correctly predicted 41 homozygous events

and 21 heterozygous events. Overall, SVMiner significantly

outperformed MoDIL on this dataset (Table 3). The F_scores of

SVMiner range from 0.60 to 0.79 when evaluating genotype

predictions separately or jointly, however, the F_scores of MoDIL

range from 0.16 to 0.42.

In addition to these two real datasets, we also compared

SVMiner and MoDIL on a simulated dataset. The data

generation procedure was described in the Materials and Methods

section. Briefly, 190 deletions (94 homozygous and 96 heterozy-

gous) of varying sizes (ranging from 100 bps to 75 kbps in length)

are embedded in one chromosome. In total, MoDIL identified

1123 deletions, which include many small deletions that are false

positives. Among all them, only 137 predictions with high

confidence overlapped with the embedded deletions. Among the

137 predictions with high confidence, 3 were predicted as

homozygous, and 134 were predicted as heterozygous (Table 3).

All 3 homozygous predictions overlapped with embedded

homozygous deletions. However, only 73 of the 134 heterozygous

deletion predictions overlapped with embedded heterozygous

deletions, while the remaining 61 overlapped with embedded

homozygous deletions. In contrast, SVMiner predicted a total of

153 deletions, all of which overlapped with embedded deletions,

yielding a precision of 100%. In terms of homozygosity, out of the

77 predicted homozygous deletions, 75 of them overlapped with

embedded homozygous deletions and the other two overlapped

with embedded heterozygous events. For the 76 predicted

heterozygous deletions, 75 of them overlapped with embedded

heterozygous deletions and the other one overlapped with an

embedded homozygous deletion. On this simulated dataset,

MoDIL not only predicted many false positives, but also had a

great tendency to misclassify true heterozygous deletions as

homozygous ones. A precision and recall comparison of SVMiner

to MoDIL can be found in Table 3.

Read length and insert size
With further development in technology, the length of sequence

reads has increased over the years for many platforms. We

therefore evaluate how experimental parameters such as read

length and library insert size may affect the discovery of structural

variants. This sample (NA18507) we have analyzed earlier has

been sequenced several times using Illumina platforms. In our

experiments, we considered two such datasets. In addition to data

set I, which consists of paired-end short reads of 36,41 bps and

an average insert size of 200 bps (SRA000271), we tested

SVMiner on the second dataset that consists of paired-end reads

of 100 bps and an insert size of 500 bps (SRX016231). From this

long read data (dataset II), SVMiner identified 6236 deletion

events with 2550 homozygous deletions and 3686 heterozygous

deletions. The overall overlap rate between results from the two

datasets is around 44% (Figure 3, bottom panel, left). Intuitively,

the overlap rate is not that high, which may be due to the

differences in the datasets using different platforms, or due to the

limitations of our algorithm. We further tested another program

BreakDancerMax on both datasets. It turns out that the overlap

rate of BreakDancerMax (34%–37%) is even lower (Figure 3,

bottom panel, right). In fact, the level of consistency between the

two approaches on the same datasets is much higher than the level

of consistency of either algorithm on the two different datasets. For

example, using the dataset with short reads, the fraction of

overlapped events predicted by the two approaches is around

84%. After visual inspections of some predicted regions using IGV

[26], we concluded that the two datasets have somewhat different

mapping results for discordant reads. For example, Figures S5 and

S6 provide examples of events detectable by one type of data but

not by the other. Also, we found several instances where mapping

qualities of reads in a possible deletion area are all zero in one

dataset, while the other dataset has plenty of high quality

discordant reads. One possible explanation is that in addition to

the large deletions, there are possible small indels, which affect the

mapping quality score differently for reads with different lengths.

Another possibility is that smaller deletions may not be detectable

using longer reads with a large insert size. Indeed, when examining

event size distributions, many small events were only detected by

shorter read data (Figure 4). This is because for longer insert

datasets, it is more difficult to detect smaller deletions due to

fluctuations in read pair insert lengths. Overall, our results

illustrate that the capability of any computational method in

detecting deletion events is constrained by technological platforms

and mapping results. For paired-end sequence data, read length

Figure 3. Overlaps between SVMiner and MoDIL, and between
SVMiner and BreakDancerMax on sample NA18507. Top:
summary of overlaps between SVMiner and MoDIL for homozygous
deletions (a) and heterozygous deletions (b). Bottom: overlaps between
shorter read data and longer read data for SVMiner (c) and Break-
DancerMax (d).
doi:10.1371/journal.pone.0052881.g003
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and insert size may affect the final set of detectable structural

variants. To see the individual effect by decoupling read length

and insert size, we simulated three libraries with the only

differences are insert sizes (200, 500, 5 k) and tested SVMiner

on these datasets with the same set of 190 embedded deletion

events. Results show that small to medium sized deletions may not

be detected using data with large insert size (Table S1). This is

mainly because for small events, both features will be affected by

the large insert size. Other features such as number of singletons

may provide more robust signals in this case.

Comparison with other approaches
Many approaches have been developed for calling structure

variants. In addition to MoDIL, we chose to compare our results

mainly with BreakDancerMax(BDM) and VariationHunter-

Weighted (VHW) on specimen NA18507, which has been studied

intensively recently by a few groups [14,17,20,23]. The three

variants of VariationHunter are not independent. Only VHW was

used to construct reliable dataset R_II later. Therefore, only

results from VHW were considered in this subsection. We

compared our results to theirs, either by running their methods

on the same datasets, or by comparing their published results to

ours. Because no ground truth is available for this dataset, it is

difficult to directly compare results from different algorithms. We

constructed three different sets of highly reliable deletion events,

and compared the three approaches by treating these reliable set

as ground truth. First, the 1000 genome project (1KG) has recently

released a set of high quality population level structural variant

polymorphisms based on results predicted by many different

algorithms [3,24]. If any algorithm tested here detects a deletion

from the sample we have that is overlapped with an event in the

1KG set, it is very likely that the event is a true event. Therefore,

we first calculated the intersection of the 1KG set with the

predicted events from each of the three methods, and then took

the union of these three intersections as the true events (denoted as

R_I), with the understanding that the final set is most likely a

proper subset of the true events from this sample. The second set

(R_II) consists of all the events detected by at least two of the three

algorithms, based on the belief that if an event is detected by at

least two algorithms, it is more likely to be a true event. The third

set (R_III) consists of the validated events from Kidd et al. [23].

However, one should notice that Kidd et al. used a very different

technology (large fosmid clones), and it is only effective for large

events. Therefore, the total number of deletions in R_III is only

155. Given the constructed sets of reliable events, we assessed the

precisions (correct predictions out of all predictions) and recalls

(correct predictions out of all true events) of each method, and

compared their F_scores (the harmonic mean of precision and

recall). Because neither BreakDancerMax nor VariationHunter-

Weighted could separate heterozygous deletions from homozygous

deletions, we combined these two groups together and investigated

the overall prediction performance, which is given in Table 4.

The total numbers of deletion events reported by the three

methods vary noticeably, ranging from ,6200 to ,8900. This

may be due to the fact that in addition to differences in different

algorithms per se, other factors such as differences in mapping

tools, limitations on the maximum sizes of events, may also

contribute to the discrepancy. Based on R_I and R_II, SVMiner

significantly outperformed both BreakDancerMax and Variation-

HunterWeighted with the highest F_scores (SVMiner: 0.61 &

0.87, BreakDancerMax: 0.54 & 0.65, VariationHunterWeighted

0.53 & 0.71, more details can be found in Table 4). SVMiner and

BreakDancerMax had similar numbers of predictions, but Break-

DancerMax had a lower precision and a lower recall on both R_I

and R_II. VariationHunterWeighted predicted many more events,

therefore, had better recalls. But it suffered from low precisions.

Because the total number of events in R_III is very small, the

number of overlaps from any approach is small (11 to 13). R_III

cannot be used in distinguishing the three approaches.

We also compared these three methods on a simulated data

with known ground truth. As mentioned earlier in comparing

SVMiner and MoDIL, SVMiner predicted a total of 153

deletions, all of which are from the 190 embedded deletion

events, yielding a precision of 100% and a recall of 80.5%.

BreakDancerMax detected 147 events and all of them are

embedded events. VariationHunter predicted 185 events, of which

177 were embedded events. Overall, for the simulated data,

SVMiner is slightly better than BreakDancerMax, while Var-

iationHunter reports some false positives, but with gains in recalls

in this case.

Inversion events
To test the capability of SVMiner in detecting inversions, we

run the program on two datasets: dataset I and a simulated

dataset. For dataset I, the total number of predicted inversion

events is much smaller than the number of deletions. SVMiner

initially identified 263 candidates, of which 148 were predicted as

inversions after the clustering phase of our algorithm. Since the

original paper by Bentley et al. did not report inversion results and

coordinates of predicted inversions were not available for the

BreakDancer algorithm, we could not compare our findings with

theirs. The numbers of inversions predicted by three variations of

VariationHunter vary greatly (from 181 to 504). The overlaps of

our predicted events with those by VariationHunter are low

(Table 5), which reflects that inversions are much harder to

capture. The three variants of VariationHunter have large number

of overlaps, because these three algorithms are not independent

and share a common component. Neither SVMiner nor

VariationHunter has detected many events reported by Kidd et

al. We further investigated the impact on sensitivity caused by 1)

the mapping ambiguity, 2) the filtering step described in the

Figure 4. Size distributions of events detected using short and
long read data. The distributions of events sizes detected by SVMiner
based on short and long read datasets (Red: based on long reads but
overlap with events based on short reads; green: based on short reads
but overlap with events based on long reads; blue: events detected
only from long reads; orange: events detected only from short reads).
doi:10.1371/journal.pone.0052881.g004
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Materials and Methods section and 3) the final classification step.

None of the steps significantly affected the number of overlaps,

which suggests that the discrepancy between results by SVMiner

(as well as VariationHunter) and results from Kidd et al. primarily

is due to the differences in technologies used by the studies.

Capability of computational approaches is limited by technologies

that generate data. Figure 5 shows classification results by

SVMiner, which illustrate that events with high singleton coverage

and/or large numbers of discordant pairs will likely be classified as

inversions and events that cluster near the origin tend to be

labelled as normal events (i.e., not inversions). The results are in

line with expectations because true events should have high level of

singleton coverage and/or large numbers of discordant pairs while

regions of no variation will likely not have inverted discordant

pairs or accumulations of singleton reads. To further evaluate the

performance of the proposed algorithm, we compared the results

of three algorithms (SVMiner, BreakerDancerMax and Varia-

tionHunterWeighted) on a simulated dataset. SVMiner predicted

a total of 189 inversions, and 170 of them overlapped with the 202

embedded events (precision: 89.9%, recall: 84.2%,

F_score = 87.0%). BreakerDancerMax predicted 214 events and

148 of them overlapped with embedded inversions (precision:

69.2%, recall: 73.3%, F_score = 71.2%). VariationHunter-

Weighted only predicted 41 inversions of which 34 overlapped

with the true events (precision: 82.9%, recall: 16.8%,

F_score = 28.0%). We had made every effort to run Variation-

Hunter correctly and used the same configuration as the one when

analyzing real data, but it is unclear why the recall was so low.

Overall, SVMiner performed the best on this dataset.

Discussion

Our results show that SVMiner is well suited for detecting both

homozygous and heterozygous deletion events. It is more difficult

to assess the efficacy of inversion detection, but SVMiner’s

detection of the inversion events in the simulated dataset lends

credence to the choice of feature values for detecting inversions

within the clustering framework. Of the methods we compared to

SVMiner, only MoDIL had the ability to detect heterozygous

deletions. Furthermore, not only did SVMiner clearly outperform

MoDIL on both the chromosome X dataset and the simulated

dataset, but the time needed for the analysis was much shorter for

SVMiner. Since MoDIL is not suited for detecting large deletions,

it is possible that its performance suffered because of this

limitation.

Regarding the performance of SVMiner on NA18507, the

results suggest that one can have high confidence in SVMiner’s

predictions. Compared to BreakDancer and VariationHunter,

Table 4. Comparison of deletion results from three different approaches.

Constructed set (#) method # predictions # true positives Precision recall F-score

R_I (3412) SVM 6279 2947 0.469 0.864 0.608

BDM 6354 2614 0.411 0.766 0.535

VHW 8897 3250 0.365 0.953 0.528

R_II (5504) SVM 6279 5114 0.814 0.929 0.868

BDM 6354 3873 0.610 0.704 0.653

VHW 8897 5141 0.578 0.934 0.714

R_III (155) SVM 6279 11 0.002 0.071 0.003

BDM 6354 11 0.002 0.071 0.003

VHW 8897 13 0.001 0.084 0.003

The three constructed sets of reliable events are: R_I) intersection of events from the 1KG project and events predicted by any method; R_II) events predicted by at least
two methods; R_III) events from Kidd et al. The three approaches are SVMiner (SVM), BreakDancerMax (BDM) and VariationHunterWeighted (VHW).
doi:10.1371/journal.pone.0052881.t004

Figure 5. Inversion results. The result of the predicted inversions for
the NA18507 specimen. The blue points are predicted inversions and
the red points are classified as no events.
doi:10.1371/journal.pone.0052881.g005

Table 5. The overlaps among predicted inversion events.

Kidd (82) VHW (504) VHU (433) VHP (181)

1 12 12 6 SVMiner (148)

10 5 1 Kidd (82)

351 151 VHW (504)

141 VHU (433)

The overlaps among predicted inversion events by SVMiner, three versions of
VariationHunter, and the events detected using a different technology (Kidd et
al). The total number of events by each approach is provided in the
parentheses.
doi:10.1371/journal.pone.0052881.t005
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SVMiner had the highest F_scores when comparing with events

from the 1000 genome project or events detected by at least two

approaches. Since SVMiner utilizes a model-based clustering

framework, it bases its predictions on patterns exhibited by the

input dataset, thus freeing the user from any need to manually

adjust parameters based on cluster characteristics. Variant cluster

signatures may differ across different datasets, and SVMiner is well

suited to take advantage of such variation. Although in this study,

we did not filter the predictions using the membership probabil-

ities, we have demonstrated that events with more accentuated

features in general have lower uncertainties. In practice, depend-

ing on their need, researchers can use the probabilities to select a

smaller set, but more reliable events for further investigations.

For the comparison of long and short read datasets with

different insert lengths, we found that around 40% of events

detected by SVMiner using the two datasets were in common. The

overlap of deletion events detected by BreakDancer from these

two datasets was even lower (,30%). This suggests that although

both programs are capable of detecting deletions using different

read lengths and insert sizes, the set of events that can potentially

be detected highly rely on the input datasets. The comparisons

with events from Kidd et al further demonstrated limitations of

different technologies. Unlike SNP calling platforms and algo-

rithms which normally can achieve very high accuracy, further

development in technologies and improvement in algorithms are

greatly needed for structural variation calling. A more complete

catalogue of common structural variants with more accurate

breakpoint information in different populations will also greatly

help the heterozygosity predictions.

Future work will investigate other features to be included in the

model and features for the refinement of breakpoints of SVs at the

nucleotide level. For example, the number of singletons can also be

used in predicting deletions, which may provide more evidence for

real events. On the other hand, adding more features will increase the

complexity of the model. The trade-off needs further investigations.

One of the contributions of our approach is that it can genotype

simple structural variation events (i.e., deletions), so we will also

investigate ways to predict the heterozygosity of events other than

deletions. Very recently, similar attempts are being conducted by

other researchers. For example, when we were preparing the

manuscript, Hormozdiari et al. [18] extended their VariationHunter

algorithm to identify transposon events [27], in which they also took

into account the diploid structure of the human genome.

It is known that other factors, such as local G+C content and local

repetitive structures [14], can greatly affect local read mapability.

Therefore, even given a specific type of structural variation (e.g.,

heterozygous deletion), the expected value of a particular feature

(e.g., normal read depth) may vary, which in turn may affect our final

predictions. We will investigate approaches to account for these

factors. Furthermore, the mixture model in our approach assumes

normal distributions of all features, which may not hold in practice.

The effect of this violation of normal assumption on the final

predictions was not thoroughly investigated in this study. By

considering the relationships of the expected value of read depths

and local sequence characteristics (e.g., G+C conent), it is possible

that we can derive or transform the raw values of our features to

better fit the normal assumption. Lastly, we will extend our

approach to detect structural variants not described in this paper,

such as tandem duplications [28] and translocations [6].

Conclusions

We have presented a framework called SVMiner for detecting

genomic structural variation using model based clustering. In

addition to separation distances and read pairs’ orientations,

SVMiner automatically defines and collects additional features for

different types of structural variation candidates, and utilizes these

features in a probabilistic model to cluster and classify each

candidate variant. We applied the approach on three real datasets

generated using next generation sequencing technologies and

results demonstrated that the cluster features we defined for each

type of SV events were appropriate for identifying SVs. In

comparison with previous studies, SVMiner has achieved much

higher F_scores than existing approaches in detecting and

genotyping deletions. Results on inversion detections suggest that

further improvements or new developments for other structural

variant events are needed.

Materials and Methods

Candidate generation for deletions
After being mapped, pairs with high mapping quality

(score$30) and with a separation distance greater than the insert

size plus x 6 standard deviation are regarded as discordant pairs

for candidate deletion events, where the insert size is approximat-

ed using the mean of the mapped distances and x = 3 or 4, which is

consistent with the analyses in the original papers. To generate

candidate SV events, overlapped discordant deletion pairs are

clustered based on their lengths and positions. More specifically,

we require that overlapping discordant pairs must have similar

mapped distance lengths. This is necessary because discordant

pairs from the same deletion event are more likely to have similar

sizes. In addition, they should also have similar positions.

Therefore, we require that every read pair in one cluster must

overlap with all other read pairs within the same cluster. This

requirement removes read pairs from a cluster that could, for

example, overlap with one pair, but not with others. This aberrant

read pair may have been mapped by chance. Furthermore, only

pairs with a mapping distance less than 100 kilobases are

considered in this study. SVMiner can, however, detect deletions

larger than 100 kb by adjusting this maximum allowed pair size.

Finally, only clusters with at least three discordant pairs are

considered as candidate deletion events. We refer to this step as the

‘‘filtering’’ step.

Feature collection for deletions
For each candidate deletion event, we define and collect two

features for classification: 1) the number of discordant pairs of the

candidate cluster and 2) the average depth of concordant pair

reads within the cluster region, based on the following observa-

tions. If the event is indeed a homozygous deletion (i.e., regions

where both chromosomes/haplotypes deleted), one would expect

that the number of discordant pairs should be close to the expected

coverage of the region. At the same time, within the deleted

region, the depth of reads should be very close to 0 if not 0. On the

other hand, if the event is a heterozygous deletion, one would

expect that the number of discordant pairs as well as the depth of

concordant pairs will be close to half of the expected depth in the

region. In an unaffected region, high depth of concordant pairs

and low depth of discordant pairs is expected. Similar observations

have been made by other researchers (e.g., [14]), but few

approaches have automatically collected these features based on

these observations to incorporate them into a formal model. Figure

S7 shows the distributions of concordant pairs and discordant

pairs around a homozygous deletion (Fig. S7A) and a heterozygous

deletion (Fig. S7B) from a real dataset [14], which are consistent

with the observation. The two features are then used by the model-

based clustering algorithm, which will predict three possible
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PLOS ONE | www.plosone.org 10 December 2012 | Volume 7 | Issue 12 | e52881



outcomes for deletion events: 1) homozygous deletions, 2)

heterozygous deletions, and 3) no events.

Candidate generation for inversions
The candidate inversion events can be determined in a similar

way to the aforementioned method of determining candidate

deletions. First, only inverted pairs with the same orientation and

with high mapping quality (score$30) are retained. To form a

cluster, in this study we require there to be at least three

overlapping pairs discordant by orientation, which is a user

specified parameter in the implementation of SVMiner. We

further require that a candidate inversion has to satisfy the

following conditions. For an inverted discordant pair with

forward-forward (FF) orientation, it should theoretically have a

greater mapped distance than other FF discordant pairs in the

cluster with larger genomic coordinates (See Figure S8 for an

illustration). This property should also hold for any reverse-reverse

(RR) oriented pair. If a read pair p is the first FF pair in the cluster

and q is the last pair according to the coordinates of their left

mates, the distance between the start positions of the left mates of p

and q should be less than the insert size of p (Figure S8). This

relation should also hold for the right mates of FF reads and for the

RR pairs. Also, if both FF and RR pairs exist in a cluster, the left

mates of all FF pairs should be located before the left mates of all

RR oriented pairs. Lastly, all inverted pairs with mapped distances

greater than 500 kilobases (provided as parameter in the program)

are discarded in this study. This step is referred to as the ‘‘filtering’’

step for inversion.

Feature collection for inversions
For each candidate inversion, we define two intuitive features to

be used by the model-based clustering method. The first feature is

defined as follows:

max N FFð Þ, N RRð Þf g

where N(FF) is the number of FF reads that form the cluster and

N(RR) is the number of RR reads. Theoretically, there should be

both FF and RR discordant pairs that should support an inversion

event (Figure S9A), and the number of which should be close to

the average read depth in the region. Occasionally, however, there

may only be RR or FF read pairs in a cluster that support a true

inversion. For example, Bentley et al. [14] provided an example of

a validated inversion event that is only supported by FF pairs

(Figure S9B). The lack of alternate discordant reads may be

explained by lower read coverage in the region where the other

types of pairs are expected, or they may be caused by the deletion

from the reference of nearby repeated regions.

The second feature we define is related to the coverage of

singleton reads near the cluster, which are reads whose mate pair

does not map to the reference sequence (for shorter reads), or

whose mate pair has been split (for longer reads). For many SV

events, including inversions, it is expected that the reads that cover

the breakpoints in the donor genome will either 1) not map to the

reference, or 2) align disjoint segments of a read to distinct

locations on the reference genome and create a split read.

Therefore, the mates of the unmapped/split reads, termed as

singleton reads here, will be present near inversion boundaries,

which was also described by others (e.g., [14]). Figure S9 shows the

tendency of singleton reads to accumulate at inversion breakpoint

boundaries.

We define this feature by measuring the number of singleton

reads that cover areas near the expected breakpoints. For each FF

pair, we define four windows, and for each base pair within each

window, we measure the number of singleton reads with quality

score$30 that cover it. The first window is defined as the interval

[StartPosition(Left) – a, StartPosition(Left)], where ‘‘Left’’ is the left

read and a is a window size. For this window, we only consider the

singletons that mapped to the + strand, and we use a= 300 for

dataset I to capture an interval that is slightly larger than the

expected insert size. The second window is defined as [StartPosi-

tion(Left), StartPosition(Left)+a] and for this window, we consider

both (+,2) singletons because we suspect the left breakpoint of the

inversion would be located near this window, and there could be

(+) or (–) singletons whose mates do not map to the breakpoint.

The third window is defined as [StartPosition(Right) - a,

StartPosition(Right)], where ‘‘Right’’ is the right read. The fourth

window is defined as [StartPosition(Right), StartPosition(-

Right)+1.5*a]. Because possible inversion breakpoints can be

located within the fourth window, only forward (+) singleton reads

of third window are informative while both (+) and (2) singleton

reads from the fourth windows are informative. We extend the last

window to increase the chances of including the right inversion

breakpoint, since the range of a FF pair may not flank this

breakpoint. If both FF and RR discordant pairs are present in the

cluster, it is easier to find both breakpoints. However, the lack of

one type of inverted pair hinders our ability to find both

breakpoints, hence the larger size for the fourth window. For all

RR pairs in the cluster, we define our four windows in a similar

fashion. But for these pairs, the breakpoints can only be located

within the first or third windows. Having defined a total of four

windows for each discordant pair, we defined our second feature

by taking the maximum, over all windows and all read pairs, of the

number of singletons that cover all base pairs in each window.

This feature is defined symbolically as

max
b[W , VW

The number of singletons that overlap bf g

where W is a window defined for some paired read and b is a base

pair that is located within W. VW quantifies the set of all windows

over all paired reads in the cluster.

The two features are collected automatically for each candidate

cluster and then used by the model based clustering algorithm.

Like deletion events, theoretically, inversions can also occur on

either haplotype. However, the high variability in discordant pair

coverage obfuscates genotyping of inversions (e.g., not every

inversion event has FF and RR reads). Therefore, only two

possible outcomes are considered for candidate inversions:

predicted true inversions and normal regions.

Model-based clustering algorithm
We assume that observed data points are generated from

different component distributions. More specifically, each candi-

date event xi is a vector of two dimensions in our application,

representing the values of two features in each type of event. Let

fk xi Dmk,
P

k

� �
denote the probability density of the observation xi

being from mixture component k, which is usually assumed to be a

normal distribution with parameter mean mk, and covariance gk,

fk xijmk,
X

k
� �

*
exp {

1

2
(xi{mk)T

X
k {1 xi{mkð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2p

P
kð Þ

p ð1Þ

For a vector of observations x, its log likelihood function is defined

as:
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l h,t,zDxð Þ~
Xn

i~1

XG

k~1

ziklog tkfk xi Dmk, Skð Þð Þ ð2Þ

where h~ mk,Skð Þf g, t~ tkf g, z~ zikf g, k~1::G,i~1::n: tk is

the mixture probability of component k, zik is an (unobserved)

indictor variable that is 1 if xi belongs to component k, G is the

number of components.

The maximum likelihood parameters for Equation (2) are

computed via the expectation-maximization (EM) algorithm

(Dempster et al., 1977). In the E-step, the expected values for zik

are calculated as:

ẑzik~
t̂tkfk(xi Dm̂mk,

P̂P
k)PG

j~1 t̂tj fj(xi Dm̂mj ,
P̂P

j)
ð3Þ

where t̂tk, is the component probability estimated from the M step,

and bmmk, bSSk are the mean and covariance matrix for component k

learned from the M step. These learned parameters are updated

on successive iterations of the E and M steps. For classifying an

observation, the component that maximizes the converged

membership probability ẑzik is the label assigned to the observation

after the iterations terminate.

The distribution of each component can be further refined by

specifying a smaller number of free variables in the covariance

matrix Sk, which is equivalent to specifying the geometric

characteristics of each component. Evaluation of different models

can be quantified by calculating the Bayesian Information Criterion

(BIC) [29] value for each model, given the current dataset. One can

refer to Fraley and Raftery [25] for a detailed discussion of different

models. In our implementation, we have used the model without

restrictions. In addition, we have tried a few different initialization

methods (e.g., assign class labels randomly or using different

thresholds), and no much differences have been observed from

different initializations. The threshold for convergence is 1026.

Generating simulated data
Using the chromosome 9 of the human reference genome, we

generated two homologous chromosomes (i.e., diploid) and

randomly embedded 190 non-overlapping deletions and 202

inversions of varying lengths (Table S2). Of the 190 embedded

deletions, 94 were homozygous and 96 were heterozygous. The

two chromosomes were then sheared into reads of length 36. The

average insert length between a pair of reads is 200 with the

standard deviation of 20, which closely mimics the real data at

hand. Point mutation rate is 0.1% and sequencing error rate is

0.5%. After alignments, the mean read depth is around 316.

Supporting Information

Table S1 Insert size analysis. We assessed the capability of

SVMiner in detecting deletions using sequence libraries of

different insert sizes. We created 3 simulated libraries (200, 500,

5 k), in a similar manner to the data generation steps described in

the Methods and Materials section. To declare discordant pairs,

we have used x = 4 times standard deviation (4sd) and 3 times

standard deviation (3sd). Results show that small to medium sized

deletions may not be detectable by discordant pairs with a large

insert size.

(DOCX)

Table S2 Events generated by the simulation study.

(DOCX)

Figure S1 Comparison of the mapping quality scores of
read pairs from the two programs MAQ and BWA based
on randomly selected two million read pairs from
dataset I. The correlation coefficient between quality scores of

the two programs is 0.78.

(TIF)

Figure S2 The distributions of the two features for the
three types of events (top: predicted normal events;
middle: predicted heterozygous deletions; bottom: pre-
dicted homozygous deletions). Events predicted as being

normal generally have low discordant pair support and relatively

high concordant pair depth. Heterozygous regions typically have

significant support from both concordant and discordant pairs.

Homozygous deletions are expected to have high discordant pair

support and very low concordant pair support. The results in

general agree with expectations. At the same time, it is apparent

there are also normal events with low concordant pairs,

heterozygous deletions with low concordant pairs and low

discordant pairs, homozygous deletions with low discordant pairs.

Those are data points that near the origin and/or class

boundaries, which normally have high uncertainty values

associated with their classification as shown in Figure 2B.

(TIF)

Figure S3 Membership probability distributions of
predicted normal events with average concordant depth
less than 6 (Left) and greater or equal to 6 (Right). The

two distributions are significantly different (2-sample K-S test,

p,10210). On the left, the membership probabilities are generally

less than 0.90; on the right, the membership probabilities are

generally greater than 0.90. When the data points have a low

average concordant depth, there is greater uncertainty whether the

low coverage is due to 1) an actual deletion or 2) some other

sources (such as high G+C content). The membership probabilities

in general capture the uncertainty well and can be utilized to select

a subset of more reliable predictions.

(TIF)

Figure S4 An event that was identified by SVMiner and
MoDIL but with different genotype calling. It was

predicted as a homozygous deletion by SVMiner, but a

heterozygous deletion by MoDIL. On the left (a), the mapped

read pairs along the chromosomes. Blue indicates concordant

pairs, and red represents discordant pairs. Dashed lines are

breakpoints of SVMiner and dotted lines are breakpoints of

MoDIL. On the right (b), we reconstructed the signals defined by

MoDIL based on its breakpoint information, which are the

distribution of separation distances of mapped read pairs within

the breakpoints. We suspect that MoDIL calls this one as

heterozygous deletion because the mapping distances clearly come

from two distributions of similar sizes, corresponding to the two

haplotypes (one with a deletion and the other with no deletion).

(TIF)

Figure S5 Visualization of an event that was only
detected based on longer read data. Upper panel is the

mapping results of shorter read data and lower panel is the results

of longer read data. Discordant paired reads are in brown color.

(TIF)

Figure S6 Visualization of an event that was only
detected based on shorter read data. Upper panel is
for shorter read data and lower panel is for longer read
data.

(TIF)
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Figure S7 Examples of deletion events. (a) A homozygous

deletion and (b) a heterozygous deletion on chromosome X of a

NA07340. The abnormally spaced discordant read pairs are

represented as red lines, while the concordant pairs are seen as

blue lines. The deletion event in (b) has only occurred on one

haplotype, thus explaining the presence of concordant pairs within

the affected region.

(TIF)

Figure S8 A synthetic example to illustrate additional
requirements for candidate inversion clusters. Red reads

are FF reads and blue ones are RR reads. All read pairs are

ordered according to the start positions of their left mates. The

insert size of the first pair is expected to be greater than or equal to

the insert size of the last pair in the FF group, i.e., IS1. = ISn. The

maximum distance (D1,n) between left mates of the FF read group

is expected to be less than or equal to the mean insert size. If both

the FF read group and the RR read group exist, the starting

positions of all left mates of the FF group should be in front of any

left mate in the RR group (i.e., Pos1, = Pos2). Similarly, one can

derive their relationships for right mates and for the RR read

group.

(TIF)

Figure S9 Examples of inversion events, one on chro-
mosome 1 of NA18507 (a) and the other is on chromo-
some X of NA07340 (b). The FF discordant pairs are red and

the RR pairs are green. Singleton reads are shown in dark blue

and light blue, corresponding to forward reads and reverse reads,

respectively. Note that (b) lacks RR discordant pairs. Singleton

reads tend to accumulate near the inversion breakpoints because

their mates do not map to the reference sequence due to potential

overlap with the breakpoints.

(TIF)
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