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Abstract

Changes in Greenland’s marine-terminating outlet glaciers have led to changes in the flux of 

icebergs into Greenland’s coastal waters, yet icebergs remain a relatively understudied component 

of the ice-ocean system. We developed a simple iceberg delineation algorithm for Landsat 

imagery. A machine learning-based cloud mask incorporated into the algorithm enables us to 

extract iceberg size distributions from open water even in partially cloudy scenes. We applied the 

algorithm to the Landsat archive covering Disko Bay, West Greenland, to derive a time series of 

iceberg size distributions from 2000–02 and 2013–15. The time series captures a change in iceberg 

size distributions, which we interpret as a result of changes in the calving regime of the parent 

glacier, Sermeq Kujalleq (Jakobshavn Isbræ). The change in calving style associated with the 

disintegration and disappearance of Sermeq Kujalleq’s floating ice tongue resulted in the 

production of more small icebergs. The increased number of small icebergs resulted in 

increasingly negative power law slopes fit to iceberg size distributions in Disko Bay, suggesting 

that iceberg size distribution time series provide useful insights into changes in calving dynamics.
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1. INTRODUCTION

Over the last two decades, as Greenland’s marine-terminating outlet glaciers have retreated, 

thinned and accelerated, the flux of icebergs to Greenland’s fjords and coastal waterways 

has increased (Bigg and others, 2014). Until recently, these icebergs remained a relatively 

understudied phenomena despite their physical, ecological and socioeconomic importance. 
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Unlike point sources of freshwater such as meltwater streams, rivers and subglacial conduits, 

icebergs represent a distributed source of freshwater (Silva and others, 2006). Depending on 

where drifting icebergs melt, their freshwater may play an important role in fjord 

stratification (Sutherland and others, 2014), overturning circulation (Bamber and others, 

2012) and/or ecosystem structure (Greene and others, 2008). The physical characteristics of 

icebergs can provide important insights into the dynamics of the glaciers that produced them 

(Bassis and Jacobs, 2013), and the number and sizes of icebergs in a fjord or shelf area 

places a constraint on their potential freshwater flux (Sutherland and others, 2014; Enderlin 

and others, 2016; Moon and others, 2018). Recent analyses suggest that time series of 

iceberg melting can be used to infer variations in subsurface ocean conditions and ice-ocean 

interactions near glacier termini (Enderlin and others, 2018). Icebergs also pose hazards to 

marine navigation and offshore infrastructure in the Arctic (e.g. Sackinger and others, 1985; 

Fuglem and Jordann, 2017), where natural resource exploration and shipping are expanding 

(Pizzolato and others, 2014).

At any given point in time, there may be tens of thousands of icebergs in a fjord or bay 

(Enderlin and others, 2016), posing a challenge to manual iceberg identification using 

satellite images. Iceberg detection and size characterization is further hindered by the 

presence of clouds in visible to near-infrared satellite imagery. Excluding images with 

partial cloud cover would considerably limit the temporal resolution of any derived dataset, 

resulting in potential aliasing of changes in iceberg size distributions over time. Therefore, 

efficient mapping of icebergs mandates that clouds are automatically distinguished from 

snow and ice in satellite images (i.e. automated cloud masking).

The primary challenge in mapping clouds in satellite images is that clouds and snow/ice 

share similar spectral properties across a large portion of the electromagnetic spectrum 

typically sensed by satellite platforms. Clouds and snow/ice are especially similar in the 

visible wavelengths (highly reflective) and thermal wavelengths (cold), properties that often 

allow clouds to be readily distinguished from relatively warm and dark-colored land 

surfaces. Common cloud detection schemes for optical imagery, including a few designed 

specifically for the Landsat sensors (e.g. Irish and others, 2006; Oreopoulos and others, 

2011; Kustiyo and others, 2012; Zhu and Woodcock, 2012; Foga and others, 2017), use band 

thresholding, both of individual bands and combinations of bands, to exploit differences in 

the spectral properties of the different media (e.g. Racoviteanu and others, 2009). Often, 

several thresholding approaches are combined and/or advanced computing and image 

analysis techniques are utilized to achieve the best results (e.g. Hall and others, 1995; Riggs 

and Hall, 2002; Scaramuzza and others, 2012; Zhu and Woodcock, 2012). However, the 

existing cloud masking approaches often fail to accurately differentiate clouds from ice and 

snow surfaces (Oreopoulos and others, 2011; Foga and others, 2017), including or excluding 

both clouds and snow/ice simultaneously. Dozier (1989), Riggs and Hall (2002), Irish and 

others (2006), Jedlovec (2009) and many others provide insight on various approaches to 

generating cloud masks for optical satellite images, including advanced image analysis 

techniques based on machine learning (Lee and others, 1990; Scaramuzza and others, 2012; 

Hughes and Hayes, 2014) and edge detection (Zhu and Woodcock, 2012).
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To generate a dataset that captures changes in iceberg size distributions, we developed a 

Landsat-based semi-automated iceberg delineation algorithm that incorporates a machine 

learning-based cloud mask. We present details of the algorithm and results from Disko Bay, 

West Greenland, to demonstrate the utility of the algorithm to explore temporal changes in 

iceberg size distributions commensurate with glacier change. Our method was developed so 

that it can be implemented locally on a standard computer and with minimal user input, 

subsequent to the one-time development of appropriate regional input files. We validate our 

cloud mask through manual analysis and evaluation of model output against a validation 

dataset for Disko Bay, and iceberg detection is validated using visual inspection and an 

independent application in Kangerlussuup Sermia Fjord. Finally, we compare changes in 

iceberg size distributions in Disko Bay between 2000–02 and 2013–15 to explore the use of 

iceberg size distribution time series as a means to infer changes in glacier dynamics. We find 

that the ice cover and iceberg size distributions change over time concurrent with a shift in 

parent glacier calving style.

2. STUDY REGION

A critical location to study icebergs around Greenland is along the central west coast (Fig. 

1). Icebergs transit through the Labrador Sea into the shipping lanes of the North Atlantic 

(e.g. Bigg and others, 1997), and their meltwater has the potential to disrupt the formation of 

North Atlantic Deep Water (NADW) (Fichefet and others, 2003). We chose Disko Bay as 

our study site due to the pronounced changes in iceberg calving style and volume from the 

primary iceberg source (Sermeq Kujalleq, or Jakobshavn Isbræ) (e.g. Amundson and others, 

2008; Joughin and others, 2008; Cassotto and others, 2015, and references therein), the most 

prolific producer of icebergs in Greenland (Enderlin and others, 2014), and the importance 

of icebergs to local communities. Icebergs calve into the deep Ilulissat (Jakobshavn) Isfjord 

and traverse the ~ 60 km long fjord until it empties into Disko Bay. Changes in the style, and 

likely size and volume, of icebergs calved from Sermeq Kujalleq initiated in the late 1990s 

and continued throughout the 2000s as the glacier’s terminus retreated and its geometry 

evolved (Amundson and others, 2008; Joughin and others, 2008).

North of the fjord mouth, along the eastern shore of the bay, sits the town of Ilulissat. 

Residents here depend heavily on fishing and tourism, so navigability of Disko Bay’s 

iceberg laden waters is of critical importance to their lively-hoods (personal communication 

from local marine operators, 2014). Anecdotal evidence suggests that the number and size 

distribution of icebergs present in Disko Bay has changed in recent decades as Sermeq 

Kujalleq has thinned and retreated. Specifically, marine navigators and fishermen noted that 

in more recent years, relative to the turn of the century, the bay is frequently covered with a 

large number of small icebergs, making navigation and fishing difficult (personal 

communication from local marine operators, 2014). However, to date, there is no 

comprehensive analysis of temporal variations in iceberg size distributions in Disko Bay.

Automated optical approaches, such as that used below, rely on the contrast between bright 

iceberg surfaces and the comparatively dark water surrounding them. Thus, they are unable 

to distinguish individual icebergs that are tightly packed. To avoid problems associated with 

automated detection of icebergs surrounded by sea/brash ice or dammed by icebergs 
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stranded on the ~200 m deep sill at the mouth of Ilulissat Isfjord, we focused our study 

during the summer months and on the area seaward of the sill. The exclusion of the fjord 

mouth enabled us to avoid detections of erroneously large ‘icebergs’ that were actually a 

combination of multiple icebergs stranded close together.

3. METHODS

3.1. Imagery selection

Given our time period of interest and the relatively small iceberg sizes found in Ilulissat 

Isfjord (Enderlin and others, 2016), we considered only the Landsat suite of sensors and 

focused on the derivation of a semi-automated algorithm that works across the archive. 

Alternative optical and radar imagery resources have relatively coarse spatial resolutions 

(e.g. minimum of 250 m for MODIS) relative to Landsat (minimum 15 m) or do not cover 

the time period of dynamic change in Sermeq Kujalleq. Images from 2000 to 2002 were 

collected by Landsat 7 (ETM+) while images from 2013 to 2015 were collected by Landsat 

8 (OLI and TIRS). Both Landsat 7 and 8 have a panchromatic band with 15 m spatial 

resolution, visible through short-wave infrared (SWIR) bands with 30 m spatial resolution 

and thermal bands with 60–100 m (Landsat 7 and 8, respectively) spatial resolution. For 

processing steps that simultaneously utilized multiple bands of different native resolutions, 

scenes were upsampled to the highest resolution of any of the input bands. For example, the 

cloud mask was generated at 30 m pixel resolution, then each mask pixel was parsed into 

four 15 m × 15 m pixels that each have the same value as the parent pixel. The potential 

impacts of this resampling are discussed below.

We downloaded pre-collection Landsat scenes spanning path numbers 10–11 and row 

numbers 11–12 from the USGS EarthExplorer website (earthexplorer.usgs.gov). Mosaicking 

of multiple scenes collected during the same pass maximized coverage. The relatively high 

latitude of Disko Bay (~68.5°−70° North) provided the advantage of a satellite repeat 

interval better than the 16 day standard repeat time for Landsat with the concurrent 

disadvantage of limiting our analysis seasonally. To minimize inclusion of springtime scenes 

that contained extensive sea ice (Cassotto and others, 2015), even during periods of 

sufficient solar illumination (February-October), we considered only scenes with collection 

dates from May to October. We manually screened these scenes to exclude from download 

those with such extensive cloud or sea ice cover that icebergs could not easily be 

distinguished because this visual inspection takes only 30–60 seconds compared to the ~5 

minutes required to generate a cloud mask using our algorithm. We opted for manual 

screening because the automatically generated percent cloud cover provided with each 

Landsat scene was an unreliable indicator of the presence of clouds over our marine area of 

interest. Approximately 70% of the available images contained manually-identifiable 

icebergs, providing 9–14 (median 10) usable image swaths for a given year.

3.2. Algorithm

A schematic of the procedure to detect icebergs in both cloud-free and partially cloudy 

Landsat scenes is shown in Fig. 2 and described in detail below.
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3.2.1. Cloud masking—We tested ratio-and machine learning-based cloud masking 

techniques, ultimately incorporating a computationally simple, machine learning-based 

approach into our algorithm (Fig. 2). We inspected and qualitatively evaluated the cloud 

masks throughout their generation and testing, while quantitative analysis drove 

development of the final model used in the machine learning-based cloud mask. Example 

applications of tested methods to an August 2013 Landsat scene (Fig. 3a) are shown in 

panels b-e of Fig. 3. Here we present only the most common approaches for the sake of 

brevity since none of the ratio-based methods were used in the final algorithm. These 

examples capture the essence of the challenge in differentiating icebergs and clouds in 

optical satellite imagery, illustrating the problems encountered with all tested threshold-

based methods, regardless of the choice of threshold or other input parameters.

Ratio-based masks. One approach is to identify clouds simply by applying a threshold to 

reflectance values in the SWIR part of the spectrum (centered at ~1.6 μm) (e.g. Warren, 

1982; Dozier, 1989; Riggs and Hall, 2002). Another approach uses a ratio of the visible red 

and SWIR bands (wavelengths centered at ~0.66 and 1.6 μm, respectively) (Racoviteanu and 

others, 2009). To further exploit the spectral differences between clouds and snow/ice in 

these two bands, we computed a normalized index of the two bands (red-SWIR normalized 

index) (Fig. 3b). We also tested a ratio of the near-infrared (NIR) to SWIR bands (centered 

at ~0.8 and 1.6 μm, respectively), ultimately generating a ratio-based cloud mask using a 

combination of the NIR: SWIR ratio and SWIR reflectance (Fig. 3c).

The results produced using the red-SWIR normalized index were similar to those of the 

individual SWIR reflectance and red:SWIR tests (not shown). The performance of each 

ratio-based method to distinguish clouds from snow/ice varied widely with cloud type. Very 

bright, white, fluffy cumulus clouds, which often had similar reflectance values as icebergs, 

resulted in enough false identifications of clouds and/or icebergs to render the dataset 

meaningless. The combination of the NIR:SWIR ratio and SWIR reflectance to identify 

clouds improved the differentiation between clouds and snow/ice over either method alone 

and over other combinations of the ratio and threshold methods described above (Figs 3b, c) 

and was thus used as a point of comparison for the performance of our machine learning-

based cloud mask. However, the ratio-based method suffered from the same problems as its 

components, making it ill-suited for unsupervised application to a large number of scenes 

with diverse cloud types. Further, for all ratio-based methods, the threshold value that best 

discriminated between clouds and icebergs had to be tailored to each scene (Jedlovec, 2009), 

requiring extensive operator input and inspection.

Edge detection-based masks. To capitalize on the textural differences between clouds and 

icebergs rather than relying solely on spectral differences, we tested the ability of edge 

detection methods to identify features or classify images into segments (i.e. segmentation). 

These methods could potentially identify icebergs regardless of cloud presence (i.e. only 

icebergs would be detected), eliminating the need for a cloud masking step. Edge detection 

uses gradients in reflectance between a pixel and its neighbors to identify transitions in 

brightness along the edges of distinct objects. Different features are identified in the derived 

edge maps using feature detection or segmentation methods. Feature detection uses the edge 

map to isolate and identify objects with certain types of edge characteristics (e.g. fuzzy, 
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gradual edges of clouds or sharp edges of icebergs). Segmentation starts with a series of 

‘seeds’, or small groups of pixels, building out from each seed until an edge is reached. The 

number, size and location of the seeds may be determined automatically, randomly, or 

manually, with the resulting segmented objects dependent on the number and distribution of 

seeds. We derived an edge map for a panchromatic Landsat image from August 2013 and 

tested both feature detection (not shown) and segmentation methods (Fig. 3d). The seeds for 

segmentation were determined automatically from the original panchromatic image.

The edge detection approaches to identify icebergs or clouds also proved inadequate (Fig. 

3d). The feature detection algorithm failed to identify icebergs (or clouds) and was too 

computationally intensive to run on a laptop. Segmentation suffered from similar problems 

to the ratio-based approaches; segmentation of iceberg and cloud objects occurred 

simultaneously, providing no distinctions between clouds and icebergs. This result is 

unsurprising given that the segmentation map was seeded by applying a conservative 

reflectance threshold to the panchromatic band, which generally fails to differentiate clouds 

and ice/snow pixels. Manual seeding may have improved results but would require extensive 

user input for each scene. Random seeding is also not feasible because it would require 

dense enough coverage to include a seed in each iceberg and cloud segment (where clouds 

are present); this would likely lead to over-segmentation of the image. Given the poor 

performance of the edge detection methods for distinguishing clouds and ice, they were not 

pursued further.

Machine learning-based masks. To construct the cloud masks ultimately included in our 

algorithm, we applied a machine learning technique called multinomial logistic regression 

(Fig. 3e), wherein a classified training set is provided as input and the computer generates a 

series of functions to relate the image pixel values and their classifications. Then, the model 

is run on validation datasets and the computer-predicted values are compared to the actual 

values. To generate training and validation datasets, we manually classified groups of pixels 

across six scenes with different cloud types as open water, opaque cloud, thin cloud with 

water underneath, thin cloud with iceberg underneath, or iceberg through clear sky. We 

extracted the top of atmosphere (TOA) reflectances and brightness temperatures for each 

classified pixel in the visible, NIR, SWIR and thermal wavelengths. We combined these 

spectral signatures and associated classifications to create training and validation datasets. 

Pixels from two scenes, one from each Landsat 7 and 8, were kept separate as a secondary 

validation dataset, while pixels from the remaining four scenes were randomly split into 

training and validation sets.

We trained and implemented our multinomial logistic regression model using the Python 

machine learning scikit-learn library (Pedregosa and others, 2011). The generation of 

models using multiple combinations of bands enabled optimization of the model for 

accuracy and computation time while minimizing the number of bands involved in masking. 

Band combinations tested included TOA reflectance/brightness temperature of: (1) red, NIR 

and SWIR; (2) red, NIR, SWIR and thermal; (3) red, NIR, SWIR, thermal and NIR-SWIR 

(wavelength centered at ~ 1.63 μm);(4) red, NIR, SWIR, thermal, NIR-SWIR and green 

wavelengths. We evaluated the model results for each combination of bands for accuracy and 

found that model performance was similar for all cases (95–97% precision). We eliminated 
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the two options with the largest number of bands (options 3 and 4) to decrease computation 

requirements and based our final model selection on visual inspection of results. 

Specifically, we identified commonalities among the mis-classified pixels and selected the 

model where incorrectly classified pixels could most easily be identified and reclassified 

automatically (e.g. regions of sensor saturation, as described below). The final model 

selected was option 2.

Two confusion matrices demonstrate the performance of the model by comparing the 

model’s predicted classifications with the manually derived classifications (Table 1). 

Overall, the machine learning-based cloud mask most consistently and accurately 

discriminated between bright, white, puffy cumulus clouds and the bright snow/ice surfaces 

of icebergs. The ratio-based cloud masks only reached comparable accuracy in mapping 

cloud extent when the cloud border reclassification step was added (see Section 3.2.3). Since 

this reclassification step relies on a semi-subjective threshold, reliance on its inclusion is not 

preferred. Manual inspection of the cloud masks also revealed that the ratio-based mask 

often classified significant amounts of open water as clouds, increasing the number of false 

negative iceberg detections and decreasing the estimated open water area within the ROI. 

Given the superior performance of the multinomial logistic regression machine learning-

based cloud mask among the methods we tested, we consider it to be the best cloud masking 

procedure for our analysis.

To improve the accuracy of the cloud mask over the central regions of very bright, white 

cumulus clouds [where cloud type was determined by visual inspection rather than vertical 

cloud structure or any cloud classification method] where sensor saturation was common, 

groups of pixels smaller than a ten by ten square structuring element (300 m × 300 m) 

classified by the model as ice but completely surrounded by pixels classified as clouds were 

reclassified from ice to cloud and added to the cloud mask. The remainder of the 

classifications produced by the model were designated non-cloud and small holes in the 

mask were removed with morphological opening (erosion and then dilation) using a cross-

shaped structuring element (Fig. 3e).

The red, NIR, SWIR and thermal bands used to create the cloud mask have a lower spatial 

resolution (30–100 m pixels) than the panchromatic band (15 m pixels) to which the mask 

was applied. Thus, we ignored potential mixed pixel effects and assumed that all higher-

resolution pixels that fell within the cloud mask were clouds, resulting in a conservatively 

upsampled (i.e. 15 m resolution) cloud mask. For each scene, we applied the cloud mask to 

the panchromatic band prior to iceberg identification.

3.2.2. Land/Region of interest mask—To provide a consistent region for analysis that 

excludes potential land-fast ice and locations with persistent ice mélange, we generated a 

region of interest (ROI) mask that excludes regions within 100 m of the coastline and all 

fjords that enter the bay (Fig. 1). Asiaq (personal communication from Asiaq, Greenland 

Survey, 2014) provided the coastline shapefile used to identify the land boundaries. The ROI 

mask was applied subsequent to cloud mask application but prior to the iceberg delineation 

step (Fig. 2).
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3.2.3. Iceberg delineation—Following application of the cloud and ROI masks to the 

TOA reflectance of the panchromatic band, the masked images were used to detect icebergs 

in the remaining open water regions. Icebergs were identified as pixels with reflectance 

values in the panchromatic band >0.19. Given the stark contrast in brightness of icebergs 

from the surrounding water, the iceberg mapping results are fairly insensitive to the 

threshold value (Figs 4, 5). However, manual inspection of iceberg masks produced using 

thresholds ranging from 0.17 to 0.21 indicated that a threshold of 0.19 maximized the 

number of icebergs detected while limiting the number of false positive iceberg detections 

(i.e. identification of unmasked clouds, sea ice, or rough water as ‘icebergs’). We chose to 

identify icebergs using thresholding rather than the multinomial logistic regression model 

ice classification output so that we could optimize the performance of the model for cloud 

identification.

After thresholding, adjoining pixels were assumed to be part of the same iceberg and were 

clustered accordingly. Close visual inspection of the iceberg pixel clusters revealed that in 

some scenes the edges of clouds missed by the cloud mask were falsely identified as 

icebergs. Rather than remove the scene from the dataset for abundant false positives (see 

Section 3.3), pixel clusters that were identified as ice but that bordered cloud along >40% of 

the cluster’s boundary were reclassified as clouds. The remaining clusters were classified as 

iceberg and outlined automatically by the computer, with each pixel or group of pixels 

stored as a unique iceberg polygon. To avoid inclusion of portions of icebergs within fjord 

mouths or along scene boundaries, the algorithm removed any iceberg polygon touching the 

ROI polygon or a scene edge. The analysis of iceberg parameters presented below uses the 

resulting shapefiles of iceberg polygons. Total ice area was computed for each shapefile and 

used in conjunction with the amount of cloud cover and total scene coverage within the ROI 

to compute an ice-open water ratio.

3.3. Iceberg detection screening of algorithm output

We determined the accuracy and reliability of iceberg detections through semi-automated 

methods. Scenes with an ice-open water ratio or maximum iceberg area greater than roughly 

the median plus one median absolute deviation (>0.008 or >2 km2, respectively) were 

flagged as potential outliers, and we visually inspected scenes with values exceeding these 

thresholds. For all scenes processed by the algorithm, we overlaid each iceberg shapefile on 

its corresponding panchromatic scene and visually inspected it at multiple spatial scales. 

QGIS (QGIS Development Team, 2017) provided the user interface for the inspection, 

which involved viewing the entire scene as well as taking a closer look at common problem 

areas such as along the borders of clouds or clusters of closely spaced small icebergs.

We excluded 11 of the 65 scenes run on the basis of this quantitative screening and manual 

inspection, leaving 54 scenes for the 6 years included in our study with 7–12 data points per 

year (mean: 9 acquisition dates per year). Reasons for exclusion included: (1) non-detection 

of large numbers of icebergs greater than one or two pixels in size; (2) large numbers of 

false positive detections of water, clouds and/or sea ice as icebergs. Wispy, semi-transparent 

cirrus clouds covered substantial portions of all but two of the scenes that were excluded on 

the basis of false detections; the false positive detections in these two scenes resulted from 
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sea ice or water. The presence of cirrus clouds was limited or nonexistent in all other cloudy 

scenes. Six of the eleven scenes excluded during this step had maximum iceberg size or ice-

open water ratio values exceeding the quantitative thresholds. Thus, this inspection of results 

suggests that although there is no way to automatically screen for rare scenes with a large 

number of missed icebergs, the majority of results dominated by false positive signals can be 

detected and eliminated automatically through the use of ice coverage and iceberg size 

cutoffs.

4. RESULTS

4.1. Total iceberg area

We evaluated algorithm performance by running the algorithm on several Landsat Collection 

scenes (20 August 2013, 7 August 2014 and 26 August 2015) covering Kangerlussuup 

Sermia Fjord, scenes for which Sulak and others (2017) previously established total iceberg 

areas. To match the methodology of Sulak and others (2017) as closely as possible, we ran 

the algorithm as designed as well as with a higher reflectance threshold (0.28), without the 

land buffer and without the step removing partial icebergs captured along the ROI and scene 

borders. The cloud mask was run in each case, even though Sulak and others (2017) 

manually selected the images as cloud-free. This resulted in very limited (<0.08%) cloud 

cover over the area of interest, illustrating that our cloud mask successfully avoids false 

positives.

At Kangerlussuup Sermia Fjord, iceberg areas derived using our algorithm are consistent 

with previous values (Table 2) (Sulak and others, 2017). Percent differences for total iceberg 

area vary by <10% and are non-systematic. Our inability to precisely reproduce the total 

iceberg areas exactly can at least partially be explained by the potential differences in the 

ROI extent within the fjord, particularly near the glacier terminus but also at the fjord mouth. 

As expected, application of a buffer to land areas and removal of polygons intersecting our 

ROI polygon causes the percent error to become increasingly positive, because this step 

reduces the total ice area. Although the impact of these components of our algorithm on total 

ice area can reach up to 22.1% of the iceberg area calculated by Sulak and others (2017), the 

absolute difference in ice area is quite small because the ice makes up such a small portion 

of the total area (the ice-open water ratio changes from 0.0045 to 0.0035).

Interestingly, we found that application of the Disko Bay threshold to identify icebergs in 

Kangerlussuup Sermia Fjord resulted in an apparent overestimation of iceberg area relative 

to Sulak and others (2017). An increase in the threshold from 0.19 to 0.28 considerably 

decreased this overestimation of iceberg area in all three scenes, indicating that site-specific 

thresholds are necessary to calculate ice area. Further analysis of the data shows that 

although the lower threshold values may lead to a systematic bias in ice area estimates, the 

number of detected icebergs remains fairly consistent between the two thresholds. We 

attribute the disparate threshold sensitivity of the iceberg area and number estimates to the 

mixed-pixel effect: pixels around iceberg margins that are primarily water but contain a 

small fraction of ice will be detected at lower thresholds, inflating the iceberg area estimates 

while preserving the iceberg number estimates. Thus, use of regional (i.e. not site-specific) 
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thresholds in future analyses may bias iceberg area estimates but are unlikely to influence 

iceberg size distributions.

4.2. Iceberg size distributions

Iceberg size distributions around Antarctica and Greenland have previously been 

characterized using both power law and lognormal distributions (e.g. Tournadre and others, 

2012; Enderlin and others, 2016; Kirkham and others, 2017; Sulak and others, 2017). We 

tested power law, lognormal, exponential and Weibull distributions using the Python 

powerlaw (Alstott and others, 2014) library on two scenes’ size distributions and found that 

a power law distribution of the form f(x) = x-α, where α is the fit parameter or slope of the 

probability distribution in log-log space (Fig. 5), weakly but consistently provided the best 

fit (see the Supplementary Material for an explanation and evaluation of fit parameters).

Since our primary interest here is a consistent way to quantitatively describe the data and its 

variations through time, rather than necessarily capturing the exact shape of the distribution, 

we fit power law size distributions to each date’s iceberg dataset using an xmin value of 1800 

m2 (eight pixels). Although the algorithm can detect smaller icebergs (down to 1–2 pixels), 

we chose this xmin value because it generally has a minimal fit uncertainty when compared 

with the fit uncertainties of other xmin values. Using a lower xmin value influences the fit 

parameter values (Clauset and others, 2009) due to large fluctuations in the smaller size 

fractions of icebergs, resulting in less robust fits and suggesting that the smallest icebergs do 

not follow the same size distribution. Conversely, using the much higher xmin values 

suggested by the software results in data loss. A detailed discussion of the challenges and 

limitations associated with rigorous fitting of heavy-tailed size distributions is provided in 

the Supplementary Material.

4.3. Error analysis

4.3.1. Iceberg size distribution sensitivity to choice of reflectance threshold.
—Satellite image-derived iceberg size distributions are fairly insensitive to the choice of the 

reflectance threshold used to identify icebergs in the cloud-masked scenes, provided the 

threshold value is tailored to the study site (Figs 4, 5). Specifically, modification of the 

reflectance threshold by ~5% (~10%) to 0.18 and 0.20 (0.17 and 0.21) resulted in changes in 

the slope of the power law fits of <0.4% (<0.9%). Even large changes in threshold values 

(e.g. ~50%) resulted in comparatively small (<9%) changes in the fitted power law slope, 

although the uncertainties in ice coverage and number of icebergs (>50–100%) were close to 

the proportional changes in threshold. Manual inspection of the results from these large 

threshold variations shows the lower threshold resulted in an increase in the number of false 

negatives and the higher threshold resulted in an increase in the number of false positives 

from other noise in the image. Regardless, the small changes in slope even with large 

changes in the threshold value suggest that the fitted power law slope remains a robust 

metric to describe the size distribution.

4.3.2. Spatial sampling: generation of scene mosaics and upsampling of 
lower resolution bands.—Since Landsat scenes utilize the UTM projection, the 

generation of mosaics often requires reprojection of one scene so that the same UTM zone is 
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used by both scenes in the mosaic. During mosaicking, pixel values in overlapping portions 

of the scenes are averaged. Due to coregistration errors, which can skew the location of 

icebergs between scenes, pixel averaging has the potential to lead to both false positive and 

false negative iceberg identifications; iceberg pixel values may drop below the threshold 

used for iceberg detection, causing icebergs to be missed, or small icebergs may be double-

counted. In line with previous studies, careful qualitative inspection of the overlapping 

region of several mosaics suggests that the geolocation errors are on the order of the pixel 

resolution (Storey and others, 2014) and are sufficient for image mosaicking without 

compromising the detectability of icebergs or resulting in double counting of small icebergs. 

The impact of upsampling to match the highest spatial resolution bands is limited to the 

application of our cloud mask to the panchromatic image. Our iceberg size distributions are 

similar within a given time period regardless of the amount of cloud cover in a particular 

scene, suggesting that the upsampling of our cloud mask to match the spatial resolution of 

the panchromatic band does not affect our results.

5. DISCUSSION

5.1. Disko Bay icebergs

Beginning in 1997, Sermeq Kujalleq underwent a period of rapid retreat, thinning and 

acceleration that included the loss of a persistent floating ice tongue in the early 2000s (e.g. 

Joughin and others, 2004; Luckman and Murray, 2005; Holland and others, 2008; Bondzio 

and others, 2017). As the terminus of Sermeq Kujalleq transitioned to a terminus grounded 

in deeper water, the dominant calving style shifted from infrequent calving of tabular 

icebergs towards more frequent calving and overturning of full thickness icebergs and 

smaller partial-thickness icebergs (e.g. Amundson and others, 2008; Joughin and others, 

2008; Bassis and Jacobs, 2013; Cassotto and others, 2015). This change in calving style, and 

consequently calving energy (Bassis and Jacobs, 2013), produced icebergs with different 

geometries. Since iceberg decay is strongly controlled by iceberg geometry, we explored 

whether the change in Sermeq Kujalleq’s calving could be inferred from a shift in iceberg 

size distributions.

We applied the semi-automated algorithm, using the machine learning-based cloud mask, to 

the Landsat archive for Disko Bay from 2000–02 and 2013–15 (Fig. 6). We chose these year 

ranges to span the time period of greatest change in calving behavior of Sermeq Kujalleq 

(Amundson and others, 2008; Joughin and others, 2008) as well as avoid missing icebergs in 

whole or in part due to the stripping caused by the SLC failure on Landsat 7. Although 

methods exist to ‘fill in’ the missing data, these methods rely on landscape continuity 

through space or over time. The transient nature of icebergs means there is no reliable way 

to fill in the image gaps, thereby limiting the accuracy of an iceberg size dataset derived 

from this imagery.

5.2. Ice cover and iceberg size distributions

Ice coverage is a function of the total ice-covered and open water areas relative to the 

observed area for that scene, which we present as an ice-open water ratio (Fig. 6a) to 

account for differences in scene extent and cloud cover. The ice cover in Disko Bay has 
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evolved in conjunction with the changes at the terminus of Sermeq Kujalleq (Fig. 6a). 

During the later time period (2013–15), the median and range of ice-open water ratios is 

notably larger relative to the turn of the century (2000–02) (median±MAD of 0.0019 

± 0.0007 and 0.0056 ± 0.0022 for the two time periods, respectively).

The fitted power law slopes representing our iceberg size distributions fall within the range 

−1.80 to −2.89, with a median of −2.12 (Fig. 6b), in agreement with previously published 

values for iceberg size distributions in Greenland’s fjords (−1.9 to −2.3 in Enderlin and 

others (2016) and −1.62 to —2 in Sulak and others (2017)). The fitted power law slopes 

have a mean goodness of fit error of 0.024 and an uncertainty of <0.4%, calculated as the 

change in slope value resulting from a ~5% change in the ice detection threshold value. 

Interestingly, the size distributions of icebergs in the bay suggest a small but significant 

decrease in slope values between the two time periods. For 2000–02, the median slope was 

−1.96 (±0.03) while for 2013–15 the median slope was −2.26 (±0.02). Although submarine 

melting of icebergs will also affect iceberg size distributions (Kirkham and others, 2017), we 

hypothesize that temporal changes in submarine melting had little influence on the observed 

shift in iceberg size distributions for two reasons. First, subsurface ocean observations in 

Disko Bay suggest that the waters in the bay warmed in the late 1990s and have remained 

relatively warm since then (Holland and others, 2008; Gladish and others, 2015). Second, 

oceanic warming will preferentially decrease the abundance of small icebergs due to their 

high surface area to volume ratios, with warmer near-surface water temperatures driving 

increased melt. This will effectively remove icebergs in the smallest size fractions and will 

likely manifest in iceberg size distributions as a shift from fitted power law to lognormal size 

distributions (Kirkham and others, 2017), potentially explaining the increases in power law 

fit parameter uncertainty with the use of xmin values <1800 m2. If we consider that the total 

volume of melt is a function of both the melt rate and time period, then we can look at 

changes in iceberg size distributions with distance from the source as an analog for changes 

in the magnitude of melting. As such, the shift towards a lognormal iceberg size distribution 

observed by Kirkham and others (2017) suggests that any melt-driven changes in the size 

distribution would be counter to what we observe. Alternatively, a decreased presence of sea 

ice would tend to drive an increase in wave erosion, leading to enhanced mechanical iceberg 

decay and providing an alternative explanation for the change in fitted power law slope 

between the two time periods. However, changes in sea ice cover likely occurred prior to the 

turn of the 21st century when waters in Disko Bay warmed, prior to the start of our 

investigation.

The observed changes in ice cover and slope of the size distribution are likely driven by the 

concurrent increase in the number and frequency of times that a large number of 1800 m2 

(eight pixel) icebergs are present in the bay (Fig. 6c). During 2000–02, none of the scenes 

analyzed have >1000 icebergs in the smallest size bin (1800 m2) and only one scene has 

>500 small icebergs, whereas during 2013–15 at least an eighth of the scenes have >1000 

small icebergs and over a third of scenes have >500 small icebergs. The increased presence 

of small icebergs between the 2000–02 and 2013–15 observation periods drives the 

steepening of the fitted power law slope (Fig. 6b) and matches anecdotal evidence from boat 

captains operating in Disko Bay, who lamented the difficulty of navigating and setting long 

fishing lines in the mid 2010s due to the large number of small icebergs present in the bay. 
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We interpret this change in the abundance of small icebergs in the bay as a consequence of 

the change in the dominant calving style of Sermeq Kujalleq. As the glacier’s terminus 

geometry evolved from persistently-floating and seasonally-grounded (Joughin and others, 

2008), the associated increase in calving energy resulted in an increase in iceberg 

fragmentation and thus an increase in the number of smaller icebergs in Disko Bay.

The maximum size of icebergs detected in Disko Bay remained relatively constant during 

this time period (Fig. 6d). Some icebergs >2 km2 (approximately an order of magnitude 

magnitude larger than the maximum size of icebergs able to pass over the sill in Ilulissat 

Isfjord) were not excluded from our results because manual inspection (see Section 3.3) 

revealed that they are localized areas of potentially unnavigable sea ice that have little 

influence on the derived ice-open water ratio.

5.3. Comparison of icebergs and parent glacier dynamics

Recent numerical modeling of calving dynamics suggests that changes in calving style result 

from changes in glacier terminus relative buoyancy, defined as the water depth at the 

terminus relative to the water depth required for ice flotation (Benn and others, 2017). We 

calculated the relative buoyancy of Sermeq Kujalleq’s terminus to determine whether 

changes in relative buoyancy, and thus calving dynamics, could have driven the observed 

changes in iceberg sizes and ice cover in Disko Bay. We extracted ice surface elevation from 

pre-IceBridge (late May 2001/02 and 2013–15;no data were available for 2000) (Thomas 

and Studinger, 2010) and WorldView image-derived digital elevation models (DEMs;late 

June through late September 2013–15) (DEMs were created by the Polar Geospatial Center 

from DigitalGlobe, Inc. imagery) and water depth (bed elevation) from BedMachine v3 

(Morlighem and others, 2017) at a point located 1 km upstream of the terminus. Ice 

thickness was estimated assuming buoyancy (density of sea water and ice were taken as 

1027.3 kg m−3 and 900 kg m−3, respectively). If the thickness of the presumed floating ice 

exceeded the bed depth, then the ice was considered grounded and the ice thickness was 

instead calculated as the difference between the ice surface elevation and the bed depth. The 

water depth required for ice flotation was calculated following Eqn (4) in Benn and others 

(2017) and used as input for relative buoyancy estimates. Prior to 2002, minimum May 

relative buoyancy values were ~2, well beyond the ‘super-buoyant’ threshold of 1.1 

suggested by Benn and others (2017). From 2013–15, relative buoyancy values in April were 

~1.1, while those from the summer were ~0.84, demonstrating that the terminus had shifted 

from a super-buoyant floating ice tongue to a barely floating and seasonally well grounded 

terminus (Benn and others, 2017).

The change in terminus geometry since the early 2000s is also reflected in the record of 

near-terminus velocity for Sermeq Kujalleq (Fig. 6e). We extracted Landsat-derived surface 

velocities for 2001, 2002 and 2013–15 from the Technische Universität Dresden Velocity 

Fields of Greenland Outlet Glaciers data product (Rosenau and others, 2015) at the same 

locations as the ice thickness data above. The time series clearly illustrates an increased 

seasonal signal in Sermeq Kujalleq’s velocity (Joughin and others, 2014) and is indicative of 

the glacier’s increased responsiveness to changes in backstress at the terminus as a result of 
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the loss of its floating ice tongue and corresponding change in calving style (Joughin and 

others, 2012).

6. CONCLUSIONS

We have presented a semi-automated approach to delineate icebergs in optical (Landsat) 

satellite images. To test the performance of the approach and demonstrate its utility, we 

provide an example application to Landsat images for Disko Bay, West Greenland. The 

images span the years 2000–02 and 2013–15, capturing important changes in the calving 

style of Sermeq Kujalleq.

A challenge in automated detection of icebergs in optical imagery is differentiation of clouds 

and snow/ice, due to their similar spectral properties, and cloud masking often requires a 

large number of steps and/or advanced computing capabilities. To eliminate clouds from our 

scenes, we developed a computationally efficient cloud masking scheme using machine 

learning to identify clouds. A comparison of multiple cloud masks for the same scenes 

suggests that the machine learning-based cloud mask performs better than the commonly 

used ratio-based approaches to delineate clouds. Thus, we recommend that studies leverage 

similar machine learning-based cloud masking approaches to utilize Landsat scenes with 

partial cloud cover over glaciers and sea ice.

We applied our semi-automated algorithm to a series of Landsat images from 2000–02 and 

2013–15. After clouds and land were masked out of each scene using the machine learning-

based cloud and ROI masks, respectively, the remaining portions of the TOA reflectance of 

the panchromatic band were thresholded to detect icebergs. Based on a comparison with 

previously published total ice area values for Kangerlussuup Sermia Fjord (Sulak and others, 

2017), we found that while the total ice area in that region was readily influenced by the 

choice of threshold value, in Disko Bay, the slope of the power law curve describing the 

iceberg size distributions was insensitive to the choice of threshold value.

Our results show that the size distributions of icebergs in Disko Bay underwent an important 

transition from the early 2000s (2000–02) to the mid 2010s (2013–15), concurrent with a 

transition in Sermeq Kujalleq’s dominant calving style. Between 2000–02 and 2013–15, we 

observed a pronounced increase in the total ice cover, decrease in the power law slope 

describing the distribution of iceberg sizes and increase in the number of small icebergs in 

Disko Bay. The temporal change in the number of small icebergs present supports anecdotal 

evidence from local marine navigators, who were adversely impacted by the shift. These 

observed changes were coincident with a change in the calving style of Sermeq Kujalleq 

from low energy calving of tabular icebergs to high energy calving of full thickness icebergs. 

The change in calving style was driven by a change in terminus geometry from a 

persistently-floating ice tongue to a seasonally well-grounded terminus. Both decadal-scale 

change in glacier terminus buoyancy and increased seasonality in velocity due to terminus 

retreat and grounding supported the change in calving style. Based on these concurrent 

changes, we conclude that changes in calving style have an appreciable influence on iceberg 

size distributions. Expansion of this case study to gain a better understanding of how glacier 

dynamics and iceberg decay processes impact iceberg size distributions across multiple 
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spatial and temporal scales is critical for improving our understanding of how iceberg 

presence changes through time and its potential future impacts on navigation and distributed 

freshwater flux in coastal systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
Location of Disko Bay, the study region, in West Greenland. Features of note include 

Sermeq Kujalleq (i.e. the iceberg source), Ilulissat Isfjord, the town of Ilulissat, and the 

study region of interest (ROI, green outline). Background is a mosaic of Landsat 8 

panchromatic images from summer 2015.
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Fig. 2. 
Schematic illustration of the steps of the final semi-automated iceberg delineation algorithm.
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Fig. 3. 
Comparison of multiple cloud masking and iceberg delineation techniques. (a) Panchromatic 

(Landsat 8 band 8) scene of Disko Bay from 31 August 2013 showing multiple cloud types. 

(b-c) Cloud mask (blue) generated using red-SWIR normalized index thresholding and 

NIR:SWIR ratio combined with SWIR reflectance band thresholding, respectively. 

Everything above the iceberg delineation threshold after cloud masking is shown in orange. 

(d) Icebergs and clouds are detected simultaneously using image segmentation (purple). (e) 

As in (b-c) for the machine learning-based cloud mask.
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Fig. 4. 
Influence of threshold choice and image resolution on algorithm performance. Location of 

panels is shown on Fig. 3. (a) Original panchromatic (Landsat 8 band 8) scene from 31 

August 2013. (b) The results of threshold sensitivity tests. Pixels identified as ice by the 

optimal threshold (0.19) are colored orange and green. (c-d) Automated iceberg masks 

constructed with the optimal threshold (in yellow), but for 30 m resolution (c) and 60 m 

resolution (d) images. Orange lines in (c-d) show iceberg outlines derived from the 15m 

resolution image.
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Fig. 5. 
Iceberg size complimentary cumulative distribution functions for several different 

reflectance thresholds for the 31 August 2013 scene. Fitted power law curves (in log-log 

space) show characteristic decay of iceberg areas 1800 m2 and larger, as discussed in the 

text. n is the total number of icebergs detected, including those smaller than 1800 m2.
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Fig. 6. 
Iceberg data extracted from Landsat scenes spanning 2000–02 and 2013–15. (a) Ice-open 

water ratio. (b) The slope of the power law curve fit to the iceberg size distribution for each 

scene. Error bars showing the goodness of fit of the slope to the distribution are obscured by 

the symbol in almost all cases. (c) Number of eight pixel (1800 m2) icebergs. (d) Plan view 

area of the largest iceberg. Circled points are sea ice > 2 km2 detected in scenes not excluded 

from our results as discussed in the text. (e) Surface velocity magnitude 1 km upstream of 

the terminus.
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