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a b s t r a c t 

Histones are the protein components of the nucleosome, which forms the basic architecture of eukary-

otic chromatin. Histones H2A, H2B, H3, and H4 are composed of two common regions, the “histone

fold” and the “histone tail”. Many efforts have been focused on the mechanisms by which the post-

translational modifications of histone tails regulate the higher-order chromatin architecture. On the

other hand, previous biochemical studies have suggested that histone tails also affect the structure and

stability of the nucleosome core particle itself. However, the precise contributions of each histone tail

are unclear. In the present study, we determined the crystal structures of four mutant nucleosomes, in

which one of the four histones, H2A, H2B, H3, or H4, lacked the N-terminal tail. We found that the dele-

tion of the H2B or H3 N-terminal tail affected histone–DNA interactions and substantially decreased

nucleosome stability. These findings provide important information for understanding the complex

roles of histone tails in regulating chromatin structure. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical

Societies. All rights reserved. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The basic unit of chromatin is the nucleosome core particle, which

contains 145–147 base pairs of DNA [ 1 –3 ]. The DNA binds on the

surface of the histone octamer, composed of two copies of the four

core histones, H2A, H2B, H3, and H4. In the nucleosome structure,

each core histone contains two common regions, the “histone fold”

and the “histone tail”. Histone tails are flexible regions that flank

both ends of the histone fold ( Fig. 1 (A)) [ 4 , 5 ]. In the nucleosome, the

histone fold is responsible for the formation of stable H2A–H2B and

H3–H4 dimers, and the histone octamer is composed of two H2A–H2B
� This is an open-access article distributed under the terms of the Creative Commons 
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tlH4, human histone H4 lacking N-terminal tail; wt, wild-type; SHL, superhelical loca- 

tion; RMSD, root mean square deviation; PDB, Protein Data Bank. 
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dimers and two H3–H4 dimers. On the other hand, the N-terminal

tails of the four core histones and the C-terminal tail of histone H2A

protrude from the nucleosome core particle [ 2 ]. These histone tails

are known to interact with nucleosomal DNA, and the interactions

are substantially retained even in the highly acetylated state [ 6 ]. In

addition, the histone tails not only contact the DNA wrapped around

the histone octamer, but also bind to linker DNA [ 7 ] and the acidic

patches of the neighboring nucleosomes [ 1 , 2 , 8 ]. These interactions

between histone tails and DNA may play critical roles in the formation

of higher-order chromatin. 

Biochemical studies of “tailless” nucleosomes have revealed the

functional importance of histone tails. The N-terminal tails of H2A,

H3, and H4 are considered to function in the formation of higher-

order chromatin [ 8 –12 ], and the H2B N-terminal tail is specifically

required for chromosome condensation [ 13 ]. Removal of the histone

tails increases the accessibility of the nucleosomal DNA, probably by

enhancing the nucleosome dynamics [ 14 –18 ] and / or reducing the

nucleosome stability [ 19 , 20 ]. Consistently, deletion and alanine scan-

ning mutation analyses of the N-terminal tail of H3 [ 20 ] or deletion of

the N-terminal tail of H2B [ 21 ] revealed enhanced nucleosome slid-

ing along the DNA. Interestingly, opposite effects have been reported

for nucleosomes lacking the N-terminal tail of H2B and / or H4 [ 20 ]. A

molecular dynamics simulation also suggested that the truncation of

the histone tail affects the nucleosome structure [ 22 ]. The function of
f European Biochemical Societies. All rights reserved. 
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Fig. 1. (A) The sequences of the N- and C-terminal regions and the secondary structures 

of histones H2A, H2B, H3, and H4. The deleted residues in histones tlH2A, tlH2B, tlH3, 

and tlH4 are underlined. The arrows labeled “T” mark the trypsin cleavage sites on the 

nucleosome [ 40 , 53 ]. Grey characters indicate residues that could not be modeled in the 

crystal structure of the wt nucleosome (PDB code 3AFA ) [ 28 , 30 ]. (B) The locations of 

the N- and C-terminal regions of histones and the superhelical locations (SHL) of DNA 

are labeled on the crystal structure of the wt nucleosome. Histones H2A, H2B, H3 and 

H4 are colored yellow, pink, blue and green, respectively. Close-up views around the 

N-terminal regions of H3 and H2B are shown in the right panels. (C) SDS–PAGE analysis 

of purified intact and tailless human histones H2A, H2B, H3, and H4. (D) Reconstituted 

wt and tailless nucleosomes were purified by a Prep Cell apparatus and analyzed by 

non-denaturing 6% PAGE. (E) Analysis of the histone compositions of purified wt and 

tailless nucleosomes by 18% SDS–PAGE. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

e

o

e

o  

H

g

l

t

n

s

i

h

n

H

t

ach histone N-terminal tail may be redundant, because the removal 

f the N-terminal tail of each single histone did not have an obvious 

ffect on cell viability [ 11 , 23 –25 ], although the simultaneous deletion 

f two N-terminal tails from the histone pairs H2A / H2B [ 23 , 24 ], H3 /

4 [ 24 ], or H2A / H4 [ 11 ] compromised cell survival. 

The histone tails are highly basic, and contain residues that are tar- 

ets of post-translational modifications, such as acetylation, methy- 

ation, phosphorylation, and crotonylation [ 26 , 27 ]. These histone–

ail modifications modulate the histone–DNA and nucleosome–

ucleosome interactions, and may play important roles during tran- 

cription, replication, recombination, and DNA repair. Therefore, it 

s important to understand the molecular mechanisms by which the 

istone tails affect the nucleosome structure and stability. 

In the present study, we determined the crystal structures of four 

ucleosomes lacking the N-terminal tail of one of the histones, H2A, 

2B, H3, and H4. We evaluated the contribution of each histone N- 

erminal tail to the nucleosome stability and structure. 
2. Materials and methods 

2.1. Preparation and crystallization of nucleosomes containing tailless 

histones 

Human H2A, H2B, H3.1 and H4 lacking the N-terminal tail regions 

were overexpressed in Escherichia coli with N-terminal His 6 -tags. The 

His 6 tag was removed by thrombin treatment during the purifica- 

tion procedure. Four non-native residues, glycine–serine–histidine–

methionine from the expression vector, remained at the N-terminus 

of each histone. Previously reported protocols were used to express, 

purify, and reconstitute the tailless nucleosomes [ 28 ]. A 146 bp palin- 

dromic sequence derived from human α-satellite DNA was used for 

nucleosome reconstitution [ 1 , 29 ]. Each of these tailless histones was 

incorporated into nucleosomes by the salt-dialysis method [ 28 , 30 ], 

and the nucleosomes were purified by native polyacrylamide gel elec- 

trophoresis [ 29 ]. Crystals for all of the tailless nucleosomes were ob- 

tained by the hanging drop vapor diffusion method, using 20 mM 

potassium cacodylate (pH 6.0), 50 mM KCl, and 110–155 mM MnCl 2 
as the crystallization solution. Drops composed of 1 μl nucleosome 

solution and 1 μl crystallization solution were equilibrated against 

500 μl of reservoir solution, containing 20 mM cacodylate (pH 6.0), 

35–40 mM KCl, and 60–80 mM MnCl 2 , at 20 ◦C. 

2.2. Crystallographic data collection and structure determination 

The diffraction data were collected at the beamline AR-NW12A at 

the Photon Factory (KEK, Tsukuba, Japan), at a wavelength of 1.0000 Å. 

Crystals were soaked in cryoprotectant solutions containing 20 mM 

potassium cacodylate (pH 6.0), 40 mM KCl, 60 mM MnCl 2 , 30% 2- 

methyl-2,4-pentanediol, and 2% trehalose, and were flash-cooled in 

a stream of nitrogen gas at 100 K. The data were indexed, integrated, 

and scaled with HKL2000 [ 31 ], and were further processed using the 

CCP4 suite programs [ 32 ]. All structures were solved by the molecular 

replacement method with the program MOLREP [ 33 ], using the struc- 

ture of the intact human nucleosome (Protein Data Bank code 3AFA ) as 

the search model. All models were checked using sigma-A-weighted 

composite omit maps during the modeling. The models were rebuilt 

with COOT [ 34 ] and refined with CNS [ 35 ]. The statistics for data col- 

lection and refinement are provided in Table 1 . All molecular graphics 

images were generated using PyMOL (pymol.sourceforge.net) [ 36 ]. 

2.3. Exonuclease assay 

The exonuclease assay was conducted according to the same 

method described previously [ 37 ]. Briefly, each reconstituted nucle- 

osome, containing tlH2A, tlH2B, tlH3, or tlH4, was treated with 5 

units of Escherichia coli exonuclease III (Takara), in 10 μl of 50 mM 

Tris–HCl (pH 8.0), 5 mM MgCl 2 , and 1 mM DTT. The reaction was 

continued for 0, 2, 4, or 8 min at 37 ◦C, and was stopped by the ad- 

dition of 55 μl of proteinase K solution (20 mM Tris–HCl (pH 8.0), 

20 mM EDTA, 0.5% SDS, and 0.5 mg ml −1 proteinase K (Roche)). Af- 

ter a 15 min treatment at room temperature, the DNA was extracted 

with phenol / chloroform, precipitated with ethanol, and dissolved in 

Hi-Di Formamide (Applied Biosystems). The DNA samples were then 

analyzed by 10% denaturing PAGE, with a gel containing 7 M urea in 

0.5 × TBE buffer (21 V cm 

−1 for 1.5 h). 

2.4. Thermal stability assay 

The nucleosome stability was monitored by the thermal stabil- 

ity assay. SYPRO Orange (SIGMA-ALDRICH) preferentially binds to 

hydrophobic regions of proteins, but not to nucleic acids [ 38 ]. There- 

fore, thermal denaturation of the nucleosome can be detected, as the 

fluorescence signals of the SYPRO Orange bound to the denatured hi- 

stones. Each nucleosome, containing tlH2A, tlH2B, tlH3, or tlH4 (final 

http://www.rcsb.org/pdb/explore.do?structureId=3AFA
http://www.rcsb.org/pdb/explore.do?structureId=3AFA
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Table 1 

Data collection and refinement statistics. 

Crystal data tlH2A tlH2B tlH3 tlH4 

Data collection statistics 

Space group a P 2 1 2 1 2 1 P 2 1 2 1 2 1 P 2 1 2 1 2 1 P 2 1 2 1 2 1 

a ( ̊A) 104.5 105.8 104.8 105.7 

b ( ̊A) 109.3 109.7 109.3 109.3 

c ( ̊A) 175.7 175.4 176.2 175.7 

Resolution range ( ̊A) 50.0–3.00 50.0–3.20 50.0–3.40 50.0–3.00 

No. of reflections 242705 243734 140869 298483 

No. of unique reflections 40008 33745 27657 41127 

Completeness (%) b 98.0 (98.5) 97.4 (50.9) 98.9 (100) 99.3 (99.9) 

R sym (%) b , c 7.2 (71.1) 9.5 (56.1) 10.4 (56.3) 9.0 (71.8) 

I /σ (I) b 12.7 (2.2) 9.5 (3.1) 7.6 (3.0) 10.9 (2.9) 

Refinement statistics 

R work (%) d / R free (%) 24.8 / 29.6 26.9 / 32.1 26.0 / 30.3 24.4 / 31.3 

No. of protein residues 749 752 752 752 

No. of base pairs of DNA 145 146 145 145 

No. of ions 3 1 1 1 

No. of water molecules 0 0 0 0 

RMSD from ideal 

Bond length ( ̊A) 0.009 0.008 0.006 0.005 

Bond angles ( ◦) 1.31 1.27 1.15 1.06 

Average B-factors ( ̊A 2 ) 

Protein 86.5 90.6 99.9 89.5 

DNA 149.7 154.7 162.9 152.3 

Ion 111.8 76.3 80.1 75.1 

PDB code 3W96 3W97 3W98 3W99 

RMSD from wild type 

C α (histones) ( ̊A) 0.499 0.667 0.502 0.568 

P (DNA) ( ̊A) 0.703 0.897 0.627 0.749 

a The crystal of the wild-type nucleosome (PDB 3AFA ) belongs to the space group P 2 1 2 1 2 1 , with unit cell dimensions a = 105.8, b = 109.5, c = 180.9 Å. 
b Values in parentheses are for the highest-resolution shell. 
c R sym = �hkl �i | I hkl , i – < I hkl > | / �hkl �i I hkl , i . 
d R work = �hkl ‖ F o | – | F c ‖ / �hkl | F o |. R free is calculated with 5% of the total reflections held aside throughout the refinement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Exonuclease III digestion patterns of wt and tailless nucleosomes. Nucleosomes 

were digested for 0 (lanes 2, 6, 10, 14, and 18), 2 (lanes 3, 7, 11, 15, and 19), 4 (lanes 

4, 8, 12, 16, and 20), or 8 (lanes 5, 9, 13, 17, and 21) min at 37 ◦C by Escherichia coli 

exonuclease III. The reaction was stopped by the addition of proteinase K, and the DNA 

was extracted with phenol / chloroform, precipitated with ethanol, and dissolved in 

Hi–Di Formamide. The purified DNA samples were analyzed by 10% denaturing PAGE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

concentration, 2.25 μM), was prepared in 20 μl of a solution com-

posed of 18 mM Tris–HCl (pH 7.5), 0.9 mM EDTA, 0.9 mM DTT, and

SYPRO Orange (final concentration, 5 × ). The sample temperature

was increased by the StepOnePlus TM Real-Time PCR unit (Applied

Biosystems), and the fluorescence signals were measured with this

system. Since the wavelength at the fluorescence emission maximum

of SYPRO Orange is 570 nm, the fluorescence filter ‘filter 3 ’ , which

covers the emission wavelength ranges of the TAMRA (580 nm) and

NED (575 nm) dyes, was used for detecting the fluorescence of SYPRO

Orange bound to the denatured histones. The temperature gradient

was from 25 to 95 ◦C, in steps of 1 ◦C / min. The fluorescence intensity

from the SYPRO Orange probe bound to the denatured histones was

automatically converted to the normalized reporter value (Rn), and

the Rn value was plotted every minute. 

3. Results and discussion 

3.1. Preparation of nucleosomes containing the tailless H2A, H2B, H3, 

or H4 histones 

We bacterially expressed and purified four histone mutants

(tlH2A, tlH2B, tlH3, tlH4), which lacked the N-terminal 9, 24, 27, and

15 amino acid residues of H2A, H2B, H3, and H4, respectively ( Fig.

1 (A) and (C)). These truncated N-terminal regions of the histones con-

tain many previously identified post-translational modification sites

[ 26 , 39 ]. These deletion mutants were designed based on the tailless

histones obtained by the trypsin protease treatment [ 40 ], and the

previous crystal structures of nucleosomes ( Fig. 1 (B)) [ 1 , 28 , 30 , 41 ]. 

We then reconstituted four nucleosomes, each containing one of

the tailless histones. Reconstitution was performed by the salt dial-

ysis method [ 28 , 30 ], and the nucleosomes were purified by native

polyacrylamide gel electrophoresis using a Prep Cell apparatus [ 29 ].
The purified nucleosomes containing one of the tailless histones mi-

grated differently on the native polyacrylamide gel ( Fig. 1 (D)), and

contained stoichiometric amounts of the core histones ( Fig. 1 (E)).

The exonuclease treatment assay revealed that all four tailless nu-

cleosomes exhibited similar susceptibility towards ExoIII digestion,

as compared to the wt nucleosome ( Fig. 2 ). These results suggested

that the DNA ends were similarly wrapped within the nucleosomes,

and that tlH2A, tlH2B, tlH3, and tlH4 were properly incorporated into

nucleosomes. 

3.2. Structures of the tailless nucleosomes 

We next crystallized all four tailless nucleosomes, and determined

their structures at resolutions ranging from 3.0 to 3.4 Å ( Fig. 3 , Table

1 ). All four tlH2A, tlH2B, tlH3, and tlH4 nucleosome crystals belonged

to the space group P 2 1 2 1 2 1 , which is the same as the wt nucleosome

crystal (PDB code 3AFA ), and the packing arrangements were almost

identical among the four tailless nucleosomes. The root mean square

http://www.rcsb.org/pdb/explore.do?structureId=3W96
http://www.rcsb.org/pdb/explore.do?structureId=3W97
http://www.rcsb.org/pdb/explore.do?structureId=3W98
http://www.rcsb.org/pdb/explore.do?structureId=3W99
http://www.rcsb.org/pdb/explore.do?structureId=3AFA
http://www.rcsb.org/pdb/explore.do?structureId=3AFA
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Fig. 3. (A–D) Upper column: Crystal structures of the four tailless nucleosomes. Histone 

H2A is colored yellow, H2B is pink, H3 is cyan, H4 is pale green, and DNA is white. The 

nucleotides with RMSDs ≥1.2 Å, as compared with the structure of the wt nucleosome, 

are shown in black. Similarly, the histone residues with RMSDs ≥0.6 Å are highlighted 

in each deep color. To reduce the effects of crystal packing, the larger RMSD values 

between the two symmetric histones were adopted to discuss the structural alterations. 

The N-terminal residues without secondary structures near the truncated tails are 

depicted as space-filling models. Lower column: Side view. Histones are depicted in 

surface representations, to reveal the perturbations on the DNA-binding surface. (E) 

Stereo view of an example of the changes in the DNA conformation upon tail truncation: 

The DNA trajectories around the H2B N-terminal regions in tlH2B and wt nucleosomes 

are superimposed. The wt nucleosome is colored brown. The red arrow indicates a 

2.03 Å shift. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 4. (A–D) Simulated annealing F o − F c omit maps (2.8 σ ) for the N-terminal region of 

H3 in wt (A), tlH3 (B), tlH2B (C), and tlH2A (D) nucleosomes (stereo views). H3 residues 

1–44 were omitted for the calculation. Hydrogen bonds between the H3 N-terminal 

region and the DNA are denoted by red dashed lines. Histone H3 and DNA are colored 

blue and white, respectively. In panels B and C, the two H3 histones are shown. (E, F) 

Conformational changes in the entry / exit regions of the DNA near the H3 N-terminal 

region, upon the removal of the H3 (E) and H2B (F) N-terminal tails (stereo views). The 

structure of the wt nucleosome (brown) is superimposed. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of 

this article.) 
eviations (RMSDs) between the structures of the wt nucleosome 

nd each tailless nucleosome were calculated by the superimposition 

f all C α atoms of the histones and all phosphorus (P) atoms of the 

NA. The overall RMSD values for the C α and P atoms to the wt 

ucleosome were 0.499 and 0.703 for tlH2A, 0.667 and 0.897 for tlH2B, 

.502 and 0.627 for tlH3, and 0.568 and 0.749 for tlH4, respectively 

 Table 1 ). Therefore, the histone structure and the DNA path in the 

ailless nucleosomes are not significantly different from those of the 

t nucleosome. We then compared the DNA trajectory in the tlH2B 

ucleosome with that in the wt nucleosome ( Fig. 3 (E)), since the 

argest RMSD value for the DNA was observed between the tlH2B and 

t nucleosomes ( Table 1 ). The N-terminal tail of H2B directly binds 

o the DNA, and the N-terminal truncation of H2B slightly, but clearly, 

ffected the DNA trajectory near its binding site ( Fig. 3 (E)). 

.3. The N-terminal truncation of histone H3 perturbs the histone–DNA 

nteractions 

We compared the structure and electron density maps of the tlH3 

ucleosome with those of the wt nucleosome. We found that the elec- 

ron density map of the H3 K37–R42 region of the tlH3 nucleosome, 

hich is a binding site for DNA, was very ambiguous as compared to 

hat of the wt nucleosome ( Fig. 4 (A) and (B)). The H3 H39–R42 re- 

ion directly binds to a minor groove of the two DNA gyres in the wt 

ucleosome: the side chain of the H3 H39 residue is inserted in the 

inor groove of the entry gyre, and the H3 R40 and R42 side-chains 

orm hydrogen bonds with the atoms of the sugar ring, the adenine 

ase, and the phosphate backbone of another DNA gyre ( Figs. 1 (B) and 

 (A)). In the tlH3 nucleosome, the hydrogen bonds between the DNA 

nd the H3 R40 and R42 residues could be disrupted or weakened ( Fig. 

 (B)). Alternatively, the H3 K37–R42 binding to DNA may be stably 

etained but more variable in the tlH3 nucleosome, thus producing 

he ambiguous electron densities. However, previous analyses, such 

s single molecule transcription experiments [ 42 ], molecular dynam- 

cs simulations [ 22 ], and FRET measurements [ 20 ], indicated that the 
deletion of the H3 N-terminal tail enhances the transient unwrapping 

of DNA at the entry / exit regions. Therefore, we prefer the conclusion 

that some histone–DNA contacts are disrupted in the tlH3 nucleo- 

some, thus reducing its stability. 

The crystal structure of the nucleosome containing the cen- 

tromeric H3 variant, CENP-A, revealed that CENP-A structurally dif- 

fers from the conventional histone H3 at the N-terminal region in 

the nucleosome, and this CENP-A specific N-terminal structure may 

cause the unwrapping of DNA at the entry / exit regions in the nu- 

cleosome [ 37 ]. These facts indicated that the H3 N-terminal region 

contributes to the wrapping of DNA within the nucleosome. Con- 

sistently, in the wt nucleosome, the H3 N-terminal H39-R42 region 

penetrates into the minor groove of the DNA, and the H3 R40 and R42 

side-chains directly bind to the DNA. In the present study, we found 

that the H39–R42 region of histone H3 becomes “less stable” and / or 

“poorly organized” upon the deletion of the H3 N-terminal amino acid 

residues 1–27. Such perturbations of the H3–DNA interactions at the 

N-terminal region may be partly responsible for the instability of the 

tlH3 nucleosome (see below). 

3.4. The N-terminal truncation of histone H2B perturbs the 

histone–DNA interactions 

The H2B N-terminal tail passes between the two gyres of the DNA 

superhelix ( Fig. 1 (B)). The H2B R31 and R33 residues interact with 

one DNA gyre, and K30 and S32 form hydrogen bonds with the other 
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Fig. 5. (A) The H2B N-terminal regions in wt and tlH2B nucleosomes. Histone H2B 

and DNA are colored magenta and white, respectively. Simulated annealing F o − F c 
omit maps calculated without the H2B residues 1–37 (2.5 σ ) are shown. (B) The same 

region as in panel A, but in a different orientation to show the interaction with DNA. 

Hydrogen bonds between the H2B N-terminal region and the DNA are denoted by red 

dashed lines. The same omit maps as in panel A are shown only around H2B R33, for 

clarity. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Comparison of the N-terminal regions of wt nucleosome with tlH2A (A) and tlH4 

(B) nucleosomes. Simulated annealing F o − F c omit maps were calculated for residues 

1–28 of H2A and 1–32 of H4, respectively, and contoured at the 2.5 σ level. Histones 

H2A, H2B, H3, H4 and DNA are colored yellow, pink, cyan, green, and semi-transparent 

white, respectively. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA gyre in the wt nucleosome ( Fig. 5 ) [ 28 , 30 , 41 ]. The H2B dele-

tion of residues 1–24 affected the structure of the remaining H2B N-

terminal region, in which the electron density of the region preceding

the S32 residue was missing in the tlH2B nucleosome ( Fig. 5 (A)). Con-

comitantly, the H2B–DNA interactions that involve the K30 and R31

residues were disordered in the tlH2B nucleosome ( Fig. 5 (B)). The

electron density corresponding to the side chain moiety of the H2B

R33 residue was also missing in the tlH2B nucleosome ( Fig. 5 (A) and

(B)). Therefore, the absence of the H2B–DNA interaction in the tlH2B

nucleosome (K30, R31, and R33 residues) may alter the DNA trajec-

tory near the binding site ( Fig. 3 (E)), and may affect the nucleosome

stability. Single molecule experiments revealed three broad regions

of strong histone–DNA interactions on the nucleosome core particle

[ 43 ]. The strongest region is located at the dyad, and the other two

strong regions are ∼ ± 50 bp from the dyad. The latter regions include

the interaction sites with the H2B N-terminal region, suggesting that

this region contributes to enhance the affinity between the DNA and

the histone octamer in nucleosomes. These findings are consistent

with the previous report that the removal of the H2B N-terminal tail

modulates nucleosome positioning and promotes uncatalyzed nucle-

osome sliding [ 21 ]. 

It has been proposed that the H2B N-terminal tail plays a role in

the structural polymorphism of nucleosomes through DNA untwist-

ing, which could modify the interactions between the distal H3 N-

terminal tail and the DNA at the entry-exit site [ 44 ]. Consistently, the

electron density around the H3 H39–R42 region was ambiguous in

the tlH2B nucleosome structure, as compared to the wt nucleosome

( Fig. 4 (A) and (C)), despite the facts that the full-length H3 was recon-

stituted in the tlH2B nucleosome, and the H2B N-terminal tails were

located far away from those of H3 ( Fig. 1 (B)). This may not be the only

reason for the low-resolution structure, because the electron den-

sity of the corresponding region was clearly observed in the tlH2A

nucleosome structure at similar resolution ( Fig. 4 (D)). Actually, the

conformations of the DNA entry / exit regions interacting with the H3

N-terminal regions were influenced similarly in both the tlH2B and

tlH3 nucleosomes ( Fig. 4 (E) and (F)). Altogether, the removal of the

H2B N-terminal tail seems to destabilize the extensive interactions

between the histone and DNA. 
3.5. The N-terminal truncations of histones H2A and H4 

The N-terminal tail of histone H2A is exposed on the disk face

of the nucleosome, and is close to the H2B C-terminal tail ( Fig. 1 (B)).

The deletion of the H2A residues 1–9 did not affect the overall nucleo-

some structure ( Fig. 3 (A)) and the remaining N-terminal tail structure

( Fig. 6 (A)). Thus, we concluded that the impact on the nucleosome

structure upon the truncation of the H2A N-terminal residues 1–9 is

minimal. Similarly, the H4 deletion of residues 1–15 also did not sig-

nificantly affect the overall and remaining N-terminal tail structures

in the nucleosome ( Fig. 6 (B)). The H4 N-terminal tail directly binds to

the acidic patch of the neighboring nucleosome surface [ 1 , 2 , 8 , 45 ], and

is reportedly important for the compact folding of chromatin fibers

[ 46 , 47 ]. The H4 1–19 region, especially H4 residues 14–19, has been

demonstrated to be essential for chromatin fiber compaction, but

the N-terminal tails of H2A, H2B, and H3 were not fully required for

the compaction [ 47 ]. In the present structure of the tlH4 nucleosome

that lacks H4 residues 1–15, no significant structural differences were

found in the remaining N-terminal regions of both H4 histones ( Fig.

6 (B)), or in the crystal packing contacts with the H2A acidic patch.

This is consistent with the previous report that the deletion of the H4

residues 1–13 did not influence array compaction [ 47 ]. Therefore, the

H4 residues 16–19 may function in chromatin fiber compaction. 

3.6. The N-terminal tails of H2B and H3 contribute to nucleosome 

stability 

Altered stability in the proteolytically generated tailless nucleo-

somes was observed by the thermal denaturation assay, but not by

the salt dissociation assay [ 19 ]. Therefore, we performed a thermal

stability assay with nucleosomes containing tlH2A, tlH2B, tlH3, or

tlH4, in the presence of SYPRO Orange. SYPRO Orange is a dye that

preferentially binds to hydrophobic regions of proteins [ 38 ]. There-

fore, the binding of SYPRO Orange to native, folded proteins is low,

whereas the binding increases when proteins are denatured and the

internal hydrophobic regions become exposed to the solvent. In fact,

small amounts of SYPRO Orange bound to histones that were properly

incorporated into nucleosomes. In contrast, the amount of SYPRO Or-

ange bound to histones drastically increased when the histones were

denatured, as a consequence of the thermal disruption of nucleo-

somes ( Fig. 7 ). 

Under the experimental conditions used in this study, the wt nu-

cleosome was disrupted in a two-step manner (with a biphasic curve),
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Fig. 7. Effect of the removal of the histone N-terminal tails on the thermal stabilities 

of the nucleosomes. Each nucleosome, containing tlH2A, tlH2B, tlH3, or tlH4 (final 

concentration, 2.25 μM), was mixed with SYPRO Orange, and the sample temperature 

was increased by the StepOnePlus TM Real-Time PCR unit (Applied Biosystems). The 

temperature gradient was from 25 to 95 ◦C, in steps of 1 ◦C / min. Fluorescence signals 

of SYPRO Orange bound to the denatured histones were measured, and the thermal 

denaturing curves of the wt, tlH2A, tlH2B, tlH3, and tlH4 nucleosomes are shown in 

black, yellow, pink, blue, and green, respectively. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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hich probably reflects the ordered disassembly of H2A–H2B, fol- 

owed by H3–H4 ( Fig. 7 ) [ 48 ]. Ausio et al. previously reported that 

he wt nucleosome exhibited biphasic denaturation, and the first 

74.5 ◦C) and second ( ∼80 ◦C) melting transitions [ 19 ] are roughly 

n accordance with our thermal denaturation profile ( Fig. 7 ). In the 

ucleosomes containing tlH2A and tlH4, the initial phase of the dis- 

uption occurred at slightly higher temperatures than that of the wt 

ucleosome ( Fig. 7 ), suggesting that the nucleosome stability was not 

ffected by the deletion of H2A residues 1–9 or H4 residues 1–15. 

ince the H4 residues 16–19, which may be important for chromatin 

ber compaction [ 47 ], were still retained in the tlH4 nucleosome, 

urther deletion of H4 N-terminal residues may affect the nucleo- 

ome stability. By contrast, in nucleosomes containing tlH2B (lacking 

esidues 1–24) and tlH3 (lacking residues 1–27), the initial phase of 

isruption clearly occurred at lower temperatures, as compared to the 

t nucleosome ( Fig. 7 ). These results suggested that the N-terminal 

ails of H2B (1–24) and H3 (1–27) make important contributions to- 

ards the stability of nucleosomes. The tlH2B nucleosome instability 

evealed by the thermal stability assay is consistent with the previ- 

us observation that the deletion of the H2B 3–22 region confers a 

in (SWI / SNF-independent) phenotype [ 49 ], which accompanies nu- 

leosome instability [ 50 –52 ]. The deletion of the H3 N-terminal tail 

eportedly destabilizes the H2A–H2B dimer within the nucleosome 

 20 ]. This is consistent with our observation that the first melting 

ransition of the tlH3 nucleosome ( Fig. 7 ) probably reflects the H2A–

2B disassembly occurring at a lower temperature than that in the 

t nucleosome. 

These thermal stability data may be explained by our crystal struc- 

ures of the tlH2B and tlH3 nucleosomes. The histone–DNA contacts 

ere weakened in the tlH2B and tlH3 nucleosomes ( Figs. 4 and 5 ). 

n addition, alanine point mutations of the H3 H39, R40, and R42 

esidues reportedly increase nucleosome mobility [ 20 ]. These results 

uggested that the interactions of these residues with DNA may be 

mportant for the stable wrapping of the DNA around the histone 

ctamer. 

Coordinates and structure factors have been deposited in the Pro- 

ein Data Bank (tlH2A nucleosome, PDB: 3W96 ; tlH2B nucleosome, 

DB: 3W97 ; tlH3 nucleosome, PDB: 3W98 ; and tlH4 nucleosome, 

DB: 3W99 ). 
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