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Peritoneal dialysis (PD) is a frequently used and growing therapy for end-stage renal diseases (ESRD). Survival analysis of PD
patients is an ongoing research topic in the field of nephrology. Several biochemical parameters (e.g., serum albumin, creatinine,
and blood urea nitrogen) are measured repeatedly in the follow-up period; however, baseline or averaged values are primarily
associated with mortality. Although this strategy is not incorrect, it leads to information loss, resulting in erroneous conclusions
and biased estimates. This retrospective study used the trajectory of common renal function indexes in PD patients and mainly
investigated the association between serum albumin change and mortality. Furthermore, we considered patient-specific
variability in serum albumin change and obtained personalized dynamic risk predictions for selected patients at different follow-
up thresholds to investigate the effect of serum albumin trajectories on patient-specific mortality. We included 417 patients from
the Erciyes University Nephrology Department whose data were retrospectively collected using medical records. A joint
modeling approach for longitudinal and survival data was used to investigate the relationship between serum albumin trajectory
and mortality of PD patients. Results showed that averaged serum albumin levels were not associated with mortality. However,
serum albumin change was significantly and inversely associated with mortality (HR: 2.43, 95% CI: 1.48 to 4.16). Risk of death
was positively associated with peritonitis rate, hemodialysis history, and the total number of comorbid and renal diseases with
hazard ratios 1.74, 3.21, and 1.41. There was also significant variability between patients. The personalized risk predictions
showed that overall survival estimates were not representative for all patients. Using the patient-specific trajectories provided
better survival predictions within the follow-up period as more data become available in serum albumin levels. In conclusion,
using the trajectory of risk predictors via an appropriate statistical method provided better predictive accuracy and prevented
biased findings. We also showed that personalized risk predictions were much informative than overall estimations in the
presence of significant patient variability. Furthermore, personalized estimations may play an essential role in monitoring and
managing patients during the follow-up period.

1. Introduction

Peritoneal dialysis (PD) is a frequently used and growing
therapy for end-stage renal diseases (ESRD). In the 1970s,
continuous ambulatory peritoneal dialysis (CAPD) was first
discussed by Popovich et al. [1] and became popular through
the following decades. With the ongoing clinical develop-

ments and advantages (e.g., ease of implementation and
cost-effectiveness), PD was accepted as a home-based renal
therapy. The worldwide estimated number of PD patients
was approximately 150,000 in 2008 [2] and increased to
272,000 in 2017 [3], which suggests that it almost doubled
within ten years. It was also reported that PD was approxi-
mately 11% of all dialysis modalities in the world [3].
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However, the number of PD patients significantly differed
among regions, countries, or continents. According to Li
et al. [3], peritoneal dialysis use was estimated between 4%
and 71.9%, and 5-year survival between 34% and 64% in dif-
ferent countries globally. In Turkey, Sipahioglu et al. [2] esti-
mated 5-year survival rates as 68.8%, and Tekkarismaz and
Torun [4] estimated them as 65% in adults, which was higher
than other regions reported by Li et al. [3]. Interpreting
unadjusted survival rates might be misleading because
patients’ survival might decrease dramatically with comor-
bidities and other risk factors (e.g., age at PD initiation, nutri-
tional status, clinical and biochemical outcomes such as
hemoglobin level, and white blood cell count). For example,
Turkey’s five-year survival rates were reported as 36.8% and
79.8% in diabetic and nondiabetic subgroups, respectively,
which was found to be significantly different [4].

Predicting survival of a study group was frequently exam-
ined using the Kaplan-Meier analysis and/or Cox propor-
tional hazard models. The Kaplan-Meier analysis is
practical when researchers aim to compare survival rates
between subgroups. The Cox proportional hazard model,
on the other hand, allows adjusting estimated survival prob-
abilities by controlling for possible confounders, such as
comorbidities, biochemical/chemical and demographic vari-
ables, and nutritional status. In practice, PD patients are
monitored for nutritional status, kidney functions, and
inflammations during the follow-up period. Some variables
(e.g., serum bilirubin, albumin and creatinine levels, blood
urea nitrogen, and hemoglobin level) are repeatedly mea-
sured from PD patients; however, a vast majority of studies
ignored repeated measurements for simplicity and used
either the Kaplan-Meier or the Cox proportional hazard
model based on a single measurement (i.e., baseline or aver-
age of multiple records) of related risk factors [3–8].
Although it is possible to examine survival probabilities using
averaged values of continuous risk factors associated with
PD, the repeated measurements might give better insights
for predicting short- or long-term survival probabilities.
Association between baseline serum albumin level and mor-
tality is well known [4–9]; however, the relationship between
the time-varying serum albumin levels and mortality is a
recent and promising research topic. Furthermore, most of
the existing studies focused on population-based risk estima-
tions and failed to reflect within-patient variability. In recent
years, personalized therapies and risk predictions have
become popular in medicine, especially in treating and mon-
itoring chronic diseases [10–12] at the patient level. With
recent developments in statistical modeling, it is possible to
predict the mortality of PD patients individually by consider-
ing patient-specific parameters and changes in common
renal function biomarkers (e.g., serum albumin, serum creat-
inine, and blood urea nitrogen) in time. Furthermore,
patient-specific risk predictions for future time points can
be updated dynamically whenever new information becomes
available.

Serum albumin levels at the beginning of PD initiation or
averaged values over the follow-up period are useful to pre-
dict survival outcomes in PD patients. However, we believe
that the longitudinal change and trend in albumin levels

might provide more accurate risk estimations. In this study,
we aimed to extend the survival model (generally the Cox
proportional hazard model) to repeated measurements (i.e.,
time-varying predictors) using the joint modeling approach,
a novel and recently proposed method [13, 14], to explore
the relationship between the longitudinal nature of common
renal function biomarkers and survival outcome for patients
undergoing PD. In addition, we also aimed to predict person-
alized dynamic survival estimations via the proposed
approach by updating the risk prediction model whenever a
new measurement was taken. To the authors’ best knowl-
edge, the current study is the first study that examines the
joint modeling approach on PD patients in Turkey and is
among the few studies published worldwide [15–17]. Fur-
thermore, the current study used personalized risk predic-
tions in PD patients via a joint modeling approach for the
first time.

2. Materials and Methods

2.1. Study Design and Participants. Five hundred eleven
patients, who initiated PD at the Erciyes University Nephrol-
ogy Department, were retrospectively included in the study
[2]. Patients were followed starting from PD initiation to
death, kidney transplant, termination of PD, lost to follow-
up due to withdrawal or unknown reasons, or end of the
study, whichever occurred first. Participants were initiated
PD between the years 1995 and 2007; however, the follow-
up period continued until 2016. Among 511 patients, 423
patients were included in the study according to exclusion
criteria such as (i) patients that recovered kidney functions
and needed no further treatment, (ii) aged below 18 years
at PD initiation, (iii) survived less than 90 days, and (iv)
patients that had missing data for most of the variables of
interest. In addition, we excluded three patients who were
transferred to PD from kidney transplantation and three
patients who have no values in the repeatedly measured
response variable (e.g., serum albumin levels and blood urea
nitrogen). Finally, 417 patients were included in the study
(see Supplementary Figure 1 for a complete study flowchart).

2.2. Clinical Outcome. The primary clinical outcome was
mortality due to PD. In this retrospective cohort study,
patients’ data, including the demographic (e.g., age at PD ini-
tiation, body mass index, gender, the existence of comorbid
diseases, dialysis history, and PD modality) and clinical/bio-
chemical measurements (e.g., serum bilirubin, albumin,
hemoglobin levels, white blood cell count, calcium, triglycer-
ide, high- and low-density lipoprotein levels, glomerular fil-
tration rate, and parathyroid hormone), were collected
from medical records. Repeated measurements of nutri-
tional, biochemical, and clinical outcomes were recorded
within the follow-up period. The association between the
magnitude of change in trajectories of longitudinal bio-
markers and mortality was investigated. Patients who died
during the PD process or three months after transferring to
hemodialysis (HD) were considered PD-related deaths. Sipa-
hioglu et al. [2] found that several biochemical parameters
significantly changed between groups defined as low and
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high according to the transport property of the peritoneal
membrane. Furthermore, 5- and 10-year survival estimates
were lower in high transport characteristics. Hence, we used
a similar grouping strategy as in Sipahioglu et al. [2] and
examined survival outcomes by adjusting transport charac-
teristics of the membrane.

The effect of comorbid and renal diseases on mortality is
well established among PD patients via the Charlson comor-
bidity index (CCI) [18, 19]. Our study could not calculate the
CCI because the data for some comorbid diseases, essential
for the CCI calculation, were either unmeasured or missing.
Hence, we preferred to use the total number of comorbid
and renal diseases observed in a patient as an independent
predictor to reflect the influence of comorbidity on mortality.
Cardiovascular disease, lung disease, hepatitis, diabetes mel-
litus, glomerulonephritis, hypertension, and polycystic kid-
ney disease were considered to calculate the total number of
comorbid and renal diseases; therefore, it takes values
between 0 and 7.

2.3. PD Modalities. Prior renal replacement therapy (RRT) of
patients was either hemodialysis or kidney transplantation.
At PD initiation, participants were assigned to one of the
PD modalities, CAPD with a twin-bagged system or auto-
mated PD (APD). The prescription of CAPD was 4x 2L
exchanges as long as no sign of inadequate dialysis was
observed. Dialysate fluids containing (i) 1.36%, 2.27%, or
3.86% glucose; (ii) amino acids; or (iii) icodextrin were used
according to the clinical needs of patients. The catheter exit
site was regularly dressed with polyvinylpyrrolidone iodine
(Poly-Iodine) to avoid catheter exit site and tunnel inflam-
mations and peritonitis. Many of the patients and their care-
givers were informed about the sterilization techniques at
baseline PD initiation and during PD. However, we could
not collect information from medical records whether
patients and their caregivers, who were enrolled before the
year 2000, were trained about sterilization techniques or not.

2.4. Statistical Analysis. Statistical analyses were performed
on the R language environment (version 4.0.2, URL: https://
cran.r-project.org). Numerical variables were summarized
using the mean and standard deviations and median and
quartiles (or minimum and maximum) for normally and
nonnormally distributed variables, respectively. Categorical
variables were summarized with frequencies and percent-
ages. Normality of data was assessed using the graphical (his-
togram, Q-Q plots, etc.) and analytical (Shapiro-Wilk’s
normality test) approaches.

The relationship between the trajectory of longitudinal
biomarkers and mortality was evaluated using a joint model,
which is comprised of two submodels: (i) a linear mixed
effect (LME) model for evaluating the longitudinal bio-
marker and (ii) a Cox proportional hazard model for mortal-
ity. The joint modeling approach is aimed at predicting the
effect of the longitudinal biomarkers on mortality while
adjusting both the longitudinal and survival outcomes for
possible confounders. At first, a univariate Cox proportional
hazard model and an LME model were used to find a list of
significant predictors from among biochemical, clinical,

nutritional, and demographic variables. Next, the survival
and longitudinal submodels were combined using a joint
model, and model parameters were estimated simulta-
neously. The analyses were conducted in R using the JMbayes
[13] package developed explicitly for joint modeling of longi-
tudinal and survival processes.

In the joint modeling, the longitudinal nature of the
response variable is modeled using an LME model given in

yit =mit + ϵi = βTX + bTZ + ϵi, ð1Þ

where X and Z are the vectors of fixed and random effects
with the vectors of regression parameters β and b, respec-
tively, and ϵi is the random error term of the ith patient.
The fitted curves of trajectories from the longitudinal model
were included as a time-varying covariate in the survival part
through an association parameter. The survival submodel
can be specified as in

hi tð Þ = h0 tð Þ exp γTi wi + αmit

� �
, ð2Þ

where wi is the vector of baseline covariates of the ith patient
associated with mortality, γTi is the vector of model parame-
ters, and mit is the fitted trajectory of serum albumin levels
calculated via an LME model for the ith patient at time t
[14]. Here, α is the association parameter between longitudi-
nal and survival submodels. The effect of the longitudinal
biomarkers (e.g., serum albumin levels and BUN) is incorpo-
rated into the survival model after adjustment for possible
confounders through an LME model. If the parameter α is
statistically insignificant, then there is no significant associa-
tion between mortality and the longitudinal biomarker.

PD-related deaths might be associated with several bio-
markers such as serum albumin, serum creatinine, and blood
urea nitrogen. This paper mainly focused on serum albumin
and used albumin levels at 6-month intervals as a longitudi-
nal response. Joint modeling results of blood urea nitrogen
and serum creatinine were given as supplementary. We sep-
arated two patients, one censored and the other dead, as an
independent test set for evaluating the predictive perfor-
mance of the built model. These patients were randomly
selected from participants with similar baseline serum albu-
min levels but trajectories in opposite directions, i.e., better
nutritional conditions for the censored and worse nutritional
conditions for the dead in time. Finally, patient-specific
dynamic survival predictions were obtained for the patients
in the test set at different time points to forward. The level
of statistical significance was set at p < 0:05 in all analyses.

3. Results

The current study included 417 patients who underwent PD,
of which 364 (87.3%) were treated with CAPD. Prior RRTs
were hemodialysis in 54 (12.9%) patients and kidney trans-
plantation in 3 (0.7%) patients. Many of the participants were
first-ever PD patients (86.4%). The mean age of patients at
PD initiation was 45:92 ± 14:33 years. The most frequent
causes of end-stage renal disease were DM (34.8%),
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hypertension (14.9%), and glomerulonephritis (9.1%)
(Table 1). The median follow-up duration of patients was
30.05 (range: 3 to 137) months. Within the follow-up period,
86 (20.6%) patients died primarily due to cardiovascular
events (21.8%), peritonitis, and other infections (26.4%).
The most common comorbid disease was CVD (22.1%),
followed by hepatitis (14.4%) and lung disease (3.1%).

Table 2 shows the results of univariate and multivariate
Cox proportional hazard models. We used the univariate
Cox model results to define a list of independent predictors
of mortality. Repeatedly measured variables were averaged
over the follow-up period and included in the Cox models.
According to the multivariate Cox proportional hazard
model results, averaged albumin levels, BUN, WBC, trans-
port characteristic of the peritoneal membrane, and age at
PD initiation were not associated with mortality when
adjusted for the remaining risk factors. However, the final
risk estimates and conclusions were carried out using the sur-
vival part of the joint model (Table 3), and the results were
compared with the multivariate Cox model.

The change in serum albumin levels in time is given in
Figure 1. Serum albumin levels were higher in alive patients
and slightly changed over time. However, in dead patients,
inclines and declines in serum albumin levels were observed
(Figure 1(a)). Furthermore, there was significant variability
in serum albumin trajectories between patients. Figure 1(b)
shows the patient-specific changes in albumin levels for five
randomly selected patients within a 5-year follow-up period.
The multivariate Cox proportional hazard model (Table 2)
failed to consider time-varying nutritional status and kidney
functions of patients because averaged values were used. In
the joint modeling (Table 3), the patient-specific trajectory
of albumin levels was fitted to an LME model, and adjusted
serum albumin levels were associated with mortality through
the survival submodel (see Supplementary Figure 2 for the
complete list of adjusted variables in each submodel).

According to the joint modeling results, the effects of
BUN, age at PD initiation, the total number of comorbid dis-
eases, peritonitis rate, andWBC on time-varying serum albu-
min were found statistically insignificant. The estimated
serum albumin levels were 0.27mg/dL lower in high trans-
porters. It increased 0.028mg/dL and 0.279mg/dL with every
1mg/dL increase in serum creatinine and serum calcium
levels, respectively. There was a significant and inverse rela-
tionship between mortality and the trajectory of serum albu-
min levels. A 1 g/dL decrease in the adjusted albumin levels at
a time point t (i.e., a unit change in the adjusted trajectory)
resulted in 2.43 times higher risk of death (95% CI: 1.48 to
4.16). A patient’s risk was 3.21 times (95% CI: 1.94 to 5.70)
higher if initiated PD from HD and increased 1.24 (95% CI:
1.10 to 1.40) times with every 1mg/dL decrease in the serum
creatinine levels. Finally, the risk of death increased 1.41
times with every increase in the total number of comorbid
and renal diseases, 1.07 times with a 1 kg/m2 increase in
BMI, and 1.74 times with a 1-unit increase in peritonitis.

3.1. Dynamic Prediction of Patient-Specific Survivals. The
Cox proportional hazard model gives population-based risk
estimates and survival predictions. However, the survival

outcomes may differ between patients depending on the
patient-specific nutritional status and kidney functions dur-
ing the follow-up period (Figures 1(b), 2, and 3). Therefore,
the personalized and dynamic risk predictions, which are
estimated at different time thresholds within the follow-up
period, is preferred. Figures 2 and 3 show the dynamic sur-
vival predictions of selected test samples. These figures are
generated at different follow-up thresholds of a patient to
investigate the effect of serum albumin trajectories on mor-
tality. Serum albumin levels were presented on the left-
hand side of the dashed vertical line, and given that the
patient survived at the selected follow-up time point, the pre-
dicted survival probability of that patient for the future time
points up to 80 months presented on the right-hand side of
the vertical axis of each graphic.

Serum albumin levels were higher in the survived patient
while it got worse in time for the dead patient. In the early

Table 1: Biochemical, clinical, and demographic findings of the
study group (n = 417).

Characteristic Summary statistics∗

Age 45:92 ± 14:33
BMI at PD initiation (kg/m2) 23:63 ± 4:11
Gender, male 238 (57.1)

PD modality, CAPD 364 (87.3)

Prior RRT

First-ever PD 363 (87.1)

Hemodialysis (HD) 54 (12.9)

Cause of ESRD†

Diabetes mellitus (DM) 145 (34.8)

Glomerulonephritis 38 (9.1)

Hypertension 62 (14.9)

Polycystic kidney disease (PKD) 19 (4.6)

Unknown 112 (27.1)

Other 41 (9.8)

Comorbidity

Cardiovascular disease 92 (22.1)

Lung disease 13 (3.1)

Hepatitis 60 (14.4)

Total number of comorbid/renal diseasesa 1 [0-5]

Peritonitis rate (episodes/patient-year) 0.32 [0, 5.33]

Serum albumin (g/dL)†† 3.57 [1.75, 4.75]

Blood urea nitrogen (mg/dL)†† 53.6 [18.5, 119]

Serum creatinine (mg/dL)†† 7.35 [2.2, 18.48]

Serum calcium (mg/dL) 9:12 ± 0:71
WBC (×1000/mm3)†† 7.44 [3.6, 14.22]

Parathyroid hormone (pg/mL) 89 [2.0, 2059.8]

GFR (mL/min/1.73m2) 7.99 [0, 27.8]
∗Summarized using mean ± standard deviation, frequency (percentage), or
median [minimum, maximum] where appropriate. BMI: body mass index;
WBC: white blood cell counts; ESRD: early-stage renal disease; GFR:
glomerular filtration rate. aTotal number of comorbid and renal diseases
observed in a patient. †Patients might have more than one disease causing
ESRD. ††Averaged over follow-up period.
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Table 2: Univariate and multivariate Cox proportional hazard models.

Parameters
Univariate model Multivariate model∗∗

HR (95% CI) p value HR (95% CI) p value

Serum albumin (g/dL)† 0.35 (0.21, 0.59) <0.001 0.59 (0.31, 1.13) 0.116

Blood urea nitrogen (mg/dL)† 0.98 (0.96, 1.01) 0.068 0.99 (0.98, 1.02) 0.978

Serum creatinine (mg/dL)† 0.77 (0.71, 0.85) <0.001 0.82 (0.73, 0.92) <0.001
Serum calcium (mg/dL)† 0.93 (0.67, 1.30) 0.665 — —

Parathyroid hormone, log-scaled (pg/mL)† 0.88 (0.72, 1.09) 0.253 — —

WBC (×1000/mm3)† 1.17 (1.06, 1.30) 0.003 1.05 (0.93, 1.18) 0.444

Glomerular filtration rate, log-scaled (GFR) 0.94 (0.86, 1.03) 0.159 — —

Transferred from HD (yes) 1.84 (1.10, 3.10) 0.021 3.07 (1.71, 5.50) <0.001
No. of diseases†† 1.79 (1.43, 2.23) <0.001 1.34 (1.03, 1.17) 0.031

Age at PD initiation 1.04 (1.02, 1.06) <0.001 1.02 (0.99, 1.04) 0.125

BMI at PD initiation (kg/m2) 1.09 (1.04, 1.15) <0.001 1.09 (1.02, 1.16) 0.009

Peritonitis rate 2.26 (1.65, 3.09) <0.001 1.83 (1.30, 2.59) <0.001
Transport characteristic (high) 1.56 (1.01, 2.40) 0.045 0.95 (0.59, 1.54) 0.841
†Averaged values over follow-up period were used. ††A total number of comorbid and renal diseases observed in a patient. ∗∗Variables with p values < 0.10 in
the univariate model were included in the multivariate model.

Table 3: Joint modeling results—415 patients used for training the model and 2 patients were used as test samples for dynamic risk
predictions.

(a)

Longitudinal part (linear mixed effects)∗

Variable Estimate (95% CI) p value

Serum creatininea 0.028 (0.012, 0.042) 0.004

Serum calciuma 0.279 (0.198, 0.358) <0.001
BUNa -0.0001 (-0.004, 0.004) 0.968

Age at PD initiation -0.005 (-0.009, 0.001) 0.081

Number of diseasesb 0.0006 (-0.063, 0.057) 0.998

Peritonitis rate -0.051 (-0.123, 0.018) 0.163

WBC -0.029 (-0.058, 0.014) 0.103

Transportation characteristic (high)† -0.270 (-0.414, -0.207) <0.001

(b)

Survival part (Cox proportional hazard)∗∗

Variable Estimate (95% CI) HR (95% CI) p value

Serum creatininea -0.212 (-0.336, -0.096) 1.24 (1.10, 1.40)††† <0.001
BUNa 0.004 (-0.016, 0.025) 1.01 (0.98, 1.03) 0.668

Age at PD initiation 0.016 (-0.001, 0.34) 1.02 (0.99, 1.40) 0.069

WBC 0.061 (-0.073, 0.183) 1.06 (0.93, 1.20) 0.323

HD history (yes)† 1.165 (0.665, 1.740) 3.21 (1.94, 5.70) <0.001
Number of diseasesb 0.345 (0.09, 0.661) 1.41 (1.09, 1.94) 0.009

BMI 0.071 (0.011, 0.148) 1.07 (1.01, 1.16) 0.010

Peritonitis rate 0.556 (0.140, 0.891) 1.74 (1.15, 2.44) <0.001
Transportation characteristic (high)† -0.095 (-0.467, 0.276) 0.91 (0.63, 1.32) 0.622

Albumin (α)†† -0.889 (-1.425, -0.392) 2.43 (1.48, 4.16)††† <0.001
HR: hazard ratio; BMI: body mass index (kg/m2); GFR: glomerular filtration rate. †Model parameters were obtained for the group given in parenthesis.
††Albumin levels are estimated from longitudinal part of joint model. †††Hazard ratios were estimated for 1-unit decrease in corresponding predictors.
aAveraged over the follow-up period. bThe total number of comorbid and renal diseases observed in a patient.
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times of follow-up, predicted survival probabilities at 80
months were approximately 60% for both patients. However,
better survival predictions were obtained as more informa-
tion about serum albumin trajectory was collected from
patients, which was 70% for the survived and 20% for the
dead (Figures 2(d) and 3(d)).

4. Discussion

This study evaluated the association between serum albumin
trajectories and mortality in PD patients using the joint
modeling approach. Our findings showed that the changes
(increases and decreases) in serum albumin over time were

strongly and significantly associated with mortality after
adjustment for the risk factors including serum creatinine,
serum calcium, white blood cell count, age at PD initiation,
peritonitis rate, BMI, prior RRT, the total number of comor-
bid and renal diseases, and transport characteristic of the
peritoneal membrane (Supplementary Figure 2). The joint
modeling approach provided more accurate survival
estimates in PD patients as compared to the Cox
proportional hazard model. The reasons why the joint
modeling approach was more accurate may be as follows:
(i) it used the cumulative and historical information of
serum albumin, (ii) the true and unobserved trajectory of
serum albumin was estimated by the linear mixed model
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Figure 1: Trajectory of serum albumin levels: (a) all patients and (b) randomly selected 5 patients in each group.

0 20 40 60 80
Time

1

2

3

4

5

A
lb

um
in

 le
ve

ls

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

t-f
re

e p
ro

ba
bi

lit
y

Follow-up time: 36

0 20 40 60 80
Time

1

2

3

4

5

A
lb

um
in

 le
ve

ls

0.0

0.2

0.4

0.6

Event-free probability

0.8

1.0
Follow-up time: 30

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80
Time

1

2

3

4

5
A

lb
um

in
 le

ve
ls

Ev
en

t-f
re

e p
ro

ba
bi

lit
y

Follow-up time: 18

0 20 40 60 80
Time

1

2

3

4

5

A
lb

um
in

 le
ve

ls

0.0

0.2

0.4

0.6

Event-free probability
0.8

1.0
Follow-up time: 6

Figure 2: Dynamic survival predictions: patient survived 97+ months (age: 55, gender: female).

6 BioMed Research International



and adjusted before associating with mortality, (iii) model
parameters were jointly calculated by considering the
association between longitudinal and survival processes,
and (iv) the trajectory of serum albumin levels was
estimated at the patient level using the patient-specific
estimating equations, i.e., random effects. The risk of death
increased by 2.43 times (95% CI: 1.48 to 4.16) with every
1 g/dL decrease in the adjusted serum albumin at any time
point. Therefore, an efficient dietary program controlling the
protein and energy intake could improve the nutritional status
of PD patients, keep the serum albumin at a steady state, slow
renal disease progression, and decrease the risk of death.

Serum albumin is an indicator of the protein status and
calorie intake, amount of peritoneal and renal albumin loss,
adequacy of dialysis, and systemic diseases. Low serum albu-
min at baseline PD, one time point after PD initiation, or
averaged over time, was associated with mortality and techni-
cal failure in the previous studies [6, 20–23]. However, few
studies, including the current study, have focused on the tra-
jectory of albumin levels [15, 17, 24]. Flanigan et al. [25]
reported serum albumin values unchanged over the follow-
up period. Khoshhali et al. [24] found that serum albumin
was monotonically decreasing over time within three years
of the follow-up period. However, this trajectory was
reported for the group total. In the current study, we
observed different patterns in the overall trajectory of serum
albumin levels for dead and censored populations. Serum
albumin was almost constant during the follow-up period
in alive patients. In dead patients, on the contrary, it
increased after PD initiation for the following two years,
reached steady-state for a short-term, and decreased until
48 months (Figure 1). We also observed an increase in albu-
min levels after 48 months, which might be due to better

nutritional facts. However, we did not have sufficient data
to associate it with nutritional status because there were only
34 patients after 40 months in the dead group. This increase
might be a side effect of the small sample size on the fitted
curve of serum albumin trajectory. Therefore, it should be
justified on a larger study group that included more patients
who survived more than 40 months.

Serum albumin represents the nutritional status of PD
patients, and it is correlated with other nutritional indices
in a connection system. Serum creatinine, which is propor-
tional to skeletal muscle and dietary protein intake, is an indi-
cator of nutritional status in the maintenance and
monitoring of PD patients [2, 26]. In our study, serum creat-
inine was positively associated with serum albumin. Serum
creatinine levels might increase with the increasing amount
of skeletal muscle due to better nutritional status, and serum
albumin may be positively affected by the amount of serum
creatinine. Therefore, serum creatinine was used for two dif-
ferent purposes: (i) to adjust serum albumin and (ii) to pre-
dict mortality. The risk of death increased 1.24 times for
every 1mg/dL decrease in serum creatinine.

Higher transport status was associated with an increased
risk of death [2, 27, 28]. The high transportation group gen-
erally has excess peritoneal loss of albumin which may lead to
worse nutritional status and increase the risk of death.
Greater loss of protein into dialysate and inhibition of appe-
tite due to increased absorption of glucose might be the rea-
son for malnutrition. According to the results of a meta-
analysis study [27], transport status increased the risk of
death between 21.9% and 77.3% depending on the severity
of transport status. In our study, serum albumin levels were
estimated at 0.27 g/dL lower in higher transporters, resulting
in a 27.2% higher risk of death.

0 20 40 60 80
Time

1

2

3

4

5

A
lb

um
in

 le
ve

ls
0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

t-f
re

e p
ro

ba
bi

lit
y

Follow-up time: 42

0 20 40 60 80
Time

1

2

3

4

5

A
lb

um
in

 le
ve

ls

0.0

0.2

0.4

Event-free probability

0.6

0.8

1.0
Follow-up time: 30

0 20 40 60 80
Time

1

2

3

4

5

A
lb

um
in

 le
ve

ls

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

t-f
re

e p
ro

ba
bi

lit
y

Follow-up time: 18

0 20 40 60 80
Time

1

2

3

4

5

A
lb

um
in

 le
ve

ls

0.0

0.2

0.4

0.6

Event-free probability

0.8

1.0
Follow-up time: 6

Figure 3: Dynamic survival predictions: patient died at 80 months (age: 63, gender: female).
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Peritonitis is the major complication of PD and closely
related to technical failure [16, 21, 27] and all-cause mortality
[29–32]. Several studies associated low serum albumin at
baseline PD initiation [33, 34] and change in follow-up
period [35, 36] with increased risk of peritonitis. Decreases
in serum albumin before PD initiation or during PD may
cause malnutrition and poor health conditions in the long
term and increase the risk of peritonitis. In this study, the
mean peritonitis rate was 0.58 (median: 0.32) and associated
with subsequent risk of death, a 74% higher risk for every 1-
episode/patient-year increase in the peritonitis rate.

Other risk factors associated with mortality were prior
RRT, BMI, and the total number of renal and comorbid dis-
eases. BMI was associated with mortality, a 7% higher risk of
death with every 1 kg/m2 increase in BMI at baseline PD ini-
tiation. This study included three patients transferred to PD
from kidney transplantation. We excluded these patients
due to the very small sample size and evaluated the effect of
hemodialysis history (no vs. yes) on mortality. The risk of
death increased by 3.21 times (95% CI: 1.94 to 5.70) if a
patient was initiated HD before PD, which was similar to
the findings of previous studies [37–39]. The majority of
these patients had a vascular access problem. Therefore, the
increased risk of death was possibly influenced by hypercoag-
ulability or atherosclerosis in these patients.

This study evaluated the effect of comorbidity using the
total number of concurrent comorbid and renal diseases
observed in a patient. In practice, each comorbid or renal dis-
ease may be independently associated with mortality. How-
ever, using the total number of diseases may be more
informative since the risk of death may increase with the
existence of multiple diseases. Comorbidity was positively
associated with mortality, increasing the risk of death 41%
with one extrarenal or comorbid disease observed in a
patient. Patients died mostly due to cardiovascular disease
(CVD). The reason why CVD accounted for the majority of
death might be because the protective effect of serum albu-
min significantly reduced with decreasing serum albumin,
which increases the risk of CVD [40].

The nutritional status of patients may be influenced by
several factors, including social deprivation, medication his-
tory, and dietary factors. Therefore, serum albumin trajecto-
ries are expected to be significantly different between patients
(see Figure 1(b)), which indicated a significant patient vari-
ability. The built joint model returned the model parameters
in two partitions: the main effects and the random effects,
which can be used to evaluate population-based and
patient-specific risk estimations, respectively. We selected
two patients, one dead and one censored, to evaluate the pre-
dictive performance of personalized risk estimations. Both
patients were monitored within the follow-up period, and
the personalized survival estimates up to 80 months were
predicted dynamically at different time thresholds as new
measurements became available. Even though the serum
albumin at baseline PD initiation was similar in both
patients, we observed better nutritional status in censored
and worse in dead patients within the follow-up period. Also,
serum albumin instantly decreased for the dead patient at 12
months. The predicted survivals were approximately 60% in

both patients when the baseline serum albumin was consid-
ered. However, we estimated 20% survival for the dead and
80% for the censored at 80 months when the serum albumin
trajectory was considered (Figure 3(c)). Dynamic predictions
clearly showed that the predicted survivals are highly affected
by the longitudinal trajectory of serum albumin and other
patient characteristics. This finding has shown the impor-
tance of using personalized risk estimations in the care man-
agement and monitoring of PD patients. In nephrology,
personalized risk estimations obtained at different time
points may help physicians taking patient-specific decisions
such as changing the dietary factors, drug usage, and change
of modality. Furthermore, based on the built joint model, a
web- or computer-based and real-time running decision sup-
port system can be developed to support physicians in their
decisions. Such a system could be used to monitor patients,
obtain dynamic and personalized risk estimations instantly
at any time during the follow-up period, and generate
patient-specific reports.

This study mainly focused on the trajectory of serum
albumin and evaluated the association with mortality. How-
ever, it is possible to build joint models using other renal
function indexes. We provided the joint modeling results of
serum creatinine and blood urea nitrogen as a supplemen-
tary. Although we associated serum creatinine and blood
urea nitrogen with mortality in the Cox proportional hazard
model, the joint modeling results showed that the trajectory
of blood urea nitrogen and serum creatinine was not associ-
ated with mortality (Supplementary Tables 1 and 2). Hence,
it is not required to build a joint model for blood urea
nitrogen or serum creatinine.

4.1. Limitations, Possible Sources of Bias, and Generalization
Issues. This study has some limitations. It is a single-
centered retrospective cohort study, and the results may
include center-specific effects. There are unmeasured param-
eters, which are possibly associated with serum albumin and
mortality, including residual kidney function, serum potas-
sium, malnutrition-inflammation complex syndrome
(MICS), comorbidity (the Charlson comorbidity index,
CCI), dialysis adequacy, race, and kidney transplantation as
prior RRT. We did not have enough data to adjust the above-
mentioned confounders, specifically for the older medical
records. Therefore, the validity of our findings should be con-
firmed in the presence of unmeasured confounders.

An important part of data was collected based on practice
before the recommendations that were released by the Inter-
national Society for Peritoneal Dialysis (ISPD) in 2017. Our
study may partially meet the criteria for avoiding peritonitis
and other inflammations. The peritonitis rate in our study
group was similar to the literature. Nonetheless, it may be
possible to decrease the peritonitis rate and other inflamma-
tions by considering the current care management and rec-
ommendations. Therefore, the association between
peritonitis and mortality should be validated on a recent
dataset.

Another limitation and bias arose from associating the
comorbidity with mortality. We were unable to calculate
CCI due to insufficient data. We tried to reflect the influence
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of comorbidity by using the total number of renal and
comorbid diseases. Although our approach associated
comorbidity with mortality, the results may not be as accu-
rate as CCI. We used a primitive predictor of comorbidity;
therefore, our findings should be validated using the CCI,
whenever it can be calculated.

This study has the potential to be improved. Multivariate
extension of the joint modeling may improve the model per-
formances. The multidimensional trajectory of longitudinal
biomarkers (e.g., serum albumin, BUN, and serum creati-
nine) may be adjusted for confounding factors, and the
adjusted trajectory of multivariate responses may be associ-
ated with mortality [9]. This paper studied the simpler
model, and the multivariate joint modeling was not covered
because it requires a larger sample size. We leave this as
another research topic to be applied to a larger study group.

5. Conclusions

The Cox proportional hazard model and Kaplan-Meier
method are easy to implement and practical to present
population-based risk predictions. However, these methods
poorly explain the effect of change in the time-varying
response variable (e.g., serum albumin levels) on mortality.
Also, such methods are not capable of considering patient
variability. We implemented an advanced modeling strategy,
called the joint model, to evaluate the association between
time-varying covariates and mortality as well as considering
the patient variability. According to the findings, we suggest
using the joint model, a more advanced alternative to the
Cox proportional hazard model, for accurately associating
the time-varying biomarkers with mortality.

This study indicated that the trajectory of serum albumin
was a more potent predictor than baseline or averaged serum
albumin. Furthermore, the serum albumin trajectory was the
only significant predictor of mortality from others, including
the serum creatinine and blood urea nitrogen trajectories. In
practice, the independent risk predictors that we considered
in this study were collected regularly from PD patients.
Therefore, the proposed modeling strategy can be easily
applied to other PD patients.

In summary, the current study and the modeling
approach used have several advantages: (i) it incorporates
the change in albumin levels in time into Cox proportional
hazard model; hence, it uses all the information in the model-
ing process; (ii) it allows to predict patient-specific mortality
along with a population-based estimation; and (iii) finally, it
allows the monitoring of patients using dynamic survival
predictions for future time points. This study, as being
among the first studies, contributes to the peritoneal dialysis
literature by approaching the survival analysis from a differ-
ent perspective and making use of personalized predictions
of mortality for the first time.
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