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A 12-mer amino acid peptide SATTHYRLQAAN, denominated TK4, was isolated from a phage-display library with fibrosarcoma
tumor-binding activity. In vivo biodistribution analysis of TK4-displaying phage showed a significant increased phage titer in
implanted tumor up to 10-fold in comparison with normal tissues after systemic administration in mouse. Competition assay
confirmed that the binding of TK4-phage to tumor cells depends on the TK4 peptide. Intravenous injection of 131I-labeled synthetic
TK4 peptide in mice showed a tumor retention of 3.3% and 2.7% ID/g at 1- and 4-hour postinjection, respectively. Tumor-to-
muscle ratio was 1.1, 5.7, and 3.2 at 1-, 4-, and 24-hour, respectively, and tumors were imaged on a digital γ-camera at 4-hour
postinjection. The present data suggest that TK4 holds promise as a lead structure for tumor targeting, and it could be further
applied in the development of diagnostic or therapeutic agent.

1. Introduction

Metastasis to the lung is often a lethal cause in sarcomas
and other cancers [1, 2]. Many attempts to eradicate cancer
through conventional therapy (irradiation or chemotherapy)
are ineffective, mainly because of treatment resistance [3–
5]. Highly metastatic cells tend to exhibit a greater survival
ability and resistance to apoptosis than poorly metastatic
ones. New imaging procedures for diagnosis, treatment plan-
ning, and therapy of metastatic cancer are thus required for
accurate staging. Several attempts to optimize the methods

for imaging lung metastases have been described, such as
bioluminescence imaging (BLI) or fluorescence reflectance
imaging (FRI) of HT-1080 fibrosarcoma cells labeled with
luciferase or green fluorescent protein (GFP), respectively
[6, 7], and single photon emission computed tomography
(SPECT) of prostate cancer cells expressing Na+/I-symporter
[8], or fibrosarcoma cells expressing herpes simplex virus
type 1 thymidine kinase (HSV1-tk) [9]. However, although
these models have great potential in preclinical researches,
the need of the stable expression of an exogenous marker
gene limited their applications in clinic. Efficient molecular
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tracers that can target metastatic tumors through binding an
endogenous receptor expressing on cancer cells need to be
developed.

Peptides are promising molecules to selectively deliver
imaging or therapeutic agents to tumors. Peptides have
several advantages such as small size, good tissue diffusion,
target accessibility, no antigenicity, easy synthesis, and ade-
quate radiolabeling [10]. The application of a specific tumor-
targeting peptide requires enough binding sites (e.g., an over-
expressed cell surface receptor), high affinity of the ligand,
and sufficient in vivo stability [11]. Some peptide probes
such as somatostatin, gastrin, bombesin, GLP-1, and RGD
analog peptides have been extensively examined and applied
to diagnosis and radiopeptide therapy [10]. Most of these
peptides target tumor by recognizing a regulator peptide
receptor overexpressed in tumors. For example, somatostatin
analogs, the most prominent example of tumor-specific
peptide, recognize mainly somatostatin receptor subtype 2
overexpressed in neuroendocrine tumors [12]. Bombesin
(also known as gastrin-releasing peptide (GRP)) analogs
were applied in diagnostic imaging of prostate and breast
tumors in clinic [13, 14]. RGD motif does not belong to
the regulatory peptide family, but is present in extracellular
matrix (ECM) components like fibrinogen and vitronectin,
which interact with integrin receptors on cells [15]. RGD-
based peptides were developed to target neoangiogenic
endothelial and various types of tumors in preclinical models
[16].

The identification of new tracer peptides that can
target tumor cells with sufficient specificity and reduced
background binding for in vivo imaging remains a challenge.
Phage display is a powerful technique to identify novel short
peptides that can bind to proteins or other macromolecules,
with the major advantage of rapidly selecting a target-
specific peptide from a vast DNA library [17]. Phage display
technique has also been used to discover numerous novel
peptides with specificity to various types of cancer, and some
have been further applied in drug delivery and diagnosis
researches (for a recent review, see [18]).

Our lab has previously reported the use of planar
γ-camera for noninvasive imaging of tumor progression
and gene therapy in an experimental blood-borne lung
metastases model using fibrosarcoma cells expressing HSV1-
tk [9]. Nevertheless, the imaging relied on the expression of
an exogenous reporter gene integrated in tumor cells. In the
current research, we intend to develop a peptide tracer that
can target fibrosarcoma tumors in vivo without the need of
an exogenous marker in tumor cells. A novel peptide was
selected through phage-display biopanning. Biodistribution
analysis and noninvasive imaging using planar γ-camera
showed efficient homing and accumulation of the peptide
in tumor site in mice. The peptide shows no sequence
similarity to other peptides currently known for tumor
imaging, but is homologous to a sequence present in the
sixth fibronectin type III domain of a novel protein similar
to vertebrate fibronectin type III domain-containing protein
family (GenBank: CAQ14006.1). The binding of this peptide
to cancer cells was inhibited by fibronectin, suggesting that
it may have targeted cells through fibronectin-interacting

site(s). These results recommend the novel peptide as a
promising lead structure for tumor-targeting agent.

2. Material and Method

2.1. Cell Culture. The NG4TL4-tk cell line was constructed
from the parental NG4TL4 fibrosarcoma cell line [19] (China
Medical University, Taiwan) by transfecting with packaged
virions of a bicistronic retroviral vector containing HSV1-
tk gene [9]. NG4TL4-tk cells were cultured in minimum
essential medium (MEM) supplemented with 10% fetal
bovine serum (FBS), 100 units/mL penicillin, 10 mg/mL
streptomycin, and 2 mM L-glutamine (all from Gibco Invit-
rogen Ltd., Taiwan) in humidified atmosphere with 5% CO2

at 37◦C.

2.2. Animal and Tumor Implantation. Female 6-week-old
FVB/N mice were obtained from National Taiwan University
Laboratory Animal Center. NG4TL4-tk cells (5 × 105)
resuspended in 200 μl of PBS were injected subcutaneously
into the right limb of the mouse to form tumor. All animal
experiment protocols were approved by the Institutional
Animal Care and Use Committee of Taipei Medical Univer-
sity.

2.3. Phage Display and Panning Process. The 12-mer peptide
library (Ph.D.12, New England Biolabs, MA, USA) was used
for panning process. Briefly, 106 cancer cells were collected
and fixed with ice-cold glutaraldehyde (0.125% in PBS) for
10 minutes, washed with PBS, blocked with 3% (w/v) BSA
in PBS, and then incubated with ∼1012 phage clones for
1 hour at room temperature (RT). After extensive washes
with PBS, cells were collected by centrifuge, and the bound
phages were eluted with 200 μl of elution buffer (20 mM
Glycine-HCl, pH 2.2) and then neutralized by adding 12 μl
of neutralization buffer (2 M Tris-HCl, pH 9.1). The eluted
phages were amplified in ER2738 bacteria according to the
manufacturer’s protocol and used for the next round of pan-
ning. Four rounds of panning were performed. The phages
selected after the final round were amplified and stored. To
identify the DNA sequence of the peptide displayed on the
phage, single-phage plaques were picked up and amplified
for sequencing using a primer corresponding to phage pIII
gene sequence: 5′-CCCTCATAGTTAGCGTAACG-3′.

2.4. In Vitro and In Vivo Phage-Binding Assay. For in vitro
phage-binding assay, 106 cancer cells in suspension were
mixed with 5 × 1010 testing phages in PBS for 2 h at 37◦C.
After 5 washes with PBS, bound phages were eluted and
neutralized as described. Recovered phages were amplified in
ER2738 bacteria and the titer was determined by standard
plaque-forming analysis. For immunofluorescent micro-
scopic examination, cells were seeded on glass coverslips
by 105 cells/well in a 24-well plate overnight. The following
day, cells were incubated with 5 × 1010 pfu of phages for
1 hour at RT. After 5 washes with PBS, cells were fixed in
2% formaldehyde and blocked with PBS containing 10%
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Figure 1: In vitro binding assay of TK4-phage to NG4TL4-tk tumor cells. (a) NG4TL4-tk cells were incubated with the indicated phages for
affinity examination. After extensive washing, bound phages were eluted from cells and titered as pfu. CP1 and CP3 are phages displaying
irreverent peptide. M13 is the wild-type phage. (b) Binding of TK4-expressing phage to NG4TL4-tk cells was verified by flow cytometry with
an anti-M13 antibody. Untreated cells (cell only), cells treated with 2nd antibodies only, and cells reacted with the wild-type M13 phages
(neg phage) served as negative controls. (c) NG4TL4-tk cells were incubated with 5 × 1010 pfu of TK4 or wild-type (M13) phages. Bound
phages were detected using a primary anti-M13 antibody and a FITC-conjugated secondary antibody (green) and were investigated by a
fluorescence-activated laser scanning microscope. Nuclei were counterstained with PI solution (red). Wild-type phage and untreated cell
served as controls. (d) TK4-displaying phages (107 pfu) were incubated with NG4TL4-tk cell lysate coated in microtiter wells. After washes,
the bound phages were detected using an HRP-conjugated anti-M13 antibody and measured at OD 450 nm. BSA and wild-type M13 phage
served as control antigen and phage, respectively.

FBS. Cells were incubated with the primary mouse anti-
M13 antibody (1 : 3000) and then with the secondary FITC-
conjugated antimouse antibody (1 : 3000), for 1 hr at 37◦C,
respectively. Nuclei were counterstained with Propidium
Iodide (PI) (1 μg/ml), and the slide was subjected to a
fluorescence-activated laser scanning microscope (TCS SP5
Confocal Spectral Microscope, Leica, USA). Wild-type phage
M13 and an untreated sample served as controls.

For in vivo biodistribution analysis, 200 μl of PBS
containing 1012 phages with or without the competitive

synthetic TK4 peptide were injected IV into the tumor-
bearing mice through tail vein. Five minutes after injection,
mice were perfused through heart with 50 ml of PBS.
Tumor and normal organs including kidney, liver, lung, and
heart were removed. After homogenization, 100 μg of each
tissue was washed with PBST for 3 times and incubated in
200 μl of elution buffer at RT with gently shaking for 10
minutes. Recovered phages were neutralized and titered by
plaque-forming assay and normalized as pfu per gram of
tissue.
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Figure 2: Biodistribution of TK4-displaying phage in vivo. (a) TK4-displaying or CP1 control phage (1012) was dissolved in PBS (200 μl) and
IV injected into the tumor-bearing mice. The titers of phage (pfu/g of tissue) recovered from tumor and other tissues were averaged from
duplications of 3 mice. Error bar represents the Standard Error of Mean (SEM). P-values were calculated by Student’s t-Test with two-tails
(∗, P < .05). (b) TK4-displaying phages were injected into mice in the presence of different amount (0 to 500 μg) of the competitive synthetic
TK4 peptide. The phages were eluted form tumor and liver homogenates and titered as pfu.

2.5. Phage ELISA. Cancer cells were broken by sonication.
After centrifuge, the supernatant was collected and measured
for protein concentration using Protein Assay kit (Bio-Rad,
USA) and then diluted in the coating buffer (0.1 M NaHCO3,
pH 8.6). Microtiter wells (Coster, USA) were coated with
0.5 μg/well of cell lysate or BSA in coating buffer at 4◦C
overnight and then blocked with 3% (w/v) BSA in PBST
at 37◦C for 1 hr. 107 of testing phage was added to the
wells and incubated at RT for 2 hours. After 5 washes
with PBST, 50 μl of diluted (1 : 1000) HRP-conjugated anti-
M13 antibody (GE Healthcare Bio-Sciences, NJ, USA) was
added to each well and incubated at RT for 1 hour. After
5 washes with PBST, each well was incubated with 50 μl of
TMB substrate solution (KPL, MD, USA) in the dark for 30
minutes of development at RT. The reaction was stopped by
adding 1 N HCl (25 μl/well), and the plate was read using a
microplate reader at 450 nm.

2.6. Flow Cytometry Analysis. Cancer cells (106) were col-
lected and fixed with 2% formaldehyde and blocked with
1% (w/v) BSA in PBS. Testing phages (5 × 1010 pfu) were
incubated with cells for 2 hour at 37◦C, followed by 5 washes
with PBS. The bound phages were labeled by incubating
with a primary mouse anti-M13 antibody (1 : 3000) (GE
Healthcare Bio-Sciences, NJ, USA) for 1 hr at 37◦C and
then with a secondary fluorescein isothiocyanate (FITC)
conjugated antimouse antibody (1 : 3000) (Sigma-Aldrich,
USA) for 1 h at 37◦C. The fluorescent signal of each cell was
analyzed by FACScan flow cytometry (Becton Dickinson, NJ,
USA).

2.7. Peptide and In Vitro Binding Assay. The synthetic 12-mer
amino acid peptide TK4 (SATTHYRLQAAN) was purchased

from Kelowna International Scientific Inc. (Taipei, Taiwan),
with FITC conjugated on the N-terminal (FITC-TK4). For in
vitro binding assay, cells were seeded on coverslips in 24-well
plate by 105 cells/well. The following day, cells were washed
by PBS and incubated in serum-free medium containing
fibronectin (Sigma-Aldrich, USA) in a concentration 0, 2, or
20 μg/ml for 30 min at 37◦C. Mediums were then removed,
cells were washed by PBS and then incubated in serum-
free medium containing FITC-TK4 (40 μM) for 1 hr at 37◦C.
Medium was removed, and cells were washed 3 times in PBS
for 5 min. Cells were fixed in 4% PFA for 10 min at RT and
then mounted on slides by mounting medium containing
DAPI (Vector Lab, CA, USA) and examined on a fluorescent
microscope (BX41, Olympus, Japan).

2.8. In Vivo Imaging and Biodistribution Analysis of TK4
Peptide. For biodistribution analysis and in vivo imaging,
synthetic FITC-TK4 was further labeled on the benzene
group of FITC with isotopic 131I ([131I]-FITC-TK4). The
[131I]-FITC-TK4 used in animal experiment was solved
in PBS at a concentration of 50 μg/100 μCi/100 μl. Mice
were pretreated with 0.5 mL of 0.9% NaI (w/v) solution
by intraperitoneal injection 15 min before [131I]-FITC-TK4
administration to diminish thyroid uptake of the liberated
131I coming from [131I]-FITC-TK4. Each mouse was then IV
injected with 50 μg of [131I]-FITC-TK4 (100 μCi) dissolved in
100 μl of PBS. The planar γ-camera imaging was performed
as described [9]. Briefly, static images were obtained from
anesthetized animals at 1, 4, and 24 hr with a digital γ-
camera (Elscint SP-6, Haifa, Israel), equipped with a high-
energy pinhole collimator, a 364-keV 6 10% 131I photopeak
energy window, and a 256 × 256 × 16 bit image matrix.
The mice injected with 131I (100 μCi) solution served as
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Figure 3: TK4 peptide-based tumor imaging in vivo. (a) Mice were injected with 50 μg (100 μCi) of [131I]-FITC-TK4 through tail vein and
imaged at indicated time points on (a). Red circles indicate the location of tumor. The injection of 131I (100 μCi) served as negative control.
(b) Mice were injected with [131I]-FITC-TK4 as described and sacrificed at 4 or 24 hr, from which tumors and muscles were removed,
dissected, and imaged using IVIS 200 optical system to detect of FITC signal inside tumor. The injection of 131I (100 μCi) served as negative
control.
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Table 1: Peptide sequences expressed on phage clones binding to
NG4TL4-tk.

Amino acid sequence Number of hit
∗SATTHYRLQAAN 11

TEHPSNTSPMRL 2

SGNTHYRLQAAN 1

TPHRLDWSPHLV 1
∗ Denominated “TK4” in this report.

negative control. For biodistribution analysis, mice were
sacrificed at indicated time points after injection. Tumors
and organs were removed and weighed, and the radioactivity
was determined using a γ-counter. Results were calculated as
the percentage of injected dose per gram (% ID/g) of tissue.
Tumors removed from sacrificed mice were also dissected
and imaged using IVIS-200 optical system (Xenogen, CA,
USA) for the detection of FITC signal. Data were analyzed
by Living Image software version 2.50 (Xenogen).

3. Result

3.1. Selection of the Peptide Binding to Fibrosarcoma Cells. For
the selection of a peptide with specific binding affinity to
fibrosarcoma cell line NG4TL4-tk, a phage library expressing
variant surface 12-mer peptides was used for in vitro
biopanning. For each round, 1012 phages were incubated
with 106 cancer cells for 1 hr and the unbound phages were
washed off. The bound phages were then eluted from cancer
cells and amplified in bacteria for the next round of panning.
After 4 panning rounds, single-phage clones were selected
and amplified, and the phage DNA was sequenced. Among
15 clones sequenced, 11 ones (73%) showed the same peptide
sequence: SATTHYRLQAAN (named TK4 in the following
text) (Table 1). The phage expressing TK4 as well as the
synthetic TK4 peptide were used for further evaluation.

3.2. Specific Binding of TK4-Displaying Phage to Fibrosarcoma
Cells In Vitro and In Vivo. The TK4-displaying phage (TK4-
phage) was analyzed for the binding affinity to NG4TL4-tk
fibrosarcoma cells. Tumor cells were incubated with selected
phages. After extensive washes, the bound phages were eluted
from cells and titered by a standard plaque-forming assay.
The results showed that only the phage clone displaying
TK4 peptide was substantially eluted from NG4TL4-tk cells
(Figure 1(a)). The binding of TK4-phage to NG4TL4-tk cells
was further confirmed by flow cytometry analysis using an
anti-M13 antibody (Figure 1(b)). Immunofluorescent (IF)
microscopic examination with the same anti-M13 antibody
detected the attachment of TK4-phage, but not the wild-type
phage, on the surface of NG4TL4-tk cells (Figure 1(c)). To
confirm that the binding affinity of TK4-phages to cell did
not result from the random absorption on cell membrane,
tumor cells were lysed and coated on microtiter wells by
0.5 μg of protein per well. TK4- or wild-type phages were
incubated with the lysate. After extensive washes, the phages
retaining in the well were detected using an HRP-conjugated
anti-M13 antibody and quantified by measuring OD 450 nm

Spleen Liver Heart Lung Thyroid Brain Muscle Tumor

1 hr
4 hr
24 hr

0

5

10

15

20

25

ID
/g

(%
)

Figure 4: Biodistribution of TK4 in tumor-bearing mouse. Animals
receiving IV injected 131I-FITC-TK4 were sacrificed at 1, 4, or
24 hr postinjection. Tumors and other organs were removed and
measured for the radioactivity. Results were calculated as percentage
of injected dose per gram of tissue (% ID/g). Error bars indicate
SEM. N = 5 at each time point.

after substrate incubation. The result showed that TK4-
phages adhered strongly to tumor lysate but not to control
peptide, while the wild-type M13 phages adhered to neither
(Figure 1(d)). In summary, these results showed that TK4-
phage bound to NG4TL4-tk fibrosarcoma cells and suggested
that the binding was associated with one (or more) specific
cell-surface protein receptor(s).

To investigate the tumor targeting of TK4-phage in vivo,
phages were injected into tumor-bearing mice intravenously
(IV) through tail vein. Five minutes after injection, mice
were sacrificed and perfused. Phages were recovered from
the homogenates of removed tumor or other organs and
were titered by a standard plaque-forming assay. The
result showed a significant increase of TK4-phage titer in
implanted tumor up to 10-fold in comparison with other
organs (Figure 2(a)). In contrast, CP1 control phage did not
show any preferential targeting. To confirm that the tumor
homing of TK4-phage is dependent on the displayed TK4
peptide, the phage was premixed with synthetic TK4 peptide
before injection. The TK4-phage titers eluted from tumors
reduced dramatically after incubation with 100 μg of TK4
peptide (Figure 2(b)). These results showed that TK4-phage
performed the in vivo tumor-homing ability, which was
dependent on the displayed TK4 peptide.

3.3. TK4 Peptide-Based Tumor Imaging and Biodistribution.
To examine the availability of TK4 peptide as an in vivo
tumor-imaging probe, the synthetic TK4 peptide was labeled
with FITC and isotopic 131I ([131I]-FITC-TK4), and IV
injected to mice through tail vein. To diminish the thyroid
accumulation of liberated 131I, mice were pretreated with
0.9% NaI solution intraperitoneally. Whole-body images
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Table 2: Tumor-to-tissue ratios of % ID/g calculated from the
biodistribution of [131I]-TK4 at different time points.

Tumor-to-organ ratio 1 hr 4 hr 24 hr

Intestine 0.20 0.22 1.25

Spleen 0.89 1.28 2.96

Liver 0.17 0.46 0.67

Kidney 0.07 0.07 0.03

Heart 0.60 2.38 2.15

Lung 0.33 1.39 0.98

Thyroid 0.66 3.31 2.44

Brain 4.00 22.81 6.73

Muscle 1.10 5.73 3.15

Tumor 1.00 1.00 1.00

were taken on a planar γ-camera 1, 4, and 24 hrs postinjec-
tion. The results showed that at 4 hr, TK4 signal was detected
in tumor site, which then diminished and became unrecog-
nizable in 24 hrs (Figure 3(a)). Tumors were also removed
from mice sacrificed at 4 or 24 hrs, dissected, and imaged for
FITC signal using FRI (Figure 3(b)). The results confirmed
a much stronger accumulation of TK4 peptide inside the
tumor as compared to surrounding muscle. Biodistribution
analysis of injected peptide was performed by measuring
the radioactivity in tumor and other organs removed from
sacrificed mice (Figure 4). The peptide uptake in tumor was
3.28 ± 0.63%, 2.66 ± 0.66%, and 1.03 ± 0.76% ID/g at 1, 4,
and 24 hr postinjection, respectively. Although most organs
showed higher or comparable radioactivities comparing to
tumor at 1 hr, most of them reduced rapidly at 4 hr, while
tumor retained most signal (>80%) (Figure 4). This would
suggest that most radioactivity present in normal tissues
resulted from unspecific accumulation. The uptake of TK4
was higher in tumor than in other organs at 4 hr except
kidney, liver, and intestine (Table 2). Kidney and intestine
exhibited considerable retention of radioactivity: 36.82 ±
4.31% and 12.02±5.45% at 4 hr, respectively, suggesting that
the [131I]-FITC-TK4 was eliminated through both hepato-
biliary and renal eliminations. The % ID/g ratio of tumor-
to-muscle was 5.73 and 3.15 at 4 and 24 hr, respectively.
Mice injected with 131I (100 μCi) served as negative control,
which showed no specific accumulation in γ-camera images
or biodistribution analysis (Figure 3, data not shown).

3.4. Inhibitory Effect of Fibronectin on TK4 Binding. To
understand whether TK4 shows sequence similarity to other
peptides currently known for tumor targeting, we have
searched in different protein databases, and the results
showed no such similarity. Instead, the alignment using
Protein Blast in NCBI found a high similarity between TK4
and a novel protein similar to vertebrate fibronectin type III
domain-containing protein family (GenBank: CAQ14006.1)
found in Danio rerio (zebrafish). The TK4 homologous
sequence locates at the sixth fibronectin type III domain
(FN3) of the protein (Figure 5(a)). Fibronectin is one of the
major fractions of ECM that mediates interactions between
cells, other ECM components (e.g., collagen) and other

fibronectin molecules [15]. To test if TK4 could bind to
fibronectin-interacting site(s), we performed an in vitro
binding assay of TK4 on NG4TL4-tk cells. The results
showed that TK4 binding was inhibited by pretreatment
of cells with fibronectin in a dose-dependent manner
(Figure 5(b)). These results implied a relationship between
TK4 and fibronectin and would suggest that the binding of
TK4 to cancer cells is associated with fibronectin-interacting
components.

4. Discussion

Drug-resistant metastatic tumors as well as side effects are
major limitations of conventional cancer therapy such as
irradiation or chemotherapy [4, 5], which necessitate the
search for novel tumor-targeting agents. Specific targeting
of tumors, compared with earlier less specific approaches,
is increasingly significant in oncology either for diagnostic
or therapeutic purposes [10]. Our previous report has
demonstrated the monitoring of tumor progression and
gene therapy using noninvasive planar γ-camera imaging in
a lung metastases model with murine fibrosarcoma cells,
NG4TL4-tk, stably expressing HSV1-tk [9]. Following the
previous work, in the current research, we are attempting
to develop a new targeting agent which can label the same
tumor cells in vivo without the need of the expression
of an exogenous marker gene in tumor cells. Using the
peptide phage display system on NG4TL4-tk cell line, a new
tumor-binding peptide, TK4, was identified. TK4-phage was
confirmed for the binding affinity to NG4TL4-tk cells in
vitro with different methods including plaque-forming assay,
flow cytometry, IF microscopy, and phage ELISA (Figure 1).
IV administration of TK4-phage to mice bearing NG4TL4-
tk tumors through tail vein showed significantly higher
retention of phages in tumor than in other organs (Figure 2).
As competitive synthetic TK4 peptide was premixed with
TK4-phage, the phage titer eluted from tumors reduced
to a level comparable to the control tissue. These results
confirmed that TK4-phage maintained its tumor-targeting
ability in vivo and that the binding is dependent on the
displayed surface TK4 peptide.

These results recommended the potential of TK4 peptide
as an in vivo tumor-targeting agent. Radio- and fluorescent-
labeled TK4 ([131I]-FITC-TK4) was thus synthesized and
systemically administrated in tumor-bearing mice. Although
a strong and unspecific distribution of TK4 signal was
observed throughout the body 1 hr after injection, most
signals diminished rapidly at 4 hr, while the tumor retained
a comparable intensity, resulting in a high tumor-to-organ
ratio (Figure 4 and Table 2). This observation would suggest
that most signals accumulated in normal tissues were
nonspecific. The uptake of TK4 was higher in tumor than
in normal organs except kidney, liver, and intestine at 4 hr,
and the tumor-to-muscle ratio of % ID/g was 5.73 (Table 2).
The weak accumulation of radioactivity in collateral tissues
made the diagnostic imaging of tumor more viable. The
tumor site can be detected in a whole-body imaging using
planar γ-camera at 4 hr postinjection (Figure 3(a)), and the
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Figure 5: Inhibitory effect of fibronectin on TK4 binding. (a) ∗Subject: Novel protein similar to vertebrate fibronectin type III domain-
containing protein family [Danio rerio], GenBank: CAQ14006.1. FN3: Fibronectin type III domain. The alignment result was obtained in
Protein Blast of NCBI, and edited by NCBI Sequence Viewer (http://www.ncbi.nlm.nih.gov/projects/sviewer/). (b) NG4TL4-tk cells were
pretreated with fibronectin in a concentrations of 0 (mock), 2, or 20 μg/ml (30 min, 37◦C) before subjected to FITC-TK4 peptide (40 μM)
incubation (1 hr, 37◦C). Cells were extensively washed with PBS and then fixed in 4% PFA and mounted. Nuclei were counter stained by
DAPI. Original magnification× 200.
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FRI confirmed a much stronger FITC signal accumulated
in tumors than in surrounding muscles (Figure 3(b)). All
together, these results suggest that TK4 peptide is able to
target and accumulate in fibrosarcoma tumors in vivo.

The difference in biodistributions between the phage
particles and synthetic TK4 peptide was noticed (Figures
2 and 4). The phage particles showed an efficient binding
only in tumor, while synthetic peptide had a high retention
also in liver and kidney. Such discrepancy may have resulted
from the different methodologies applied. Phage particles
were recovered from tissues of sacrificed animal in a
few minutes after administration, which may prevent the
further accumulation of phages in excretion route like liver,
intestine, or kidney. In addition, the whole body perfusion
in sacrificed mice may have helped to wash off the unbound
phages. To optimize the use of TK4 as an efficient tumor-
imaging peptide; however, the substantial accumulation
of radioactivity in kidney and liver should be reduced.
Small changes in peptide sequence, linkers, chelator, and
isotope can dramatically affect the biodistribution [18]. For
example, a high radioactivity retention in liver and intestine
could result from the hepatobiliary elimination. Strategies
including glycosylation or conjugation with hydrophilic
amino acid have been developed to reduce the liver uptake of
RGD peptides (for a recent review, see [20]). Renal excretion
is a preferable elimination pathway of radiopharmaceuticals
and/or their metabolites from the body. Nevertheless, high
kidney retention may obscure tumor imaging and result in
potential radiation nephrotoxicity, and thus limit the use
of radiolabelled peptides in medical applications [21, 22].
Current methods for kidney protection include coadminis-
tration of basic amino acids, the bovine gelatin-containing
solution Gelofusine or albumin fragments, which interfere
with the tubular reabsorption pathway of peptides (for a
recent review, see [21]). These and other researches have
led to developments of more ideal peptide probes for tumor
imaging and therapy, and the knowledge can be expanded to
further modification of TK4.

Our current research showed that TK4 is homologous
to a FN3 domain in a novel protein similar to vertebrate
fibronectin family and that the TK4 binding on cancer
cells can be inhibited by fibronectin (Figure 5), suggesting
that TK4 may have targeted tumors via fibronectin-binding
site(s). Fibronectin is a glycoprotein which serves as one
of the major fractions of ECM. It contains an array of
repeating domains (FN1, 2, and 3) that mediate interactions
between cells, other ECM components (e.g., collagen), and
other fibronectin molecules [15]. The tumor-targeting motif
RGD, which serves as a common binding site for a variety
of integrins, has been originally derived from the tenth
FN3 repeat in fibronectin [15]. Besides RGD, other peptide
sequences have been exploited from FN domains with cell-
binding activity such as the essential α4β1 adhesion motif
LDV [23], the 25-mer endothelial cell adhesion peptide
CS1 [24], and the mesenchymal stem cell-adhesive peptide
ALNGR that interacts with integrin β1 [25]. These studies
would suggest that due to the pivotal role of fibronectin in
the complex ECM architecture, novel binding motif residing
in FN sequences or their homologous domains, like TK4,

may be still discovered. We have recently found that TK4
binds efficiently to human lung cancer cell lines and that the
binding can be also inhibited by fibronectin pretreatment
(data not shown). Thus one of our future works will be
to evaluate the potential of TK4 as a multitumor-targeting
probe. Identifying the cell surface receptor(s) of TK4 on
tumor cells, certainly, is crucial and should be performed in
the future.

In conclusion, our data presented here showed that TK4,
a novel peptide isolated from phage display library, showed
a homology to FN3 domain and can target fibrosarcoma
tumor cells in vivo after systemic administration. TK4 holds
promise as a lead structure useful for selective delivery of
therapeutics or diagnostic probe to fibrosarcoma or other
tumors.
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