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Variability in competitive 
decision‑making speed and quality 
against exploiting and exploitative 
opponents
Benjamin James Dyson

A presumption in previous work has been that sub-optimality in competitive performance following 
loss is the result of a reduction in decision-making time (i.e., post-error speeding). The main goal of 
this paper is to test the relationship between decision-making speed and quality, with the hypothesis 
that slowing down decision-making should increase the likelihood of successful performance in cases 
where a model of opponent domination can be implemented. Across Experiments 1–3, the speed and 
quality of competitive decision-making was examined in a zero-sum game as a function of the nature 
of the opponent (unexploitable, exploiting, exploitable). Performance was also examined against 
the nature of a credit (or token) system used as a within-experimental manipulation (no credit, fixed 
credit, variable credit). To compliment reaction time variation as a function of outcome, both the 
fixed credit and variable credit conditions were designed to slow down decision-making, relative to 
a no credit condition where the game could be played in quick succession and without interruption. 
The data confirmed that (a) self-imposed reductions in processing time following losses (post-error 
speeding) were causal factors in determining poorer-quality behaviour, (b) the expression of lose-
shift was less flexible than the expression of win-stay, and, (c) the use of a variable credit system may 
enhance the perceived control participants have against exploitable opponents. Future work should 
seek to disentangle temporal delay and response interruption as determinants of decision-making 
quality against numerous styles of opponency.

How we choose to approach, engage and ultimately remove ourselves from competitive environments is a criti-
cal component in understanding industrial, political, educational and gambling behaviour. In the context of 
gambling, research has highlighted how problematic gambling behavior can be characterized as cyclic in nature 
(e.g.1,2), with cognitive psychology providing insights into how these cycles appear. Two empirical observations 
are key. First, the quality of decision-making following negative outcomes (e.g., losses) tends to be sub-optimal 
relative to the decision-making following positive outcomes (e.g.3). Second, an assumed cause of the deterioration 
of decision-making following negative outcomes is a reduction in processing time allocated to actions following 
losses (e.g.4). This post-error speeding is manifest in competitive environments in which an opponent behaves in 
a random way5,6, characteristic of many real-world devices such as fixed-odds betting terminals (FOBTs7). Post-
error speeding also represents the flip side of post-reinforcement pauses8. Here, scaled temporal delays following 
wins may be initiated by the device itself (such longer audio feedback when the pay-out is larger9), or, by the 
player themselves who simply wishes to revel in the positive state that winning affords.

However, an important determinant of post-error speeding remains is the interaction between the nature of the 
opponent and individual performance. Broadly, three classes of opponent can be identified. First, the opponent 
may play in an unexploitable way, usually taking the form of equal but random distribution of responses defined 
by the finite length of the game series. For example, in the context of the game Matching Pennies the opponent 
would select 50% heads and 50% tails, or, in the context of the game Rock, Paper, Scissors the opponent would 
select each of the three responses 33.3% of the time. This type of random play is the only way to guarantee the 
absence of loss maximization (but neither does it provide win maximization). Second, playing against exploit-
able opponents allow participants to maximize their wins. Here, opponent responding will be predictable (such 
as over-playing one response over another; item biases) and if this predictability is utilized by the player their 
win rate will increase. Third, exploiting opponent provide the threat of loss maximization. Here, opponents 
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may examine participant response distributions for similar item biases and respond in a manner that would 
maximize losses for the player. Previous data suggests that post-error speeding is most likely to arise either when 
there is interaction with an unexploitable opponent (see above), or, when there is interaction with an exploitable 
opponent but the individual fails to acquire the appropriate mental model for domination10. In contrast, post-
error slowing is most likely during successful exploitation, with the degree of slowing predicted by the degree 
of exploitation10 and as errors become rare events11. Thus, the main goal of this paper is to specifically test the 
relationship between decision-making speed and quality, with the hypothesis that slowing down decision-making 
following losses increases the likelihood of future successful performance in cases where a successful model of 
opponent domination can be implemented.

The view that there is a link between negative outcomes and poorer-quality (faster) decision-making would 
appear to contrast other work, in which loss orients attention to the failed action or stimulus (for examples in 
the context of arm wrestling and Rock, Paper, Scissors; see12). Specifically13, argue that the phasic increase in 
arousal driven by negative outcomes also increases attention towards task-relevant features. While one might 
anticipate that increasing attentional resource might enhance the quality of subsequent decision-making under 
certain contexts (e.g., expected value maximization14), Yechiam and Hochman13 also report the tendency for 
losses to lead to an increased likelihood of exploration (switch) behaviour (see also15,16). Furthermore, persistent 
effects of continued loss lead to ‘restlessness’ whereas continued wins lead to ‘calmness,’ essentially the expression 
of lose-shift and win-stay behaviour in the long run and even across tasks17. Therefore, the increased investment 
of attention does not necessarily translate to better performance. Specifically, in the context of competition any 
natural predictability in behaviour such as lose-shift runs the risk of exploitation.

In addition to the self-imposed speeding up or slowing down of decision-making as a function of outcome, 
further variability in the speed of play is apparent in the use of a ‘credit’ (or ‘token’) systems. Such systems are 
apparent in a variety of real-world devices such as gumball, arcade and slot machines. The gumball device is an 
example of a fixed credit system where the gumball desirer has to provide the machine with one (and only one) 
coin in order to receive one gumball: the coin puts the individual ‘in credit’ for one gumball, but to receive a 
second gumball the process must be completely repeated. This may be contrasted with a variable credit system 
represented by arcade and slot machines. Here, players must again provide coins to accrue credits but the system 
allows for more than one credit to be stored. For example, if our individual has given an arcade machine two 
quarters (25c), after losing the first game, the player can instantaneously begin the second game without pausing 
to insert more coins. Both the fixed credit and variable credit systems can, of course, be contrasted with no credit 
systems where the system can be played multiple times without interruption. These different types of a credit 
system create clear parallels with the allocation of time and the quality of decision-making described above. 
Specifically, a device that only accepts one credit at a time (i.e., fixed credit) creates a naturally slow cycle of play 
relative to the absence of such a system (i.e. no credit). The intermediate scheme (i.e., variable credit) allows for 
credit to be stored, giving the player the opportunity to decide when and how many credits to input, allowing 
for the possibility of multiple plays in quick succession. Under this reading, variable credit systems then appear 
to be a rather cynical design feature of gambling devices, given the joint observations that quicker processing 
times are more likely to lead to sub-optimal decision-making5 and that pathological gamblers prefer faster playing 
machines9. The use of variable credit systems as promoting poorer rather than better quality decision-making 
is further reinforced by the literature on illusion of control18,19. Here, offering any kind of choice to individuals 
increases their perception of control in random environments (e.g., allowing individuals to select their own lot-
tery numbers20). While illusion of control is less likely to persist across multiple interactions21, observations such 
as the hot hand fallacy and gambler’s fallacy22,23 continue to represent erroneous beliefs about the predictability 
of future events over the long run.

Under the assumption that subsequent decision-making following negative outcomes tends to be faster and 
sub-optimal, establishing exactly what represents ‘sub-optimal’ decision-making is determined by the specific 
competitive context and the degree to which outcomes are a function of skill and/or luck24. One natural place to 
start is by examining behaviour when participants interact with random (i.e., unexploitable) agents in competitive 
zero-sum games. These types of game can be used to measure the degree of deviation from optimal decision-
making since ideal response distributions can be clearly set out, opponent characteristics can be perfectly con-
trolled, the resolution of competition is fast yielding a high signal-to-noise ratio, and, games are both intuitive 
and often fun to play thereby providing participants with intrinsic motivation in a laboratory setting (see25,26, 
for a discussion of some of these issues).

Competitive environments are characterized by the mutual goals of maximizing wins and minimizing losses27. 
The only way to minimize losses in zero-sum games is to behave in according with a mixed-strategy (MS28–30; 
see also minimax solution31). Here, all actions must be randomized and the selection of the next action must not 
be contingent on the outcome of the previous action. Unfortunately, such behaviour runs counter to reinforce-
ment learning heuristics. According to the keystone principles of operant conditioning (e.g.32), we will be more 
likely to repeat an action in the light of reinforcement (win-stay) and more likely to change an action in the 
light of punishment (lose-shift). Despite the historic view that the mechanisms associated with punishment and 
reward are simply the inverse of one another, there is converging evidence from a number of fields to suggest 
that they exist and operate independently of one another33. In particular, lose-shift appears to be a more robust 
phenomenon than win-stay, possibly in part due to the high cost of ‘losing’ from an evolutionary perspective34,35. 
Fundamental differences between reinforcement learning principles are further supported by animal work in 
which lose-shift mechanisms are also anatomically distinct from win-stay mechanisms (c.f., lesioning of the 
ventrolateral striatum), where lose-shift represents a “choice reflex” within the animal brain36, p. 137. Differences 
in the degree to which win-stay and lose-shift behaviour are under cognitive control are similarly reflected in 
human work in which responses following wins tend to approach MS whereas responses following losses reveal 
a higher-than-expected level of shift behavior3,6. Furthermore, manipulating the value of wins modulates the 
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degree of win-stay behavior whereas manipulating the value of losses does not change the degree of lose-shift 
behavior5,35. Once again, the main message here though is that while such reinforcement learning principles are 
contingent on both environment and species38–40, natural predictability in behaviour expressed via win-stay and/
or lose-shift runs the risk of exploitation in competitive environments.

Experiment 1
As an initial test of competitive decision-making in Experiment 1, participants interacted with a computer oppo-
nent playing according to a mixed-strategy (MS) in the zero-sum game of Rock, Paper, Scissors (RPS; see41 for a 
review). In terms of defining optimal and sub-optimal performance, the Nash42 equilibrium for RPS against an 
opponent playing mixed-strategy is for the participant to also play mixed-strategy. In this respect, the no credit 
condition served as an attempted replication of the data from3,5 (baseline), and6, where each trial consisted of a 
single response only. Here, performance should approximate optimal MS following wins where the single stay 
response and the two shift responses are played roughly 33.3% of the time. Conversely, performance after nega-
tive outcomes (both losses and draws) should be characterized by an increase in shift behaviour over the 66.6% 
predicted by optimal performance. Given the unexploitable nature of the opponent, performance should also be 
characterized by post-error speeding5,10,43.

In Experiment 1, variations in a credit system were used to establish different temporal delay conditions 
(see Supplementary Materials A and B). In the no credit condition, participants simply made a single response 
selection on each of the 90 trials. For the fixed credit condition, participants had to ‘insert one credit’ on each 
of the 90 trials before they could make their game decision (c.f.43,44). This condition should slow down the 
cycle of play by providing mandatory response interruptions (and hence, regular temporal delays). If slowing 
down decision-making time increases the quality of decision-making, then there should be a reduction in shift 
behaviour exhibited following negative outcomes45. In the variable credit condition, participants had the same 
90 credits in the fixed credit condition, but when and how many credits to insert was the participant’s decision. 
The same constraint existed in that participants could not play the trial unless they had at least 1 credit stored on 
the computer. Thus, the variable credit condition should also slow down the cycle of play by providing voluntary 
response interruptions (and hence, intermittent temporal delays). Since multiple credits could be inserted at any 
point during the condition, the degree of interruption should be intermediate, somewhere between the no credit 
and fixed credit condition. Therefore, the reduction in shift behaviour following negative outcomes should be 
more than that shown in the fixed credit condition, but less than that shown in the no credit condition. Finally, 
if pausing serves as way to maintain better rather than worse quality decision-making then participants should 
input more credits following positive relative to negative outcomes. All manipulations of trial lag expressed 
via variations in the credit system were within-participants to reduce the noise traditionally associated with 
between-participant designs (e.g.46–48).

Method.  Participants.  36 individuals were analysed in the study: 25 were female, 3 were left-handed, with 
mean age = 20.11 (sd = 3.27). One individual was replaced due the recording of only 89 credits in the variable 
credit condition, and a second individual was replaced as a result of playing Scissors 100% and 99% of the time 
during the fixed and no credit conditions. Replaced participants undertook the experiment using the same coun-
terbalanced order as the removed participants. All studies reported in this paper were approved by Research 
Ethics Board 2 at the University of Alberta under the protocol PRO00086116. All experiments were performed 
in accordance with relevant guidelines and regulations, including obtaining written informed consent. All par-
ticipants completed the studies for course credit and no participant took part in multiple experiments.

Stimuli and apparatus.  Pictures of two gloved hands representing the 9 interactions between participant and 
opponent during Rock, Paper, Scissors were used from5 (approximate on-screen size 10.5 cm × 4 cm). Stimulus 
presentation and response monitoring was conducted by Presentation (version 18.3, build 07.18.16).

Design.  Participants completed 270 round of RPS split across three counter-balanced blocks of 90 trials each. 
In the no credit condition, participants made one response per round involving the selection of Rock, Paper or 
Scissors. In the fixed credit condition, participants had to make two responses per round: a response to insert one 
credit and a second response that allowed them to pick their response for that trial. In the variable credit condi-
tion, participants were allocated 90 credits at the start of the block, inserted as many as credits as desired, but 
could only play a round if their current credit score was 1 or above. For both fixed and variable conditions, if the 
number of inserted credits fell below 1, a warning sign appeared on screen and participants could not proceed 
with game responses. All opponents played 30 Rock, 30 Paper and 30 Scissors responses in a randomized order 
across each block (i.e., unexploitable). In this and all subsequent experiments, credit manipulation was a within-
participants factor and opponency was a between-participants factor split across Experiments (1 = unexploitable, 
2 = exploiting, 3 = exploitable).

Procedure.  On-screen instructions from the various conditions are presented in Supplementary Information 
A and examples of the on-screen displays are presented in Supplementary Information B. At each trial and for 
each block, the participant’s current score was displayed for 500 ms, with a credit counter starting at 90. In the 
no credit condition, participants simply had to select 4, 5, or 6 on the number pad corresponding to the selection 
of RPS to decrease the counter by 1. In the fixed credit condition, a current credit counter was also displayed and 
would be red when the current number of credits was 0. Participants were always prompted with the display of 
‘Insert 1 Credit’ at every trial and had to press 0 on the number pad before selecting their choice of RPS. The 
variable credit condition was identical to the fixed credit condition, apart from the prompt of ‘Insert × Credits’ at 
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every trial. Here, participants could simply select RPS if their current credit count was above 0 (after which 1 was 
then subtracted from their current count), or before then, could press 0 on the number pad to transfer credits to 
the current credit counter to a maximum of 90 credits at any point(s) during the block.

Following the selection of the game response, RPS selections were displayed for opponent (on the left; blue 
glove) and participant (on the right; white glove) for 1000 ms. This display was removed for 500 ms and then the 
outcome of the trial was presented for 1000 ms in the form of ‘WIN’ (+ 1; green font), ‘LOSS’ (− 1; red font), or 
‘DRAW’ (0; yellow font) as appropriate. The outcome was removed and the player’s score was updated across a 
500 ms period, after which the next trial began with the prompt appropriate for that condition. After the comple-
tion of all three conditions, participants were thanked for their time and debriefed.

Results.  Item and outcome biases.  Item and outcome biases were initially analysed using a one-way repeat-
ed measures ANOVA. The proportion of Rock selection did not significantly vary as a function of no, variable 
and fixed credit conditions [F(2,70) = 1.54, MSE = 0.004, p = 0.222, ƞp

2 = 0.042] nor did the proportion of Rock 
selection significantly differ from the expected value of 33.3% as assessed by a one-sampled t-test (e.g.26,49 Rapo-
port and Budescu, 1992; Hochman and Yechiam, 2011): t[35] = 1.79, p = 0.082. Similarly, the proportion of wins 
did not significantly vary as a function of credit conditions [F(2,70) = 0.62, MSE = 0.002, p = 0.543, ƞp

2 = 0.017] 
nor did win outcomes significantly differ from the expected value of 33.3% as assessed by a one-sampled t-test: 
t[35] =  − 0.86, p = 0.397. The rough equivalency of wins (32.93%), losses (33.89%) and draws (33.18%) would be 
anticipated on the basis of an opponent playing MS in all conditions (see Table 1).

The three possible items and three possible outcomes were also directly compared using arc-sine transformed 
data at the request of a reviewer, yielding equivalent conclusions. For Experiment 1, analyses of the arc-sine 
transformed proportion of Rock, Paper, Scissor responses as a function of no, variable and fixed credit conditions 
produced a significant main effect of item: [F(2,70) = 3.60, MSE = 0.020, p = 0.033, ƞp

2 = 0.093], in the absence 
of a significant interaction: [F(4,140) = 1.73, MSE = 0.005, p = 0.147, ƞp

2 = 0.047]. The slight over-representation 
of Rock (35.18%) relative to Scissors (30.61%; Tukey’s HSD, p < 0.05; but not Paper, 34.22%) was consistent with 
previous data (see Table 1). Analyses of the similarly arc-sine transformed proportion of win, lose and draw 
outcomes as a function of no, variable and fixed credit conditions did not produce a significant main effect 
of outcome: [F(2,70) = 0.86, MSE = 0.003, p = 0.426, ƞp

2 = 0.024], nor a significant interaction: [F(4,140) = 0.66, 
MSE = 0.004, p = 0.623, ƞp

2 = 0.018].

Reinforcement learning biases.  Table 2 provides summary statistics for the three strategies at trial n + 1 as a 
function of trial n outcome. To assess traditional reinforcement learning biases, the proportion of win-stay, lose-
shift and draw-shift were analysed as a function of condition using separate one-way repeated-measures ANO-
VAs, and, with respect to the value expected on the basis of MS behaviour (33.3% stay responses, 66.6% shift 
responses; see Fig. 1a) using one-sampled t-tests. Group average data are shown in Fig. 1a and individual data 
are shown in Supplementary Fig. C1. Win-stay behaviour did not alter as a function of condition: [F(2,70) = 0.46, 
MSE = 0.014, p = 0.632, ƞp

2 = 0.013] and the observed average value of 36.67% did not differ significantly from 
the expected value of 33.33% (t[35] = 1.10, p = 0.280). Lose-shift behaviour did not alter as a function of condi-
tion: [F(2,70) = 0.43, MSE = 0.007, p = 0.655, ƞp

2 = 0.012] but the observed average value of 77.23% did differ 
significantly from the expected value of 66.66% (t[35] = 4.75, p < 0.001). Draw-shift behaviour did not alter as 
a function of condition: [F(2,70) = 0.16, MSE = 0.011, p = 0.853, ƞp

2 = 0.005] and the observed average value of 
70.65% did not differ significantly from the expected value of 66.66% (t[35] = 1.53, p = 0.136). The degree of shift 
behaviour following loss was greater than that following draw (t[35] = 2.91, p = 0.006; two-tailed).

Table 1.   Distribution of items and outcomes as a function of credit (no, variable, fixed) across Experiments 
1–3. Standard error in parenthesis.

Experiment 1 (unexploitable) Experiment 2 (exploiting) Experiment 3 (exploitable)

Rock Paper Scissors Rock Paper Scissors Rock Paper Scissors

Item biases

No 0.362 
(0.014)

0.328 
(0.010) 0.310 (0.013) 0.348 

(0.008)
0.339 
(0.009) 0.313 (0.007) 0.355 

(0.020)
0.340 
(0.020)

0.306 
(0.018)

Variable 0.356 
(0.012)

0.338 
(0.014) 0.305 (0.013) 0.343 

(0.010)
0.342 
(0.011) 0.315 (0.008) 0.336 

(0.020)
0.339 
(0.021)

0.326 
(0.020)

Fixed 0.337 
(0.013)

0.360 
(0.013) 0.303 (0.013) 0.333 

(0.010)
0.349 
(0.009) 0.319 (0.007) 0.356 

(0.026)
0.307 
(0.020)

0.337 
(0.028)

Win Lose Draw Win Lose Draw Win Lose Draw

Outcome distribution

No 0.331 
(0.008)

0.344 
(0.008) 0.324 (0.009) 0.331 

(0.009)
0.340 
(0.010) 0.329 (0.009) 0.351 

(0.010)
0.323 
(0.007)

0.326 
(0.010)

Variable 0.322 
(0.008)

0.342 
(0.007) 0.336 (0.008) 0.334 

(0.007)
0.327 
(0.008) 0.339 (0.007) 0.373 

(0.007)
0.318 
(0.007)

0.309 
(0.005)

Fixed 0.334 
(0.008)

0.331 
(0.007) 0.335 (0.008) 0.313 

(0.007)
0.335 
(0.008) 0.352 (0.008) 0.335 

(0.011)
0.328 
(0.010)

0.337 
(0.009)
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Reaction times.  A two-way repeated-measures ANOVA was carried out on trial n + 1 median RTs using credit 
type (no, variable, fixed) and outcome at trial n (win, lose, draw; see Fig. 1b, Table 3). The single response selec-
tion RT in the no credit condition was compared to the first (credit input) response RT in the fixed credit condi-
tion, and the response selection RT in the variable credit condition. Group average data are shown in Fig. 1b 
and individual data are shown in Supplementary Fig. C2. Analyses revealed a significant main effect of outcome 
[F(2,70) = 14.09, MSE = 23,832, p < 0.001, ƞp

2 = 0.287] in the absence of a significant main effect of credit type 
[F(2,70) = 0.07, MSE = 75,370, p = 0.930, ƞp

2 = 0.002] and interaction [F(4,140) = 2.10, MSE = 12,361, p = 0.085, 
ƞp

2 = 0.056]. Tukey’s HSD test (p < 0.05) revealed both losses (457 ms) and draws (438 ms) yielded significantly 
faster RTs than wins (543 ms; see Fig. 2).

To allay concerns regarding RT outliers, and to maintain consistency with previous protocols in our labora-
tory, participants were rejected as a result of their average median RT being at least twice as large as the group 
average median RT (c.f.5,10) within any ANOVA cell, resulting in a reduced sample of 26 in Experiment 1. An 
identical two-way repeated-measures ANOVA replicated the full sample data: a significant main effect of out-
come [F(2,50) = 15.01, MSE = 4651, p < 0.001, ƞp

2 = 0.375], in the absence of a significant main effect of credit 
type [F(2,50) = 2.15, MSE = 32,678, p = 0.127, ƞp

2 = 0.079] or interaction [F(4,100) = 1.60, MSE = 4898, p = 0.182, 
ƞp

2 = 0.060]. Again, Tukey’s HSD test (p < 0.05) revealed both losses (377 ms) and draws (369 ms) yielded sub-
sequently faster RTs than wins (424 ms).

Credit selection.  A final set of data unique to the variable credit condition was the distribution of credits as a 
function of outcome (win, lose, draw; see Table 4). A one-way repeated-measures ANOVA failed to show signifi-
cance: F(2,70) = 0.57, MSE = 0.08, p = 0.568, ƞp

2 = 0.016.

Discussion.  The data from Experiment 1 replicated a number of key findings related to quality and speed 
of contiguous decision-making in a competitive environment. Specifically, high-quality, mixed-strategy (MS) 
behaviour was more likely following positive outcomes. In other words, following wins, participants stayed with 
their original response approximately 1/3 of the time and changed to one of two new responses approximately 
2/3 of the time. This was in contrast to performance following negative outcomes (specifically, losses), which 
were characterized by increases in shift behaviour beyond that predicted by MS3,5. Moreover, decision-times 
following negative outcomes were faster than decision-times following positive outcomes, consistent with other 
unexploitable competitive contexts43. Therefore, Experiment 1 provides support for the connection between 
the valence of the previous competitive encounter and the speed and quality of the next encounter: a negative 
outcome speeds subsequent decision-making and leads to an overuse of shift behaviour. This highlights the 
resilience of lose-shift behaviour despite its sub-optimality36,37. These data were also consistent across no, fixed 

Table 2.   Proportion of strategy at trial n + 1 (stay, upgrade [shift], downgrade [shift]) relative to outcome at 
trial n (win, lose, draw) as a function of credit (no, variable, fixed) across Experiments 1–3. Standard error in 
parenthesis.

Experiment 1 (unexploitable)

No credit Variable credit Fixed credit

Win Lose Draw Win Lose Draw Win Lose Draw

Stay 0.376 
(0.031)

0.234 
(0.025)

0.294 
(0.027)

0.384 
(0.033)

0.220 
(0.021)

0.302 
(0.027)

0.357 
(0.034)

0.246 
(0.025)

0.294 
(0.029)

Upgrade 0.329 
(0.022)

0.385 
(0.022)

0.380 
(0.023)

0.316 
(0.025)

0.390 
(0.019)

0.372 
(0.021)

0.345 
(0.024)

0.367 
(0.023)

0.346 
(0.019)

Down-
grade

0.295 
(0.018)

0.382 
(0.021)

0.327 
(0.017)

0.300 
(0.021)

0.390 
(0.023)

0.326 
(0.021)

0.298 
(0.023)

0.388 
(0.022)

0.360 
(0.020)

Experiment 2 (exploiting)

No credit Variable credit Fixed credit

Win Lose Draw Win Lose Draw Win Lose Draw

Stay 0.295 
(0.035)

0.220 
(0.020)

0.276 
(0.021)

0.338 
(0.035)

0.186 
(0.021)

0.251 
(0.025)

0.271 
(0.033)

0.189 
(0.020)

0.262 
(0.024)

Upgrade 0.337 
(0.024)

0.379 
(0.018)

0.326 
(0.019)

0.341 
(0.025)

0.382 
(0.021)

0.384 
(0.018)

0.364 
(0.026)

0.383 
(0.022)

0.362 
(0.028)

Down-
grade

0.368 
(0.023)

0.401 
(0.021)

0.398 
(0.020)

0.321 
(0.024)

0.433 
(0.019)

0.366 
(0.024)

0.365 
(0.023)

0.428 
(0.025)

0.376 
(0.021)

Experiment 3 (exploitable)

No credit Variable credit Fixed credit

Win Lose Draw Win Lose Draw Win Lose Draw

Stay 0.463 
(0.037)

0.225 
(0.021)

0.350 
(0.036)

0.439 
(0.036)

0.257 
(0.035)

0.307 
(0.035)

0.415 
(0.043)

0.302 
(0.039)

0.360 
(0.042)

Upgrade 0.288 
(0.025)

0.370 
(0.018)

0.363 
(0.023)

0.285 
(0.027)

0.343 
(0.024)

0.365 
(0.026)

0.292 
(0.025)

0.316 
(0.024)

0.325 
(0.025)

Down-
grade

0.250 
(0.022)

0.405 
(0.022)

0.286 
(0.023)

0.376 
(0.029)

0.400 
(0.030)

0.327 
(0.026)

0.293 
(0.032)

0.382 
(0.029)

0.315 
(0.028)



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2859  | https://doi.org/10.1038/s41598-021-82269-2

www.nature.com/scientificreports/

and variable credit conditions. That is, the addition of an extra response per trial (approximately 400 ms) in the 
fixed credit condition did not change the distribution of participant responding. There was also no evidence that 
the voluntary decision to slow down the cycle of play via variable credit changed responding relative to the no 
credit condition.

One reason why there was no effect of the credit systems in Experiment 1 was that the participants were 
in no danger of being exploited. Lack of exploitation may also have been the reason why deviations from MS 
were observed (although does not help to explain why there was over-use of shift behaviour following negative 
outcomes but not over-use of stay behaviour following wins). Slower, improved and/or better-managed decision-
making may be observed when there are clearer threats of exploitation. This is evidenced in certain primate data: 
when a computerized opponent played according to MS, primates were observed to overplay certain responses, 

Figure 1.   (a) Graph showing proportion of reinforcement learning biases (win-stay, lose-shift, draw-
shift) under conditions of no, variable and fixed credit across three different opponent styles (Experiment 
1 = unexploitable, Experiment 2 = exploiting, Experiments 3 = exploitable). (b) Graph showing reaction times 
at trial n + 1 separated by outcome at trial n (win, lose, draw) under conditions of no, variable and fixed credit 
across three different opponent styles. In both (a,b) error bars indicate ± 1 standard error.

Table 3.   Reaction times for the three outcomes (win, lose, draw) as a function of credit (no, variable, fixed) 
across Experiments 1–3. Standard error in parenthesis.

Experiment 1 (unexploitable) Experiment 2 (exploiting) Experiment 3 (exploitable)

Without outlier removal

No 559 (57) 448 (40) 418 (35) 615 (48) 503 (47) 477 (48) 508 (38) 467 (39) 417 (28)

Variable 523 (37) 462 (32) 478 (30) 645 (66) 525 (43) 535 (39) 571 (55) 498 (36) 461 (32)

Fixed 547 (60) 461 (44) 419 (33) 596 (43) 504 (32) 508 (33) 612 (56) 572 (57) 496 (40)

Win Lose Draw Win Lose Draw Win Lose Draw

With outlier removal

No 427 (30) 373 (32) 341 (26) 514 (38) 400 (33) 393 (30) 453 (31) 413 (32) 378 (22)

Variable 401 (37) 355 (32) 341 (39) 492 (48) 459 (47) 462 (42) 482 (34) 445 (29) 414 (31)

Fixed 444 (25) 403 (21) 423 (24) 536 (45) 463 (35) 479 (41) 530 (43) 505 (39) 446 (32)
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but when the opponent began to exploit response selection the primate’s strategy changed to reflect an apprecia-
tion of the opponent’s last play50,51; see also52.

Therefore, Experiment 2 was carried out where the opponent was now designed to take advantage of any item 
biases expressed by the participant (i.e., exploiting). Changing from an unexploiting (Experiment 1) to exploit-
ing (Experiment 2) opponent should demand more regulation and control of decision-making. By highlighting 
competitive threat, participants may utilize the fixed credit and/or variable credit conditions more, in order to slow 
down their cycle of play and increase in decision-making quality. Specifically, there should be a reduction in shift 
behaviour as a function of negative outcomes from Experiment 1, and an increased likelihood that participants 
would play more in accordance with MS. Given that the task in Experiment 2 was to minimize the number of 
losses rather than maximize the number of wins, it was predicted that—as in Experiment 1—performance should 
again be characterized by post-error speeding.

Experiment 2
Experiment 2 was identical to Experiment 1, apart from the change in opponency to exploiting. Item biases are 
a recurring observation in the RPS literature, with Rock currently enjoys a slight over-popularity in empirical 
studies of the game3,6,31,53–55 (although see56 for Scissors bias). Experiment 2 was designed to take advantage of any 
idiosyncratic item bias that participants might express throughout the course of the game. The potential exploita-
tion of the participant was made possible by the computer creating a response matrix inverse to the participant’s 
response selections every 6 trials. For example, if on the first 6 trials the participant selected 4 Rock, 1 Paper and 
1 Scissors response, the computer would play for the next 6 trials 4 Paper, 1 Scissors and 1 Rock response (in a 
random order). Apart from the first six trials where the opponent plays according to MS (2 responses per item), 
the opponent could exploit any item bias(es) exhibited by the participant on the remaining 84 trials. All other 
parameters and all statistical analyses were identical to Experiment 1. Two individuals were replaced due the 
recording of only 89 credits in the variable credit condition. Of the final sample of 36 participants, 3 declined 
to provide demographic information. Of the remaining sample of 33 individuals, 26 were female and 28 were 
right-handed (mean age = 20.52, stdev = 2.73).

Results.  Item and outcome biases.  Rock selection did not significantly vary as a function of no, variable 
and fixed credit conditions [F(2,70) = 0.93, MSE = 0.002, p = 0.398, ƞp

2 = 0.026] nor did the proportion of Rock 
selection significantly differ from the expected value of 33.3% as assessed by a one-sampled t-test: t[35] = 1.17, 
p = 0.252. Similarly, the proportion of win outcomes did not significantly vary as a function of credit conditions 
[F(2,70) = 1.93, MSE = 0.002, p = 0.152, ƞp

2 = 0.052] nor did win significantly differ from the expected value of 
33.3% as assessed by a one-sampled t-test: t[35] = 1.17, p = 0.252. Table 1 provides descriptive statistics regarding 
items and outcomes.

For Experiment 2, the arc-sine transformed distribution of Rock (34.13%), Paper (34.32%), Scissors (31.55%) 
responses significantly varied: [F(2,70) = 3.75, MSE = 0.008, p = 0.028, ƞp

2 = 0.097] but did not interact with condi-
tion (no, variable, fixed): [F(4,140) = 0.59, MSE = 0.003, p = 0.672, ƞp

2 = 0.017], where Paper was overplayed rela-
tive to Scissors. Arc-sine proportions of win (32.59%), lose (33.41%) and draw (34.00%) outcomes as a function 
of condition produced no significant main effect of condition: [F(2,70) = 1.91, MSE = 0.003, p = 0.156, ƞp

2 = 0.052], 
nor an interaction: [F(4,140) = 1.35, MSE = 0.005, p = 0.253, ƞp

2 = 0.037].

Reinforcement learning biases.  Win-stay behaviour did not alter as a function of condition: [F(2,70) = 1.41, 
MSE = 0.030, p = 0.250, ƞp

2 = 0.038] and the observed average value of 30.15% did not differ significantly from 
the expected value of 33.33% (t[35] =  − 1.15, p = 0.257). Lose-shift behaviour did not alter as a function of con-
dition: [F(2,70) = 1.34, MSE = 0.009, p = 0.268, ƞp

2 = 0.037] but the observed average value of 80.18% did differ 
significantly from the expected value of 66.66% (t[35] = 9.11, p < 0.001). Draw-shift behaviour did not alter as 
a function of condition: [F(2,70) = 0.43, MSE = 0.014, p = 0.653, ƞp

2 = 0.012] but the observed average value of 
73.70% did differ significantly from the expected value of 66.66% (t[35] = 4.47, p < 0.001). The degree of shift 
behaviour following loss was greater than that following draw (t[35] = 3.46, p = 0.001; two-tailed; see Figure and 
1a and Table 2).

Reaction times.  A two-way repeated-measures ANOVA on trial n + 1 median RTs using credit type (no, vari-
able, fixed) and outcome at trial n (win, lose, draw; see Fig. 1b and Table 3) revealed a significant main effect 
of outcome [F(2,70) = 15.84, MSE = 27,581, p < 0.001, ƞp

2 = 0.312] in the absence of a significant main effect of 
credit type [F(2,70) = 0.43, MSE = 100,698, p = 0.650, ƞp

2 = 0.012] and interaction [F(4,140) = 0.42, MSE = 17,775, 

Table 4.   Distribution of credits entered as a function of preceding outcome (win, lose, draw) across 
Experiments 1–3. Standard error in parenthesis.

Start Win Lose Draw

Experiment 1 (unexploitable) 0.168 (0.044) 0.305 (0.048) 0.237 (0.039) 0.290 (0.037)

Experiment 2 (exploiting) 0.148 (0.051) 0.258 (0.035) 0.359 (0.046) 0.235 (0.030)

Experiment 3 (exploitable) 0.110 (0.035) 0.371 (0.044) 0.280 (0.029) 0.239 (0.032)
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p = 0.793, ƞp
2 = 0.011]. Tukey’s HSD test (p < 0.05) revealed both losses (511 ms) and draws (507 ms) yielded 

significantly faster RTs than wins (619 ms).
Following the removal of 10 individuals for Experiment 2 (see Experiment 1 for details), the significant 

main effect of outcome was replicated [F(2,50) = 12.23, MSE = 10,949, p < 0.001, ƞp
2 = 0.329] in the absence 

of a significant main effect of credit type [F(2,50) = 0.96, MSE = 67,351, p = 0.391, ƞp
2 = 0.037] and interaction 

[F(4,100) = 2.36, MSE = 7214, p = 0.059, ƞp
2 = 0.086]. Tukey’s HSD test (p < 0.05) revealed both losses (441 ms) 

and draws (445 ms) yielded significantly faster RTs than wins (514 ms).

Credit selection.  A one-way repeated-measures ANOVA failed to show significance in credit distribution as 
a function of outcome in the variable condition (see Table 4): F(2,70) = 2.53, MSE = 0.06, p = 0.087, ƞp

2 = 0.067.

Discussion.  Experiment 2 tested the idea that the failure to extend or truncate decision-making times via 
the use of credit systems was due to there being no negative consequences for deviation from optimal perfor-
mance (lose-shift). If an opponent exploited these deviations, then behaviour should more closely align with 
MS, especially when given more (fixed credit, variable credit) rather than less (no credit) time to make decisions. 
However, at a group level, participants fared no worse against an exploiting (Experiment 2) versus unexploitable 
(Experiment 1) opponent as lose rates were not significantly different (33.41% vs. 33.89%, respectively; between-
participants t-test: t[70] = 0.82, p = 0.410). Furthermore, the variance of lose rates was not significantly smaller in 
Experiment 2 relative to Experiment 1 (Levene’s test: t[70] = 0.85, p = 0.360)—something that might have been 
predicted if participants were more likely to operate under mixed-strategy to avoid exploitation in Experiment 
2 but not Experiment 1. A final possibility is that any exploiting opponent designed with a static rule of course 
could be reconfigured to become an exploitable opponent. The idea that there is a variety of individual experi-
ences against non-mixed-strategy opponents will be revisited.

Nevertheless, Experiment 2 replicated Experiment 1 in two important ways. First, the data continued to show 
the increased use of shift behaviour following negative outcomes over that predicted by mixed-strategy. The idea 
that lose-shift behaviour reliably manifests itself against putatively unexploitable (Experiment 1) and exploiting 
(Experiment 2) opponents suggests something of the immutability of this particularly reinforcement learning 
rule, relative to the flexibility observed in the expression of win-stay behaviour. This observation is consistent 
with previous human data where win-stay but not lose-shift behaviour modulated as a function of outcome value5, 
electrophysiological work where feedback-related negative (FRN) to wins but not losses modulate as a function 
of frequency57, and, also animal work where lose-shift is seen as a more hard-wired reflex35,36. These ideas also 
align with the principle of loss aversion58 (although see59), loss attention whereby negative outcomes decrease 
inertia13, and evolutionary accounts where avoiding the damage following losing is more important that reap-
ing the benefits following success34,35. Second, the RT data suggests that part of the reason for this sub-optimal 
behaviour may be the self-imposed reduction in time allocated to decisions following negative outcomes (i.e., 
post-error speeding). In a final attempt to explore the relationship between the quality, speed and control of com-
petitive decision-making in Experiment 3, we exposed participants to an exploitable opponent.

Experiment 3
Previous work suggests that the development of a mental model leading to the successful exploitation of an oppo-
nent can radically change competitive performance. For example, post-error speeding becomes post-error slowing 
during successful exploitation, with the degree of slowing predicted by the degree of exploitation10. Therefore, it 
is possible that the sense of environmental control established during successful exploitation will also translate 
to an increased utility for varying decision-making times via credit systems.

In terms of the specific exploitable rule used in Experiment 360, if a computer opponent plays one item more 
often than another (e.g., Rock) then human participants will learn to play the appropriate counter-item with 
increased frequency (e.g., Paper; see also secondary salience61). Therefore, opponents with item biases should 
lead to increases in both win-stay and lose-shift participant behaviours. This is because increasing the frequency 
of item repetition for an opponent should similarly reinforce the repetition of a participant’s item following 
wins and also reinforce the change of a participant’s item following losses. By observing the degree of change 
across win-stay and lose-shift proportions, exploitable opponents serve as a final test of flexibility between these 
reinforcement learning heuristics.

Experiment 3 was identical to both Experiment 2, apart from the change in opponency to exploitable. Here, 
opponents in each of the three conditions (no, variable and fixed) were given an item bias of 51.11%. For example, 
Rock was played for 46 trials whereas both Paper and Scissors were played for 22 trials each, in a random order. 
The assignment of item bias (R, P, S) to condition was counterbalanced, as was the order of conditions. All other 
parameters and all statistical analyses were identical to Experiments 1 and 2. Two individuals were replaced due 
the recording of only 89 credits in the variable credit condition. Of the final sample of 36 participants, 1 declined 
to provide demographic information. Of the remaining sample of 35 individuals, 23 were female and 32 were 
right-handed (mean age = 21.46, stdev = 5.05).

Results.  Item and outcome biases.  Rock selection did not significantly vary as a function of no, variable 
and fixed credit conditions [F(2,70) = 0.37, MSE = 0.012, p = 0.691, ƞp

2 = 0.010] nor did the proportion of Rock 
selection significantly differ from the expected value of 33.3% as assessed by a one-sampled t-test: t[35] = 0.96, 
p = 0.343. However, wins did significantly vary as a function of credit conditions [F(2,70) = 4.80, MSE = 0.003, 
p = 0.011, ƞp

2 = 0.121], and were increased in the variable credit condition relative to the fixed credit condition 
(37.28% vs. 33.49%; see Table 1). Global win rates were also significantly higher than the expected value of 33.3% 
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as assessed by a one-sampled t-test: t[35] = 3.26, p = 0.003, and were significantly greater than the win rates ex-
perienced against an exploiting opponent in Experiment 2: between-participants t-test: t[70] = 3.76, p < 0.001.

For Experiment 3, the arc-sine transformed distribution of Rock (34.88%), Paper (32.84%), Scissors (32.28%) 
responses did not vary: [F(2,70) = 0.56, MSE = 0.042, p = 0.576, ƞp

2 = 0.016] nor interact with condition (no, 
variable, fixed): [F(4,140) = 0.65, MSE = 0.028, p = 0.628, ƞp

2 = 0.018]. Arc-sine proportions of win, lose and draw 
outcomes produced a significant main effect: [F(2,70) = 6.08, MSE = 0.006, p = 0.004, ƞp

2 = 0.148] as well as an 
interaction: [F(4,140) = 2.70, MSE = 0.004, p = 0.033, ƞp

2 = 0.072]. The increase in wins relative to losses and 
draws expected as a result of the opponent being exploitable was only significant in the variable credit condition 
(see Table 1).

A small but significant item bias for Rock was revealed across Experiments 1–3, with the observed value 
of 34.73% different from the expected value of 33.3%: t[107] = 2.07, p = 0.040. This is consistent with previous 
work3,6,31,53–55. A binomial test was also carried out for each individual under the null hypothesis that their average 
proportion of Rock was 33.3% and the null could be rejected (α = 0.050) for 100 out of 108 individuals, of whom 
58 showed Rock selection above the value expected by mixed strategy. The most parsimonious explanation for 
this effect is a primary effect62, akin to the over selection of Heads in the two-response game Matching Pennies, 
where participants have a tendency to select the first item. This 58% is similar in magnitude to other ‘majorities’ 
reported in decision-making work (e.g., the 55% of individuals who demonstrate more environmental sampling 
in loss relative to gain experimental contexts16, p. 338).

Reinforcement learning biases.  Win-stay behaviour did not alter as a function of condition: [F(2,70) = 0.99, 
MSE = 0.021, p = 0.376, ƞp

2 = 0.028] and the observed average value of 43.88% did differ significantly from the 
expected value of 33.33% (t[35] = 3.16, p = 0.003). Lose-shift behaviour did alter as a function of condition: 
[F(2,70) = 3.72, MSE = 0.014, p = 0.029, ƞp

2 = 0.096], with no credit (77.48%) varying from fixed (69.80%) but not 
variable credit (74.31%; Tukey’s HSD, p < 0.05). The observed average value for lose-shift behaviour (73.86%) sig-
nificantly differed from the expected value of 66.66% (t[35] = 2.55, p = 0.015). Draw-shift behaviour did not alter 
as a function of condition: [F(2,70) = 1.59, MSE = 0.018, p = 0.212, ƞp

2 = 0.043] and the observed average value 
of 66.09% did not differ significantly from the expected value of 66.66% (t[35] = 0.17, p = 0.864). The degree of 
shift behaviour following loss was greater than that following draw (t[35] = 3.46, p = 0.001; two-tailed; see Fig. 1, 
Table 2).

Reaction times.  A two-way repeated-measures ANOVA on trial n + 1 median RTs using credit type (no, varia-
ble, fixed) and outcome at trial n (win, lose, draw; see Fig. 2, Table 3) revealed a significant main effect of outcome 
[F(2,70) = 15.90, MSE = 19,083, p < 0.001, ƞp

2 = 0.308] in the absence of a significant main effect of credit type 
[F(2,70) = 1.89, MSE = 130,885, p = 0.158, ƞp

2 = 0.051] and interaction [F(4,140) = 0.34, MSE = 16,148, p = 0.850, 
ƞp

2 = 0.010]. Tukey’s HSD test (p < 0.05) revealed wins (563 ms), losses (512 ms) and draws (458 ms) were all 
significantly different from one another.

Following the removal of 7 individuals for Experiment 3, a two-way repeated-measures ANOVA on trial 
n + 1 median RTs using credit type (no, variable, fixed) and outcome at trial n (win, lose, draw; see Fig. 2, Table 3) 
revealed a significant main effect of outcome [F(2,56) = 13.63, MSE = 9018, p < 0.001, ƞp

2 = 0.328] in the absence 
of a significant main effect of credit type [F(2,56) = 2.09, MSE = 65,379, p = 0.133, ƞp

2 = 0.069] and interaction 
[F(4,112) = 0.29, MSE = 6018, p = 0.886, ƞp

2 = 0.010]. RTs for losses (454 ms) and draws (413 ms) were faster RTs 
than wins (488 ms), although only the difference between draws and wins was significant (Tukey’s HSD, p < 0.05).

Credit selection.  A one-way repeated-measures ANOVA on credit distribution was significant: F(2,70) = 3.51, 
MSE = 0.05, p = 0.035, ƞp

2 = 0.091, showing that significantly more credits were entered following wins relative 
to draws (see Table 4).

Cross‑experiment comparison
A number of central conclusions can be drawn by summarizing the data across Experiments 1–3. First, the data 
reliably show that reaction times following losses were faster (or more ‘impulsive’43) than reaction times following 
wins (see also6, Experiment 1). Such post-error speeding has previously been conceptualized as a self-imposed 
reduction in time allocated to decisions following losses, with the individual aiming to exiting the failure state 
as quickly as possible (contra13). However, this raises the concern that the less time one thinks about one’s next 
decision, the more likely it is to be sub-optimal, giving rise to cycles of poor performance. To investigate these 
ideas further, RT differences between losses and wins (collapsed across credit condition) were calculated on an 
individual basis for the two experiments in which a model of opponent performance could be learnt (Experi-
ments 2 and 3; n = 72), and, compared with the difference between win and loss rates experienced by the same 
participant (following10). Figure 2a depicts a significant, positive correlation between the degree of success 
exhibited by the participants (i.e., more wins) and the degree to which decisions following losses were slower 
than decisions following wins (i.e., post-error slowing; r = 0.202, p = 0.036). Thus, slowing down decision-making 
following losses increases the likelihood of future successful performance.

Two further correlations were examined in an attempt to pinpoint which reinforcement learning mechanism 
might be more sensitive to promotion following extra decision-making time. A significant, positive correlation 
between post-error slowing and win-stay rates (r = 0.295, p = 0.002; Fig. 2b) was contrasted with a non-significant, 
negative correlation between post-error slowing and lose-shift rates (r =  − 0.103, p = 0.287; Fig. 2c). Therefore, 
reduced impulsivity exhibited by participants following loss was also linked to the ability to re-initiate successful 
win-stay but not lose-shift strategies.
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This ease with which win-stay behaviour can be initiated, relative to the inflexibility of lose-shift behaviour, was 
further reinforced by also looking across studies in another way. The average proportion of win-stay behaviour 
(36.67%, 30.15%, 43.88%, respectively) was compared to the average proportion of lose-shift behaviour (77.23%, 
80.18%, 73.86%, respectively) across Experiments 1–3 in a two-way, mixed ANOVA (behaviour as a within-
participants factor, and, experiment as a between-participants factor). There was no main effect of experiment: 
F(2,105) = 1.27, MSE = 0.02, p = 0.287, ƞp

2 = 0.024, but there was a main effect of behaviour: F(1,105) = 293.78, 
MSE = 0.03, p < 0.001, ƞp

2 = 0.730, as well as an experiment × behaviour interaction: F(2,105) = 5.89, MSE = 0.03, 
p = 0.004, ƞp

2 = 0.101. The only significant difference to arise from the current data set was the difference in win-
stay behaviour between the exploiting opponent (Experiment 2) and the exploitable opponent (Experiment 3; 
Tukey’s p < 0.05). This is consistent with previous data where win-stay rates modulate to a greater degree than 
lose-shift rates, highlighting that the former is under cognitive control whereas the latter retains more of a reflex-
ive quality. This is, of course, not to suggest that lose-shift behaviour could not be attenuated using substantially 
longer delays between decisions (c.f, 1, 6.5 and 12 s lags used45), simply to say it is easier to stay following wins 
than it is to shift following loss.

General discussion
The main goal of this paper was to specifically test the relationship between decision-making speed and quality, 
with the hypothesis that slowing down decision-making following losses increases the likelihood of future suc-
cessful performance in cases where a successful model of opponent domination can be implemented. The data 
confirm that self-imposed reductions in processing time following losses (post-error speeding) are causal factors 
in determining poorer-quality behaviour (see Fig. 2). Specifically, the data also provide evidence that win-stay 
(rather than lose-shift mechanisms) might be more sensitive to promotion following extra decision-making time.

Second, the data reinforce the inflexibility of lose-shift as a decision-making heuristic in competitive contexts. 
However, it is important to address the idea that the potency of the lose-shift heuristic may in part be due to 
the weakness of the opponent manipulation across Experiments 1–3. Relative to the unexploitable opponent in 
Experiment 1, where we expected average win rates to be around 1/3 (32.93%) as a result of the use of MS, we 
did not see a reduction in win rate in Experiment 2 (32.59%) when the opponent was designed to take advantage 
of any transitory idiosyncratic item bias that participants might have (exploiting). Moreover, while significantly 
different from Experiment 2, the average win rate against exploitable opponents in Experiment 3 (35.30%) 
was not comparable to the degree of success observed in previous studies against exploitable opponents (c.f.10 
where participants achieved 18–24% differential between their win and lose rate). It is clear that more extreme 
expressions of exploiting and exploitable opponents should be used in future research. However, since there can 
be no guarantee that participant will offer themselves up to exploitation—nor take advantage of opponent who 
are themselves exploitable63—an alternative approach may be to design exploitable and exploiting conditions 
with fixed rather than variable win rates57,64–66. For example67 created an 80–20% differential between win and 
lose trials that could be used to recreate exploitable and exploiting opponents, respectively. One critical issue 
however with the use of fixed outcomes is that there is no consistency either within or between participants in 

Figure 2.   (a) Scatterplot comparing average lose minus win reaction time (RT) indexing the degree of post-
error speeding (lose < win) or post-error slowing (lose > win) against the rate of wins minus losses indexing 
participants who were successful (more wins) or unsuccessful (more losses). The significant, positive correlation 
(r = 0.202, p = 0.036) shows that slowing down decision-making following losses relative to wins increases 
the likelihood of future successful performance. (b) Scatterplot depicting the significant, positive correlation 
(r = 0.295, p = 0.002) between the degree of post-error slowing and individual expressions of win-stay behaviour. 
(c) Scatterplot depicting the lack of a significant correlation (r =  − 0.103, p = 0.287) between the degree of 
post-error slowing and individual expressions of lose-shift behaviour. Across (a–c), filled-in circles represent 
participants from Experiment 2 (n = 36) and unfilled circles represent individual participants from Experiment 
3 (n = 36).
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the behaviour that will ultimately be reinforced or punished. This may have large scale consequences for how 
behaviour is perceived and the degree to which participants believe success and failure is under their control.

Finally, the data provide future directions for understanding how the use of a variable ‘credit’ (or ‘token’) 
system may enhance the perceived control participants have against exploitable opponents. Specifically, win rates 
against exploitable opponents (Experiment 3) were enhanced in the variable credit condition, and, participants 
also inserted more credits following wins in the variable credit condition. This interaction between variable credit 
and exploitable opponents may reflect an increased sense of control18,20, as a result of the successful implemen-
tation of a mental model of the competitive environment. Relative to unexploitable or (prima facie) exploiting 
opponents, exploitable opponents offer a clear opportunity for strategic learning, where success is clearly indexed 
by an increase in win rate. Similarly, performance during the variable credit condition was also characterized by 
an increased opportunity for environmental control: the game slows and speeds according to the distribution of 
credits dictated by the participant. Importantly, the observation that more credits were inserted following win 
trials against exploitable opponents suggests that participants were initiating their own form of post-reinforcement 
pause8: increasing the time allocated to decision-making on the next round, thereby increasing their chances of 
consecutive success.

In future work, it will be important to disentangle two features of any putative credit system: temporal lag and 
response interruption68. Relative to the no credit conditions, both fixed and variable credit conditions extended 
the time between trials (temporal lag) as a result of requiring participants to switch from their RPS task to a 
credit entering task (see69, for a review on the extensive task-switching literature). Therefore, any potential costs 
or benefits accrued from credits systems could be due to (a) providing individual with more time to make bet-
ter decisions, (b) disrupting cyclic or poorer-quality motor patterns associated with response selection, or, (c) a 
combination of the two. Some of our future research will be focused around using average reaction time derived 
from a fixed credit block as an average delay time around which participants are only exposed to temporal lags 
between trials. This type of manoeuver will help to reveal any effects of temporal delay independently of the 
contribution of response interruption, in the larger context of dynamic decision-making against numerous 
styles of opponency.
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