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A novel machine learning model 
to predict respiratory failure 
and invasive mechanical ventilation 
in critically ill patients suffering 
from COVID‑19
Itai Bendavid1*, Liran Statlender1, Leonid Shvartser2, Shmuel Teppler2, Roy Azullay2, 
Rotem Sapir2 & Pierre Singer1

In hypoxemic patients at risk for developing respiratory failure, the decision to initiate invasive 
mechanical ventilation (IMV) may be extremely difficult, even more so among patients suffering from 
COVID-19. Delayed recognition of respiratory failure may translate into poor outcomes, emphasizing 
the need for stronger predictive models for IMV necessity. We developed a two-step model; the first 
step was to train a machine learning predictive model on a large dataset of non-COVID-19 critically 
ill hypoxemic patients from the United States (MIMIC-III). The second step was to apply transfer 
learning and adapt the model to a smaller COVID-19 cohort. An XGBoost algorithm was trained on 
data from the MIMIC-III database to predict if a patient would require IMV within the next 6, 12, 18 or 
24 h. Patients’ datasets were used to construct the model as time series of dynamic measurements 
and laboratory results obtained during the previous 6 h with additional static variables, applying a 
sliding time-window once every hour. We validated the adaptation algorithm on a cohort of 1061 
COVID-19 patients from a single center in Israel, of whom 160 later deteriorated and required IMV. The 
new XGBoost model for the prediction of the IMV onset was trained and tested on MIMIC-III data and 
proved to be predictive, with an AUC of 0.83 on a shortened set of features, excluding the clinician’s 
settings, and an AUC of 0.91 when the clinician settings were included. Applying these models “as is” 
(no adaptation applied) on the dataset of COVID-19 patients degraded the prediction results to AUCs 
of 0.78 and 0.80, without and with the clinician’s settings, respectively. Applying the adaptation on 
the COVID-19 dataset increased the prediction power to an AUC of 0.94 and 0.97, respectively. Good 
AUC results get worse with low overall precision. We show that precision of the prediction increased as 
prediction probability was higher. Our model was successfully trained on a specific dataset, and after 
adaptation it showed promise in predicting outcome on a completely different dataset. This two-step 
model successfully predicted the need for invasive mechanical ventilation 6, 12, 18 or 24 h in advance 
in both general ICU population and COVID-19 patients. Using the prediction probability as an indicator 
of the precision carries the potential to aid the decision-making process in patients with hypoxemic 
respiratory failure despite the low overall precision.
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COVID-19	� Corona virus disease 2019
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Acute hypoxemic respiratory failure is a devastating condition, associated with very high morbidity and mortality 
rates1. It is a heterogeneous state with many known causes, potentially leading to lung dysfunction and respira-
tory muscle pump failure. Respiratory support may be noninvasive, mainly oxygen support, including high 
flow systems and noninvasive ventilation (NIV), or invasive mechanical ventilation (IMV) via tracheal intuba-
tion. Delayed recognition of respiratory failure and prolonged use of high flow oxygen therapy2 or NIV3 may 
lead to increased mortality. As decisions to initiate IMV are very often not clear cut, it is imperative to develop 
decision-support tools that may help assess which patients are more prone to fail under noninvasive support. 
These decisions are more relevant than ever when treating COVID-19 patients in respiratory failure, in whom 
NIV and high flow oxygen therapy are used in around 15% of these patients’ population4.

We devised a new model to improve the prediction of hypoxemic respiratory failure based on the existing, 
large dataset of the Medical Information Mart for Intensive Care (MIMIC-III). Although acute respiratory 
failure has some similarity to respiratory failure due to COVID-19, patients’ reactions and morbidities are dif-
ferent, thus models trained on pre-COVID-19 population might not work well for prediction of the COVID-19 
respiratory failure. Training the models only on COVID-19 population in a single hospital is also not adequate 
since the cohort size is rather small. Therefore, we chose two-step solution; first to train a machine learning (ML) 
predictive model on a large dataset of pre-COVID-19 general population, then adapt the model to the smaller 
COVID-19 cohort.

Methods
MIMIC‑III database.  The database comprises detailed clinical information for over 60,000 stays in ICUs at 
the Beth Israel Deaconess Medical Center in Boston, Massachusetts, collected as part of routine clinical care5. 
Patients’ records are anonymized and readily available for researchers. The MIMIC extract provides standard-
ized data processing functions, including unit conversion and outlier detection while preserving the time series 
nature of clinical data6. Values were mean centered and scaled to univariance, then missing data was imputed 
using a variant of the “Simple Imputation” scheme, in which each variable is represented via a mask (mask = 1 if 
the value is present at this time step, mask = 0 otherwise), the imputed variable and the time since the last obser-
vation of this feature. Several predictive algorithms are already implemented by the authors of MIMIC extract6, 
including mortality, length-of-stay7 and application of IMV. Application of IMV consisted of four predefined 
states: Onset, Stay On, Wean and Stay Off8. To make clinically meaningful predictions, MIMIC extract aggre-
gates outputs as a sliding window with the size of 6 h as input features, then a prediction algorithm is applied 
to predict four possible interventions within a 4-h prediction window, offset by the input window by a 6-h gap 
window (Fig. 1a). The dataset was originally analyzed using logistic regression, random forest, convolutional 
neural network and long short-term memory6. We took these problems with the same data used in the past6 and 
solved them using XGBoost as it had been shown to outperform the aforementioned methods for all the tasks9,10.

The most important question for COVID-19 patients was to predict onset of IMV, therefore we reconstructed 
the model for onset prediction only. We focused on the cohort of acute hypoxemic respiratory failure patients, 
as it is the hallmark of respiratory failure in COVID-19 patients.

Figure 1.   The sliding window prediction schemes. (a) In the first prediction window, the point of reference is 
at the end of the 6-h features sliding window. The model predicted the onset of invasive mechanical ventilation 
at the 4-h target prediction period while ignoring the six hours gap period. (b) A widened sliding window 
prediction scheme. This is a scheme similar to (a) but the gap period here varies between 6 to 24 h for the 
prediction of invasive mechanical ventilation.
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Study design.  IMV Onset prediction models were developed and tested using the MIMIC-III data. The 
models were validated on patients from Rabin medical center. Since models trained on non-COVID-19 MIMIC-
III data may not be appropriate for the prediction of IMV onset in COVID-19 patients, a method that adapted 
the MIMIC-III model for COVID-19 patients was developed and evaluated on MIMIC-III data and validated 
on the Rabin COVID-19 data.

Patients’ datasets used to construct the model were time series of dynamic measurements and lab results, as 
well as additional static variables, while applying a sliding time-window once every hour. The datasets had 6-h 
sliding intervals, but only if in the first 6-h interval and in the following defined gap (6-h gap, or 12, 18, 24) IMV 
was not performed. IMV onset was detected for the 4 h after the gap, defined as positive (IMV in this window) 
or negative (no IMV in the window). The datasets were randomly divided into training (80%) and testing (20%). 
Some other important implementation details are presented in Supplement 1.

Patients.  Only hypoxemic patients in the MIMIC-III cohort were taken. According to MIMIC extract 
default parameters (intrinsic to the database): age > 15, minimal length of stay of 12 h, maximal length of stay of 
10 days. The local study cohort comprised systems, staff reports and laboratory tests. Hypoxemia was defined as 
at least one of the following: PaO2 lower than 60 mmHg or SpO2 lower than 90%11. The Rabin hospital data tables 
were transformed to MIMIC-III tables, to allow use of the MIMIC extract pipeline. The data items describing 
patient demographics, admissions, vital signs, laboratory measurements, treatments and more are detailed in 
Supplement 1. We mapped the Rabin data for hypoxemic patients, only to the exact features of MIMIC-III, then 
we aligned the measurement units. There are features found at MIMIC-III yet not found on local data, and vice 
versa. We also modified these files to extract sets of variables that were best suited for our study and adjusted 
the custom outlier detection thresholds. Finally, we built the “Rabin-extract” pipeline, transforming all patients 
admitted to Rabin medical center between March 2020 and February 2021, that stayed in the hospital for more 
than 48 h (Rabin) and were diagnosed with COVID-19 (i.e., tested positive for the SARS-CoV-2 virus).

The trial was approved by the institutional review board of Rabin medical center. Consent was waived as 
this was an analysis of existing anonymized data. All experiments were performed in accordance with relevant 
guidelines and regulations.

Data sources.  The list of all the variables (Rabin mapping) participating in this study is presented in Supple-
ment 2. The variables were continuously measured and stored in the electronic health record. While some of the 
variables were static, such as age or sex, most variables were dynamic, with periodic measurements from moni-
toring systems and labs. The relevant parts of the database were reformatted to the HDF5 file format, deemed 
more suitable for ML processing.

Bias.  A potential source of bias was the rather small cohort of COVID-19 patients in the Rabin database. To 
mitigate this bias, we chose a two-step solution: first to train the ML predictive model on a larger dataset of non-
COVID-19 population, then to apply transfer learning and adapt the model to the smaller COVID-19 cohort.

Machine learning and statistical methods.  For the first step, the XGBoost algorithm12 was trained to 
answer only the question whether a patient not currently under invasive mechanical ventilation, will be inva-
sively ventilated after the nearest 6, 12, 18, 24 h (Fig. 1b). XGBoost is a decision tree-based ensemble ML algo-
rithm that uses a gradient boosting framework. XGBoost is considered the current strongest not-deep-learning 
ML algorithm, generally outperforming deep learning on moderate-size sets of data9,10.

For the adaptation, a dedicated transfer learning algorithm tailored for XGBoost was developed, as to pre-
serve the predictive strength of the model trained on the source domain while applied on the target domain. The 
adaptation process used a portion of the target domain patients for fitting the source domain model to the target 
domain, and then test it on the complementary part of the target domain, i.e., remaining patients. The adapta-
tion process is further described in Supplement 3. The IMV Onset prediction was trained and tested according 
to the scheme described above for 6-h gap. The results of evaluation of the algorithm obtained on MIMIC-III 
data are presented in Supplement 4. The code and the data to run this procedure and to evaluate it are available 
at https://​github.​com/​lshva​rtser​1959/​TSG-​ICU.

For the prediction of respiratory deterioration of hypoxemic COVID-19 patients, we used two methods of 
training and testing. The first method was a "one-step" approach: to train the model on Rabin COVID-19 data, 
in which we randomly split the data to 70% for training and the remaining 30% for testing. We took the structure 
of the algorithm, the pipeline, and the imputation method from our MIMIC-III preparations, using only features 
found relevant by feature importance analysis on MIMIC-III. The second method was a "two-step" approach: to 
train and test the model on MIMIC-III data, then apply the adaptation algorithm on the Rabin COVID-19 data. 
Training/testing/validation on MIMIC-III data were distributed 80/19.6/0.4%.

To map data for hypoxemic patients from both MIMIC-III and Rabin COVID-19 datasets, we trained models 
on both the original MIMIC extract mapping of features and the mapping that would have the ability to run on 
Rabin data (i.e., common features only, for both MIMIC-III and Rabin data). Features that were set by clinicians, 
mainly ventilator settings, were designated as operational features, as opposed to features from staff reports, 
monitoring systems and labs. Patients were randomly divided into groups of training and testing, to provide 
control for confounding variable, with no cross-over between groups. The aim of this adaptive two-step method 
was to mitigate the difference in progression towards respiratory failure and need for IMV between COVID-
19 and non-COVID-19 patients. Missing data, including loss to follow-up, were imputed using a variant of 
the "simple imputation" scheme, in which each variable was represented via a mask and the time since the last 
measurement, as described earlier. Training / testing split was done in random 30 times for sensitivity analysis. 

https://github.com/lshvartser1959/TSG-ICU
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The framework of the study and the data flow are presented in Fig. 2. Setups, training and testing options used 
in our experiments correspondingly on MIMIC-III and Rabin data are presented in Supplement 5.

Feature importance.  Each feature was given importance according to its relative contribution to the pre-
diction of mechanical ventilation, as derived from the XGBoost model. Feature importance for 6-h gap in all 
MIMIC-III and Rabin configurations were examined. To estimate the influence of the features to classification 
we used the feature importance algorithm of XGBoost.

Figure 2.   Processing flow diagram. Model training and testing is done in two configurations: with and 
without the operational features. Model for Rabin data may be pre-trained on MIMIC-III or without it. Finally, 
the model trained on MIMIC-III could be adapted to the Rabin data or tested as is. MIMIC-III: medical 
information mart for intensive care III. DB: database. ROC: receiver operator characteristic. AUC: area under 
the curve.
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As previously mentioned, the XGBoost algorithm12 initially builds a decision tree to minimize losses in the 
prediction on the training set, in which outcomes are already known. It then gradually adds additional decision 
trees, to minimize residual losses using the Newton–Raphson method. The result is a model built as a sequence 
of decision trees. For classification purposes, every decision tree was built by choosing a sequence of features for 
splitting as well as thresholds for optimal classification of examples. Feature importance in XGBoost is defined 
as the number of times a variable is selected for splitting, weighted by the squared improvement of the model 
as a result of each split13. We chose the model’s hyperparameters by random search on a validation set14. One of 
the tuned parameters was scale_pos_weight, ideal for work with unbalanced data by giving more weight to minor 
classes during calculation of the stochastic gradient.

Because of the sparse structure of data and the different rate of measurements, an imputation algorithm was 
employed. The imputation algorithm transformed data to a constant rate (1 h) and produced three features for 
each measured item6: mean value per hour, 0 or 1 mask for all measurements within 1 h, and time since last meas-
urement that reflects the measurement’s accuracy- the longer the time since the last measurement, the lower the 
accuracy. The XGBoost algorithm combined these features during its fitting process. It allowed for a more reliable 
use of measures in the face of sparse measurements. Such a method is widely used in ML of medical data6,15–17. 
We trained and tested the model on MIMIC-III data and on Rabin data, both with and without operational fea-
tures. These operational features included positive end-expiratory pressure set; tidal volume set; respiratory rate set; 
plateau pressure; positive end-expiratory pressure; tidal volume observed; fraction inspired oxygen set; tidal volume 
spontaneous; peak inspiratory pressure. Extremely rarely measured features were excluded from consideration. 
This was inherent to the XGBoost method due to the decision tree structure, and rarely measured features are 
considered unreliable and are not considered when building the prediction model.

Feature correlation matrix.  The effect of spurious measurements and correlations was a concern. To 
address this issue, as well as to better understand the logics of the feature importance algorithm, we employed 
a correlation matrix that studied interactions between features and examined the correlation vector between 
features and outcomes. Correlations were aggregated and analyzed in two ways: once as a time driven “autore-
gressive” process and once as the pathophysiological influence of features on respiratory failure without their 
time dependencies.

Time driven analysis: this autoregressive analysis of data took all the features for each of the 6 h of the process-
ing window with a further 6 h gap before the IMV outcome 4 h period. Static features were then added, and a 
Pearson correlation matrix was constructed to study the effect of features over time during the 6 h window. We 
then employed directed acyclic graph (DAG)18 to visually study the timeline dependencies. An example of this 
matrix and corresponding DAG are presented in Supplement 6 and the full correlation matrices are available at 
https://​github.​com/​lshva​rtser​1959/​TSG-​ICU.

Pathophysiological influence analysis: to analyze the pathophysiological meaning of XGBoost feature impor-
tance assignment, the time series were aggregated by hours and a second DAG was built to study the feature 
selection process. It follows the trajectories of the XGBoost importance assignment process. The feature chosen 
first is the feature with the highest importance. The correlations of each feature with the other features are drawn 
from the Pearson correlation matrix. The next features were chosen in a descending order of importance, a pro-
cess that was performed repeatedly until the measured importance was lower than a chosen threshold. For each 
chosen feature, the features with which it had the best correlation were drawn. Features were then clustered in 
tiers, based on the Pearson correlation matrix. This process and its results for Rabin COVID 19 adapted model 
without operational features appear in Supplement 7.

Ethics approval.  The trial was approved by the institutional review board of the Rabin medical center. Con-
sent was waived as this was an anonymized analysis of existing data.

Results
The MIMIC-III non-COVID-19 cohort included 34,486 patients, of whom 13,328 (39%) required IMV at some 
stage, and 11,816 (34%) were hypoxemic. Of the hypoxemic patients, 6,281 (53%) received IMV at some stage. 
The Rabin cohort included 1,279 patients suffering from COVID-19, admitted between March 2020 and February 
2021, of whom 163 required IMV during their hospitalization course. 1061 (83%) of the COVID-19 cohort were 
hypoxemic. 3 of the patients on IMV were not hypoxemic at any stage, i.e. ventilated for other reasons, leaving 160 
patients receiving IMV for hypoxemic respiratory failure. Patient baseline characteristics are presented in Table 1.

Overall, there were 1,032,361 h of measurement in the MIMIC-III dataset and 254,905 h of measurement in 
the Rabin dataset. Statistics for the three different models, with and without operational features with statistics, 
are presented in Supplement 8.

The IMV onset prediction model developed and tested using the MIMIC-III (non-COVID-19) data yielded 
an area under the curve (AUC) of 0.91 when the operational features were included and an AUC of 0.83 when 
excluded. The AUC was 0.91 after 6 and 12 h and 0.90 after 18 and 24 h, meaning prediction quality degraded 
very little during the course of 24 h. The most important features for both MIMIC-III and Rabin datasets with 
an importance level above 0.01 are presented in Fig. 3 (a and b, respectively). XGBoost feature importance 
assignment takes care not to consider rarely measured features as important ones. Among the 25 most impor-
tant features in MIMIC III, only the d-dimer had relatively few measurements (1572), but it was nonetheless 
included by the XGBoost model as this feature showed high importance in the prediction of deterioration. Rare 
measurement with less than 1,000 values are at the end of the list (Supplement 9). The feature importance for the 
6-h gaps in MIMIC-III and Rabin configurations with operational features are presented in in Supplement 10.

https://github.com/lshvartser1959/TSG-ICU
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We compared the feature importance ranking obtained from the XGBoost model with the ranking obtained 
from their correlations (absolute values) with IMV onset using the adapted models on the Rabin COVID-19 
cohort, both with operative features and without them. There were 73 features in the analysis. They were divided 
according to their importance in the XGBoost model, separating the 36 more important features from the 37 
less important ones. The same was done for the correlation sequence. The odds ratio without operational fea-
tures was 3.20 and 2.97 with them. Considering the inaccuracy of both linear Pearson correlation and simple 
sorting by correlations, these odd ratios signify a positive association between the XGBoost sequence and the 
correlation sequence.

For assessment of the predictive abilities of the algorithm, a receiver operator characteristic (ROC) curve 
was created, with the area under the curve (AUC) calculated. Results of training and testing on MIMIC III with 
operational features are presented in Fig. 4. The model was trained on MIMIC-III (80% of MIMIC III hypoxemic 
data for training and 20% for testing), adapted on 70% of the Rabin data and tested on the remaining 30% of 
the Rabin data. Applying the MIMIC model “as is” (no adaptation) on the Rabin data of COVID-19 patients 
resulted with to AUC of 0.80 and 0.78 with and without the clinician’s settings respectively. After applying the 
adaptation on the COVID-19 data, the model yielded an AUC of 0.97 with the operational features and an AUC 
of 0.94 without them (Fig. 4). Results on Rabin data while not relying on MIMIC-III model achieved an AUC of 
0.95 with the operational features and an AUC of 0.94 without them (Fig. 4). The confusion matrices were built 
with a false positive rate of ~ 0.2 for all experiments.

The algorithm runs once every hour, with a sliding time-window of measurements of 6 h. While maintaining 
a time-gap of 6 h, it predicts onset in a time-window of 4 h after the gap. Intervals with real onset in the meas-
urements or gap windows don’t participate in training or testing. This method may lead to one true event to be 
predicted up to 4 times. Therefore, the number of events in the confusion matrix is the number of predictions 
and not the true number of patients, onsets or events.

The quality of recognition reflected by the AUC was high for all models. However, the false positive rate was 
also high. When analyzing the confusion matrices, F-scores and Matthew correlations (as shown in detail in 
Table 2), the precision (i.e., the number of true positives relative to the number of true positives and false posi-
tives) was poor for this threshold, even supposing that recall (i.e., true positive) was twice more important than 
precision. As the false positive rate was high, we analyzed the precision-recall curves and distributions of data 
by prediction probability. The precision-recall curves built for the MIMIC III cases are presented in Fig. 5. It 

Table 1.   Baseline characteristics for hypoxemic patients only in the MIMIC III and the Rabin COVID-19 
cohorts. BMI body mass index, CPAP continuous positive airway pressure, BiPAP bilevel positive airway 
pressure, IMV invasive mechanical ventilation, N/A not available, SOFA sequential organ failure assessment. 
*Recorded means of noninvasive respiratory support in Rabin are very low. This could only be attributed to 
underreporting of the modalities used.

Characteristic MIMIC III Rabin medical center

Total number of hypoxemic patients 11,816 1061

Male sex 6589 (55.8%) 626 (59.0%)

Age- years 67.4 (± 16.2) 67.7 (± 16.5)

Weight- kg 82.7 (± 24.1) 79.3 (± 20.8)

Height- cm 168.8 (± 12.5) 166.5 (± 9.5)

BMI- kg/m2 29.8 (± 11.4) 28.7 (± 8.6)

In the first 24 h

Heart rate- beats per minute 87.0 (± 17.9) 81.4 (± 16.7)

Mean blood pressure- mmHg 76.6 (± 14.8) 82.5 (± 17.5)

Platelets- 103/microliter 204.7 (± 111.7) 218.9 (± 100.5)

Creatinine- mg/dl 1.5 (± 1.5) 1.4 (± 1.4)

Bilirubin- mg/dl 2.1 (± 4.5) 0.6 (± 1.6)

White Blood cells- 103/microliter 13.3 (± 13.0) 7.4 (± 4.3)

PaO2/FiO2 297.2 (± 163.6) 148.8 (± 75.8)

SpO2/FiO2 187.7 (± 147.2) 170.7 (± 57.5)

Respiratory support during stay

Oxygen therapy (other than high flow) 10,356 (87.6%) 308 (29.0%)*

High flow oxygen therapy 1031 (8.7%) 198 (18.7%)*

Non-invasive ventilation (CPAP or BiPAP) 854 (7.2%) 16 (1.6%)*

Invasive mechanical ventilation 6281 (53.2%) 160 (15.1%)*

Outcome measures

Hospital length of stay- days 9.4 ( ±8.3) 15.1 ( ±11.6)

Hospital mortality 2289 (19.3%) 211 (20.0%)

Length of ventilation (only patients on IMV)- hours 41.1 ( ±46.3) 176 ( ±230.7)

SOFA 8.18 ( ±2.51) N/A
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is possible to increase the threshold, resulting in higher precision but recall is then decreased. In this scenario, 
patients that strongly require IMV will still be recognized, but borderline cases could potentially be missed. 
The chosen threshold ( µ) for prediction probability corresponds with 20% of false positives. To calculate the 
precision, every interval after the threshold was analyzed accordingly: [ µ , 0.1], [0.1, 0.2], …, [0.9, 1]. Precision 
increased drastically as probability of prediction moved away from the threshold, most prominently when the 
probability was above 0.5.

The number of positives in the Rabin dataset was small, making precision distributions and precision-recall 
curves meaningless, as there were many values around zero. Using an approximation process based on the 
similarity of distributions between the Rabin and MIMIC III testing sets, additional values were added to create 
precision distribution curves by probability. This process is discussed in detail in Supplement 11.

Figure 3.   Feature importance in different feature mappings. a. MIMIC-III mapping, b. Rabin mapping. The 
relative contribution to the predictive model of the most important features for each database is shown. ROX 
index was defined as the ratio of pulse oximetry/fraction of inspired oxygen to respiratory rate19. Feature 
importance in Gradient Boosting Trees (XGBoost is one of them) is calculated for a single decision tree by 
the amount that each attribute split point improves the performance measure, weighted by the number of 
observations the node is responsible for. The feature importance is then averaged across all the decision trees 
within the model20.
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Figure 4.   Testing receiver operator characteristic (ROC) curves and confusion matrices for MIMC III and 
the Rabin COVID-19 data using 6-h gaps for 1061 patients. An ROC curve is a graphical plot that illustrates 
the diagnostic ability of a binary classifier system as its discrimination threshold is varied. Confusion matrix 
summarizes the diagnostic ability of a binary classifier system when the threshold is chosen for the false positive 
rate of 0.2. Within the confusion matrix, cell (1,1) is the number of true positives, cell (0,0) is the number of 
true negatives, cell (0,1) is the number of false positives, cell (1,0) is the number of false negatives. Presented 
numbers are numbers of sliding window intervals used in testing procedure. (a) Training on MIMIC III with 
operational features. (b) Training on MIMIC-III with adaptation to Rabin COVID-19 and with operational 
features. (c) Training on MIMIC III without operational features. (d) Training on MIMIC-III with adaptation to 
Rabin COVID-19 and without operational features. (e) Training on Rabin COVID-19 with operational features. 
(f) Training on Rabin COVID-19 without operational features.
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Sensitivity analysis was performed by splitting the sets of patients 30 times in random and calculating the 
95% confidence intervals for AUC. The confidence intervals observed were rather tight, meaning the prediction 
level remained stable across different sets. These results are presented in Table 3.

The feature correlation matrix was calculated as previously described (Fig. S1 in Suppl. 7). Features were 
clustered into tiers according to correlations. The first tier comprised mostly of arterial blood gas results. The 
second tier comprised mostly of respiratory and hemodynamic features. The third tier was the respiratory rate 
alone. The complete list of features according to tiers appears in Supplement 7 (Table. S1).

Figure 4.   (continued)
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Table 2.   Different operational characteristics for computational experiments. β = 0.5—recall twice more 
important than precision. Matthew correlation coefficient (MCC) takes into account true and false positives 
and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very 
different sizes. The MCC is in essence a correlation coefficient between the observed and predicted binary 
classifications; it returns a value between − 1 and + 1. A coefficient of + 1 represents a perfect prediction, 0 
no better than random prediction and − 1 indicates total disagreement between prediction and observation. 
The F1 score is the harmonic mean of the precision and recall. The more generic Fβ score applies additional 
weights, valuing one of precision or recall more than the other. The highest possible value of an F-score is 1.0, 
indicating perfect precision and recall, and the lowest possible value is 0, if either the precision or the recall is 
zero.

Data base Model type Operational features AUC​ F1-score,β = 0.5

Matthews correlation 
coefficient

MIMIC III Self model Yes 0.91 0.19 0.17

MIMIC III Self model No 0.83 0.16 0.13

Rabin COVID-19 patients Adaptation 
MIMIC—> Rabin Yes 0.97 0.09 0.12

Rabin COVID-19 patients Adaptation 
MIMIC—> Rabin No 0.94 0.09 0.12

Rabin COVID-19 patients Self model Yes 0.95 0.08 0.12

Rabin COVID-19 patients Self model No 0.94 0.08 0.12

Figure 5.   Precision-recall curves and distributions of precision by prediction probability above the threshold. 
(a,c) Training on MIMIC III with operational features. (b,d) Training on MIMIC III without operational 
features. Figures (c) and (d) were built as follows: prediction probability interval above the threshold was 
divided into the intervals [ µ , 0.1], [0.1, 0.2], … , [0.9, 1]. The chosen threshold ( µ) for prediction probability 
corresponds with 20% of false positives. Precision was calculated for each interval separately.
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Discussion
In the past decades we saw great advances in the field of respiratory care for acute respiratory failure, although 
the mortality rates and related morbidity are still high. Noninvasive methods are often used to compensate for 
the increased respiratory load, with generally good results. NIV may be safely used, and a recent meta-analysis21 
showed reduced mortality using face masks and helmet NIV compared with standard oxygen therapy. High flow 
oxygen therapy was shown to decrease mortality and intubation rates in acute hypoxemic respiratory failure as 
well22. However, delay in IMV initiation may become a double-edged sword, not only for the aforementioned 
association with increased mortality. While ventilator-induced lung injury has long been recognized, recent years 
have seen an increasing body of knowledge concerning patient self-inflicted lung injury. Allowing the patient 
with a high potential for lung damage, for instance a high respiratory drive, to remain under noninvasive sup-
port may in fact translate later into worse outcomes when compared with earlier initiation of IMV23. COVID-19 
patients requiring IMV face a very deadly disease, with mortality rates ranging from 35 to 97%24, well above those 
expected for general acute hypoxemic respiratory failure or even those with other viral pathogens.

Potential ways to discern those who are expected to fail under noninvasive support and for whom IMV might 
be better initiated earlier have been developed. Duan et al.25 developed a scale (HACOR) including heart rate, 
acidosis, consciousness, oxygenation, and respiratory rate to predict NIV failure. This method reached a diag-
nostic accuracy for NIV failure exceeding 80% in some subgroups. The application of this tool was also related 
with decreased hospital mortality rates, and its accuracy was later validated externally26. In another study using 
NIV after extubation27, the univariate analysis identified parameters as factors associated with reintubation. 
However, multivariate analysis identified pneumonia as the only predictive factor for failure of NIV-assisted 
extubation among critically ill patients.

Artificial intelligence and machine learning algorithms are increasingly employed to enhance prediction of 
respiratory deterioration and failure. Zeidberg et al.28 developed and studied two machine learning approaches, 
logistic regression and XGBoost, on patients with acute respiratory distress syndrome. L2 logistic regression per-
formed best, reaching an area under the ROC curve of 0.81, identifying patients with four-fold greater chance to 
deteriorate. Several approaches have been studied specifically on COVID-19 populations. Ferrari et al.29 devised 
a hybrid approach combining machine learning tools, mainly ensemble decision trees, with the expertise of 
physicians, to predict 48 h in advance which patients would later develop moderately-severe respiratory failure, 
reaching 84% predictive accuracy. In the READY trial30 Burdick et al. employed XGBoost for fitting decision 
trees to detect patients who would deteriorate and require IMV after 24 h, reaching an AUC of 0.866. Most 
recently, an XGBoost-based model31 was employed to assess which COVID-19 patients would deteriorate after 
48 h, reaching an AUC of 0.77, greatly outperforming an established early warning score.

Our model showed very high predictive accuracy for respiratory deterioration requiring invasive mechanical 
ventilation after time gaps of 6, 12, 18 and 24 h. Among the strongest predictive variables for MIMIC-III (non-
COVID) patients were those related to and physiological parameters of cardio-respiratory function, including 
carbon dioxide (CO2) levels (both end-tidal and arterial partial pressure), actual respiratory rate and heart rate. 
Removal of the so-called operational features, led to a small degradation in the predictive quality of the models, 
but results were still robust. Validation of the method on COVID-19 data showed that the model could be used 
for the prediction of IMV onset for COVID-19 patients with high accuracy after the adaptations were integrated 
into our model. This promising tool, combining the two methods into a two-step model, may be of great aid in 
these times of COVID-19 Pandemic.

Our study suggests a model using an array of features, respiratory and non-respiratory, is able to predict 
respiratory failure at a very early stage. This detection may precede overt oxygenation or hemodynamic dete-
rioration, potentially preventing emergency intubation and mechanical ventilation. These days this approach 
is potentially more relevant than ever, as the model’s high accuracy was validated in COVID-19 patients. This 
two-step model could potentially be validated, adapted and trained in different settings and on various patient 
populations for early prediction of adverse outcomes.

The results showed that our model, trained on a specific dataset, could be adapted and used on a different 
dataset with different characteristics. Although the model was trained on a cohort of patients that were non-
COVID-19, it could be adapted well to perform on a COVID-19 cohort at a different part of the world.

Table 3.   Confidence intervals for AUC in considered experiments. AUC 95% confidence intervals were 
estimated by splitting the sets of patients 30 times in random. Confidence intervals were tight, meaning the 
prediction level remained stable across the different sets.

Experiment

Confidence 
interval

Min Max

MIMIC-III, with operational features 0.902 0.916

MIMIC-III, without operational features 0.822 0.837

Training, testing on Rabin COVID-19 with operational features 0.940 0.959

Training, testing on Rabin COVID-19 without operational features 0.931 0.947

Training on MIMIC-III with adaptation on Rabin COVID-19 and with operational features 0.961 0.975

Training on MIMIC-III with adaptation on Rabin COVID-19 and without operational features 0.932 0.946
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The AUCs for the models built were high, but this finding might be biased as the imbalanced sample of posi-
tive events/ negative events and it is reflected in the low F1 and Matthew scores. Threshold of false positives of 
20% is only as an indication. To overcome this limitation and make the algorithm clinically applicable, a specific 
threshold that could be changed according to the clinical emphasis was set, allowing changes in the position on 
the precision-recall curve. Close to the threshold (probability lower than 0.2), precision was poor. In the mid 
ranges, between 0.2 and 0.8, the physician should be aware of an increasing risk for respiratory failure requir-
ing IMV, with a higher risk the stronger the probability. With a probability above 0.8, IMV should be strongly 
considered. It is expected that clinicians using this tool will analyze the probabilities as trends in prediction, 
basing their decisions on repeated predictions and ongoing tendencies rather than solely on a single predictive 
probability, commonly known as a "snapshot", thus increasing the reliability of the model, and largely decreasing 
the false positive rate (i.e., increasing precision).

This research had several risks and limitations. A major risk was the inclusion of parameters that were largely 
irrelevant to the respiratory state of patients but showed spurious correlations. This was tackled using a correla-
tion matrix and an examination of the XGBoost model feature importance ranking. We divided the features into 
tiers according to their ranking, i.e., relative contribution, to the prediction process. Even though data coverage 
in the Rabin cohort was sometimes low, our model used features according to their relative importance. Tiers 
were assigned to map the XGBoost algorithm, all of which are clusters of mutually correlated features. XGBoost 
chooses representative features from every cluster, a process that is explained in detail in Supplement 7. The 
algorithm found the most important features that were relevant for prediction, using alternate features from the 
same tier when the dedicated feature was sparse or missing.

There are currently very few existing investigations into combinations of feature selection and missing value 
imputation. Such an attempt was undertaken by Liu and colleagues in 202032. One of the results of this work is 
that combination of the Decision Tree feature selection and imputation is a better choice for higher dimensional 
datasets. Despite investigating a simple model of missing values (the missing values occurred entirely at random, 
which means that the data were missing with no respect to both observed and unobserved data) and the fact that 
the results were evaluated only with the SVM classifier, these combinations of decision trees and imputation are 
the closest to our feature Importance scheme (XGBoost—gradient boosting tree) and imputation method (simple 
imputer). It is implicitly in support of our feature importance and imputation mechanisms.

Another important limitation of our work was poor data coverage for several features. Oxygen saturation, for 
example, was reported in 56,696 h of measurement (23%), despite being measured continuously for practically 
all patients. To overcome this hindrance, missing data for features were compensated by data on other features 
from the same tier. A future solution is the transition to systems that automatically store monitored data and 
allow better data reporting in the AI era.

A third limitation of our study was the need to connect different computerized information systems and 
event managers, creating a potential for registration and adaptation errors. A second limitation is our reliance 
in several decision trees, leading to only a moderate transparency of the model. This is partially offset, however, 
by the exact nature of feature importance, allowing to ascertain the relative part of each feature in the prediction 
process. Another limitation is the small size of the COVID-19 validation dataset. Further studies including larger 
populations may confirm our findings.

A fourth limitation was the imbalanced data that presented a serious potential problem. Undersampling of 
the major cases or oversampling of the minor cases over the training set is the standard way to overcome the 
problem of imbalanced data32. XGBoost contains an inner mechanism of weighting calculation of the stochastic 
gradient33, as mentioned in the feature importance section. An additional method to deal with imbalanced data in 
XGBoost without oversampling/undersampling, based on the same principal, was developed in 202034, but it was 
not employed in our analysis. To make sure XGBoost solved the data imbalance in our case, we ran the XGBoost 
model without oversampling, with RandomOverSampler and SMOTE oversampling of imblearn Python pack-
age. The results are presented in Supplement 12. Comparing the values of AUC, sensitivity, and specificity for 
runs with and without oversampling, the numbers are very similar for all methods (Suppl. 12). XGBoost itself 
processed the unbalanced data with almost identical sensitivity and specificity compared with oversampling.

A fifth limitation was the lack of a unified definition of respiratory failure necessitating initiation of IMV. As 
acute respiratory failure and the need for intubation may in fact represent many different clinical phenotypes, 
differing according to subjective clinical assessments, this end point is potentially not an exact one. However, 
the need for intubation is an acceptable and often employed endpoint22,35. Moreover, to better select those who 
were intubated for respiratory failure, only hypoxemic patients were included in all analyses.

In its nature, this was a retrospective study, examining past data. Overt as well as unrecognized errors in 
data recording and translation may lead to significant bias, and only future analyzes on data from external sets 
as well as prospective evaluations may truly reveal the clinical utility and place in decision making of this newly 
devised tool.

Conclusions
The prediction model adapted and trained by our team showed good predictive abilities for up to 24 h before 
initiation of invasive mechanical ventilation, potentially aiding in the decision to initiate invasive mechanical 
ventilation. The model has been trained and tested on a large patient cohort and proved highly accurate and may 
be superior to previously described models. However, low overall precision could still potentially limit clinical 
application, and the model’s prediction should be interpreted according to probabilities and not as a yes/no 
question. It merits external validation by other teams to assess and further improve its performance on different 
settings and patient populations.
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Data availability
The code and the data to run this procedure and to evaluate it are available at https://​github.​com/​lshva​rtser​
1959/​TSG-​ICU.

Received: 10 June 2021; Accepted: 18 May 2022

References
	 1.	 Scala, R. & Heunks, L. Highlights in acute respiratory failure. Eur. Respir. Rev. 27, (2018).
	 2.	 Kang, B. J. et al. Failure of high-flow nasal cannula therapy may delay intubation and increase mortality. Intensive Care Med 41, 

623–632 (2015).
	 3.	 Carrillo, A. et al. Non-invasive ventilation in community-acquired pneumonia and severe acute respiratory failure. Intensive Care 

Med. 38, 458–466 (2012).
	 4.	 Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
	 5.	 Johnson, A. E. W. et al. MIMIC-III, a freely accessible critical care database. Sci Data 3, 160035 (2016).
	 6.	 Wang, S. et al. MIMIC-Extract: a data extraction, preprocessing, and representation pipeline for MIMIC-III. in Proceedings of the 

ACM Conference on Health, Inference, and Learning 222–235 (Association for Computing Machinery, 2020). doi:https://​doi.​org/​
10.​1145/​33685​55.​33844​69.

	 7.	 Ghassemi, M., Wu, M., Hughes, M. C., Szolovits, P. & Doshi-Velez, F. Predicting intervention onset in the ICU with switching state 
space models. AMIA Jt Summits Transl Sci Proc 2017, 82–91 (2017).

	 8.	 Suresh, H. et al. Clinical Intervention Prediction and Understanding with Deep Neural Networks. in Proceedings of the 2nd Machine 
Learning for Healthcare Conference 322–337 (PMLR, 2017).

	 9.	 Memon, N., Patel, S. B. & Patel, D. P. Comparative Analysis of Artificial Neural Network and XGBoost Algorithm for PolSAR 
Image Classification. in Pattern Recognition and Machine Intelligence (eds. Deka, B. et al.) 452–460 (Springer, 2019). doi:https://​
doi.​org/​10.​1007/​978-3-​030-​34869-4_​49.

	10.	 [1907.12363] A comparison of Deep Learning performances with other machine learning algorithms on credit scoring unbalanced 
data. https://​arxiv.​org/​abs/​1907.​12363.

	11.	 Majumdar, S. R., Eurich, D. T., Gamble, J.-M., Senthilselvan, A. & Marrie, T. J. Oxygen saturations less than 92% are associated 
with major adverse events in outpatients with pneumonia: a population-based cohort study. Clin. Infect. Dis. 52, 325–331 (2011).

	12.	 Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. in Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016). doi:https://​doi.​org/​10.​
1145/​29396​72.​29397​85.

	13.	 Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
	14.	 Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, (2012).
	15.	 Cao, W. et al. Brits: bidirectional recurrent imputation for time series. arXiv preprint arXiv:​1805.​10572 (2018).
	16.	 Wisnu Mulyadi, A., Jun, E. & Suk, H.-I. Uncertainty-aware variational-recurrent imputation network for clinical time series. arXiv 

e-prints arXiv-2003 (2020).
	17.	 Luo, Y., Zhang, Y., Cai, X. & Yuan, X. E2gan: end-to-end generative adversarial network for multivariate time series imputation. 

in AAAI Press 3094–3100 (2019).
	18.	 Piccininni, M., Konigorski, S., Rohmann, J. L. & Kurth, T. Directed acyclic graphs and causal thinking in clinical risk prediction 

modeling. BMC Med. Res. Methodol. 20, 1–9 (2020).
	19.	 Lemiale, V. et al. Performance of the ROX index to predict intubation in immunocompromised patients receiving high-flow nasal 

cannula for acute respiratory failure. Ann. Intensive Care 11, 17 (2021).
	20.	 Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical learnin. Cited on 33 (2009).
	21.	 Ferreyro, B. L. et al. Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic 

respiratory failure: a systematic review and meta-analysis. JAMA 324, 57–67 (2020).
	22.	 Frat, J.-P. et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N. Engl. J. Med. 372, 2185–2196 

(2015).
	23.	 Brochard, L., Slutsky, A. & Pesenti, A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. 

Am. J. Respir. Crit. Care Med. 195, 438–442 (2017).
	24.	 Auld, S. C. et al. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit. Care Med. (2020).
	25.	 Duan, J., Han, X., Bai, L., Zhou, L. & Huang, S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory 

rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 43, 192–199 (2017).
	26.	 Thomrongpairoj, P., Tongyoo, S., Tragulmongkol, W. & Permpikul, C. Factors predicting failure of noninvasive ventilation assist 

for preventing reintubation among medical critically ill patients. J. Crit. Care 38, 177–181 (2017).
	27.	 Duan, J. et al. Early prediction of noninvasive ventilation failure in COPD patients: derivation, internal validation, and external 

validation of a simple risk score. Ann. Intensive Care 9, 1–10 (2019).
	28.	 Zeiberg, D. et al. Machine learning for patient risk stratification for acute respiratory distress syndrome. PLoS ONE 14, e0214465 

(2019).
	29.	 Ferrari, D. et al. Machine learning in predicting respiratory failure in patients with COVID-19 pneumonia—challenges, strengths, 

and opportunities in a global health emergency. PLoS ONE 15, e0239172 (2020).
	30.	 Burdick, H. et al. Prediction of respiratory decompensation in Covid-19 patients using machine learning: the READY trial. Comput. 

Biol. Med. 124, 103949 (2020).
	31.	 Bolourani, S. et al. A machine learning prediction model of respiratory failure within 48 hours of patient admission for COVID-19: 

model development and validation. J. Med. Internet Res. 23, e24246 (2021).
	32.	 Liu, C.-H., Tsai, C.-F., Sue, K.-L. & Huang, M.-W. The feature selection effect on missing value imputation of medical datasets. 

Appl. Sci. 10, 2344 (2020).
	33.	 Brownlee, J. Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning. (Machine 

Learning Mastery, 2020).
	34.	 Wang, C., Deng, C. & Wang, S. Imbalance-XGBoost: leveraging weighted and focal losses for binary label-imbalanced classification 

with XGBoost. arXiv:​1908.​01672 [cs, stat] (2021).
	35.	 Chandel, A. et al. High-flow nasal cannula therapy in COVID-19: using the ROX index to predict success. Respir Care 66, 909–919 

(2021).

Acknowledgements
To Dr. Boaz Tadmor, M.D., for his ongoing support, not the least for his activity in the creation of interdiscipli-
nary innovative liaisons.

https://github.com/lshvartser1959/TSG-ICU
https://github.com/lshvartser1959/TSG-ICU
https://doi.org/10.1145/3368555.3384469
https://doi.org/10.1145/3368555.3384469
https://doi.org/10.1007/978-3-030-34869-4_49
https://doi.org/10.1007/978-3-030-34869-4_49
https://arxiv.org/abs/1907.12363
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/1805.10572
http://arxiv.org/abs/1908.01672


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10573  | https://doi.org/10.1038/s41598-022-14758-x

www.nature.com/scientificreports/

Author contributions
IB—Review of data, writing and overview of writing process, editing, reviewing. LSt—Data retrieval, data analy-
sis, statistical analysis. LSh—Concept, data analysis, statistical analysis, writing, reviewing. ST—Concept, data 
analysis, reviewing, editing. RA—Data analysis, software development. RS—Data analysis. PS—Concept, writ-
ing, reviewing.

Funding
This work is partially funded by the Israel Innovation Authority, activity name: ICU DATA INTELLIGENCE, 
Grant No 70272.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​14758-x.

Correspondence and requests for materials should be addressed to I.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-14758-x
https://doi.org/10.1038/s41598-022-14758-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A novel machine learning model to predict respiratory failure and invasive mechanical ventilation in critically ill patients suffering from COVID-19
	Methods
	MIMIC-III database. 
	Study design. 
	Patients. 
	Data sources. 
	Bias. 
	Machine learning and statistical methods. 
	Feature importance. 
	Feature correlation matrix. 
	Ethics approval. 

	Results
	Discussion
	Conclusions
	References
	Acknowledgements


