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A B S T R A C T

Background: Grey matter (GM) atrophy in Alzheimer's disease (AD) is most commonly modeled as a function of time.
However, this approach does not take into account inter-individual differences in initial disease severity or changes due
to aging. Here, we modeled GM atrophy within individuals across the AD clinical spectrum as a function of time, aging
and MMSE, as a proxy for disease severity, and investigated how these models influence estimates of GM atrophy.
Methods: We selected 523 individuals from ADNI (100 preclinical AD, 288 prodromal AD, 135 AD dementia)
with abnormal baseline amyloid PET/CSF and ≥1 year of MRI follow-up. We calculated total and 90 regional
GM volumes for 2281 MRI scans (median [IQR]; 4 [3–5] scans per individual over 2 [1.6–4] years) and used
linear mixed models to investigate atrophy as a function of time, aging and decline on MMSE. Analyses included
clinical stage as interaction with the predictor and were corrected for baseline age, sex, education, field strength
and total intracranial volume. We repeated analyses for a sample of participants with normal amyloid (n=387)
to assess whether associations were specific for amyloid pathology.
Results: Using time or aging as predictors, amyloid abnormal participants annually declined −1.29 ± 0.08
points and−0.28 ± 0.03 points respectively on the MMSE and −12.23 ± 0.47 cm3 and −8.87 ± 0.34 re-
spectively in total GM volume (p < .001). For the time and age models atrophy was widespread and preclinical
and prodromal AD showed similar atrophy patterns. Comparing prodromal AD to AD dementia, AD dementia
showed faster atrophy mostly in temporal lobes as modeled with time, while prodromal AD showed faster
atrophy in mostly frontoparietal areas as modeled with age (pFDR < 0.05). Modeling change in GM volume as a
function of decline on MMSE, slopes were less steep compared to those based on time and aging
(−4.1 ± 0.25 cm3 per MMSE point decline; p < .001) and showed steeper atrophy for prodromal AD com-
pared to preclinical AD in the right inferior temporal gyrus (p < .05) and compared to AD dementia mostly in
temporal areas (pFDR < 0.05). Associations with time, aging and MMSE remained when accounting for these
effects in the other models, suggesting that all measures explain part of the variance in GM atrophy. Repeating
analyses in amyloid normal individuals, effects for time and aging showed similar widespread anatomical pat-
terns, while associations with MMSE were largely reduced.
Conclusion: Effects of time, aging and MMSE all explained variance in GM atrophy slopes within individuals.
Associations with MMSE were weaker than those for time or age, but specific for amyloid pathology. This
suggests that at least some of the atrophy observed in time or age models may not be specific to AD.
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1. Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder and the
most common cause of dementia (Lobo et al., 2000; Plassman et al.,
2007). The disease presumably starts with the aggregation of amyloid
beta, after which it can take up to 15 years for the dementia syndrome
to manifest (Bateman et al., 2012; Jansen et al., 2015). Because amyloid
becomes abnormal very early in the disease when cognition is still
normal, it is difficult to estimate when the disease has started and
where individuals are in their disease trajectory. As such, when mod-
eling disease progression solely based on time from first assessment,
individuals' positions in their disease trajectory are not taken into ac-
count. Models that account for disease severity might more accurately
estimate disease specific outcome measures within individuals, such as
grey matter (GM) atrophy rates.

GM atrophy is thought of as a close biological substrate of decline in
cognitive functioning (Jack Jr. et al., 2010; Terry et al., 1991). Still,
most studies model changes in GM atrophy and cognitive decline se-
parately, and not within individuals. Although changes over time in
both variables are correlated with each other (Jack Jr. et al., 2009;
McDonald et al., 2012; Sluimer et al., 2008), these associations do not
account for inter-individual differences in disease severity. Modeling
change in both GM atrophy and cognition within individuals, Jack Jr.
et al. (2012) used Mini-Mental State Examination (MMSE) at baseline as
a proxy of disease severity to align individuals according to their initial
disease stage and investigated the associations of rates of hippocampal
volume and annualized cognitive decline in the MMSE. Results were in
line with previous findings of increasing hippocampal atrophy with
advancing disease stages, supporting tests of cognitive performance as a
continuous approximation for disease severity. Other brain areas in
addition to the hippocampus are, however, likely related to disease
progression (ten Kate et al., 2017; Vemuri et al., 2011; Zeifman et al.,
2015). Another complicating factor is that GM volume declines with
age (Bakkour et al., 2013; Fjell et al., 2014; Good et al., 2001; Lee et al.,
2018). It remains unclear, however, whether atrophy in more wide-
spread cortical areas is related to decline in MMSE within individuals,
and to which extent such associations are specific for AD and influenced
by effects of time and/or aging.

In this study we therefore analyzed longitudinal changes in GM
volumes using MMSE as an anchor point for individual disease severity
and investigated how these associations differed from those using
follow-up time or age in individuals with abnormal amyloid across the
clinical spectrum. We further studied whether such associations were
specific for distinct anatomical regions and for amyloid pathology.

2. Material and methods

2.1. Participants

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://
adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic re-
sonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer's disease (AD). ADNI was approved by the
institutional review board of all participating institutions and written
informed consent was obtained from all participants at each site.

Details of clinical diagnoses have been previously described else-
where (Petersen et al., 2010; for a general procedures manual see
https://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_
GeneralProceduresManual.pdf). Briefly, classification into the clinical
stages, cognitively normal (CN), and MCI was based on screening with
the CDR, MMSE and delayed recall on Logical Memory II subscale of the

Wechsler Memory Scale-Revised (adjusted for education). Additionally,
MCI and dementia participants had to have a memory complaint. De-
mentia patients had to have a clinical diagnosis of probable AD ac-
cording to the NINCDS-ADRDA criteria (McKhann et al., 1984).

We selected participants across the different clinical stages of the
AD continuum (preclinical AD, prodromal AD, AD dementia) from
ADNI-1/GO/-2 with abnormal amyloid biomarkers at baseline (PiB,
AV45-PET or amyloid β 1–42 CSF) and ≥0.9 years of repeated MRI
available. A total of 523 patients met inclusion criteria and had MRI
scans of sufficient quality available.

We used repeated MMSE as a measure for general cognitive func-
tioning to align individuals according to their disease severity. Over a
median follow-up time of 2 years (interquartile range (IQR): 1.6–4), a
total of 2281 MMSE assessments were available with a median number
of neuropsychological follow-up of 4 (IQR: 3–5).

Additionally, we repeated analyses in a sample of individuals that
fulfilled the same inclusion criteria but with normal amyloid markers at
baseline (n=387). For these individuals, a total of 1710 MMSE as-
sessments were available (median (IQR) follow-up time: 2.6 (2–4);
median (IQR) number of assessments: 4 (3.8–5)).

2.2. Image acquisition and pre-processing

Image acquisition details and initial preprocessing are described
elsewhere (http://adni.loni.usc.edu/methods/mri-analysis/;Jack Jr.
et al., 2008). All 3D T1-weighted structural scans available for the se-
lected participants were downloaded from the ADNI LONI Image &
Data Archive (IDA) [date of last access: 29.03.2017]. Scans that were
preprocessed with gradwarping, B1 correction and/or N3 scaling were
downloaded for the present analyses. If available and of sufficient
quality, we chose the original sequence over the repeated scan acqui-
sition and the scans with the most preprocessing steps for each acqui-
sition date. In total, 2590 scans met inclusion criteria (n=1988 scans
for individuals with normal baseline amyloid). Within individuals,
scans were included when they had the same field strength. First, all
images were reoriented with FSL (v5.0.6). Next, a subject-specific
median template image from all follow-up scans was created with
Freesurfer (v5.3.0) to reduce bias in longitudinal registration (Reuter
et al., 2012). Further preprocessing was performed in SPM12. For each
subject, scans were co-registered to the subject-specific median tem-
plate image, and then segmented into GM, white matter and cere-
brospinal fluid with the Markov Random Fields (MRF) parameter set to
2 and default settings for all other parameters. Next, the automated
anatomical labeling atlas (AAL; Tzourio-Mazoyer et al., 2002) was
warped from standard space to subject space using the subject specific
inversed normalization parameters. For each of the 90 cortical and
subcortical AAL areas we calculated regional GM volumes. Total in-
tracranial volume (TIV) was computed as the sum of GM, white matter
and cerebrospinal fluid volumes in cm3. All GM segmentations and
subject-specific atlases were visually inspected for quality.

2.3. PET/CSF analysis

Participants were classified as having normal or abnormal amyloid
based on amyloid PET results (for processing details see http://adni.
loni.usc.edu/methods/pet-analysis/;Jagust et al., 2010; Jagust et al.,
2015), and when PET was unavailable, on CSF amyloid β 1–42 results
(Shaw et al., 2009). The threshold for abnormal amyloid was for PiB
SUVRs>1.5 (available for n=5, 0.6%), for AV45 SUVR>1.1
(available for n=631, 69%) (both SUVR calculated in reference to the
cerebellum; Jagust et al., 2010; Jagust et al., 2015) and for CSF amyloid
β 1–42 levels< 192 pg/ml (available for n=850, 94%) (Shaw et al.,
2009).
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2.4. Statistical analyses

Comparisons of baseline characteristics between baseline clinical
stages (preclinical AD, prodromal AD, AD dementia) were performed
with one-way ANOVA, Kruskal tests or chi-squared tests when appro-
priate. If significant differences were found, we performed post-hoc
comparisons with Tukey's tests or Dunn's tests with p values adjusted for
multiple comparisons with the Hochberg procedure.

We tested three models taking time, age or MMSE as predictor for
change in GM volume (outcome) with linear mixed effects using the R
package ‘lme4’ (Bates et al., 2015) (see also Fig. 1): Model 1 included
time as the predictor and subject-specific random intercepts and
random slopes for time:

= + + + + +

+ + +

GM volume Time C C C C

C Time Subject(1 | )
Intercept Time C C C C

C

1 1 2 2 3 3 4 4

5 5

Model 2 included age (longitudinal, i.e., baseline age+ follow-up
time in years) as the predictor and subject-specific random intercepts
and random slopes for age:

= + + + + +

+ +

GM volume Age C C C C

Age Subject(1 | )
Intercept Age C C C C2 2 3 3 4 4 5 5

Model 3 included MMSE as the predictor and subject-specific
random intercepts and random slopes for MMSE:

= + + + + +

+ + +

GM volume MMSE C C C C

C MMSE Subject(1 | )
Intercept MMSE C C C C

C

1 1 2 2 3 3 4 4

5 5

Analyses were adjusted for the potential influence of age at baseline
C1 (model 1 and model 3), gender C2, education C3, field strength C4

and baseline total intracranial volume C5. Because it is conceivable that
baseline clinical stage (i.e., CN, MCI, AD dementia) may influence the
results and in order to assess potential non-linear effects for MMSE, we
repeated the models with an additional interaction term for time ×
diagnosis, age × diagnosis and MMSE × diagnosis, respectively. We
only considered paired MRI and MMSE data for these analyses
(n=2281 observations for individuals with abnormal amyloid,
n=1710 observations for individuals with normal amyloid). For all
models we used an unstructured covariance matrix. Clinical stage dif-
ferences in estimated marginal means and trends are reported with the
emmeans package (Lenth, 2018). Raw scores of MMSE and GM volumes
were used to aid interpretation. Models were repeated for all 90 AAL
regions. In order to standardize effects across the different regions, local
volumes were normalized to the mean values of cognitively normal
individuals with normal amyloid at baseline. Type III analysis of var-
iance with Satterthwaite's method were used to estimate main effects.
For each model, local analyses were corrected for multiple testing with
the false discovery rate (FDR) procedure (Benjamini and Hochberg,

1995). To investigate whether longitudinal changes in MMSE or grey
matter volumes were different depending on amyloid abnormality we
refit all models for the total sample including baseline amyloid status as
a main term and interaction effect with the respective predictor. Ana-
lyses were then repeated for individuals with normal amyloid markers
to investigate whether observed effects were specific for the presence of
amyloid pathology. We also investigated whether differences in field
strength impacted our results and repeated all main models stratified by
field strength. Finally, we performed model fit comparisons for non-
nested linear mixed models based on differences in AIC and the like-
lihood ratio test (Vuong, 1989) with the package ‘nonnest2’. R2 for
fixed and random effects were estimated with the ‘MuMIn’ package
(Johnson, 2014; Nakagawa and Schielzeth, 2013). Statistical analyses
were performed in R (version 3.4.4, 2018-03-15) and Surf Ice (version
2017-08-08) was used to visualize regional results.

3. Results

3.1. Sample description

In total 523 individuals with abnormal amyloid were included: 100
preclinical AD participants, 288 individuals with prodromal AD and
135 patients with AD-type dementia (Table 1). Participants were on
average 74 ± 7 years old and 48% were female.

At baseline, AD-type dementia patients performed worst on the
MMSE and had the lowest GM and hippocampal volumes, followed by
prodromal AD and then preclinical AD (Table 2). At a regional level, AD
dementia patients had the lowest volumes in the medial temporal lobes,
followed by prodromal AD and then preclinical AD participants (see
Inline Supplementary Fig. 1a).

3.2. Model 1 results: changes in grey matter volumes and MMSE as a
function of time

We first modeled changes in GM volumes and MMSE separately over
time. Fig. 2a shows the change over time in MMSE and GM volume
according to baseline clinical stage. Over time, the total sample showed
declines of −1.29 ± 0.08 points per year on the MMSE and
−12.23 ± 0.47 cm3 or −2.1% (95%CI; −2.26%, −1.94%) per year in
GM volume (all p < .001; Table 2). Patients with AD-type dementia
showed the fastest decline in the MMSE and GM volume (β ± SE;
−2.38 ± 0.18 points per year and −16.53 ± 1.15 cm3 or −3.01%
(95%CI; −3.42%, −2.6%) per year; all p < .001), followed by pro-
dromal AD (β ± SE; −1.08 ± 0.1 points per year and
−12.52 ± 0.57 cm3 or −2.11% (95%CI; −2.3%, −1.92%) per year;
all p < .001) and then preclinical AD (β ± SE, −0.27 ± 0.16 points
per year; p > .05; −6.99 ± 0.95 cm3 or −1.17% (95%CI; −1.48%,
−0.86%) per year; p < .001). For annual atrophy rates at a regional
level, we found a widespread atrophy pattern with the strongest

Fig. 1. Hypothesized difference between taking
time, age versus MMSE as a measure for disease
progression. For the time model, we included follow-
up time (in years) as the predictor, a random inter-
cept for subjects and subject-specific random slopes
for follow-up time. For the age model, we included
age as the predictor, a random intercept for subjects
and subject-specific random slopes for age. For the
MMSE model, we included MMSE as a predictor, a
random intercept for subjects and subject-specific
random slopes for MMSE. We additionally included
an interaction effect with baseline clinical stage (i.e.,
CN, MCI, dementia) to estimate cross-sectional and
longitudinal differences between the different clin-
ical stages. Models were corrected for age at baseline
(time and MMSE model), sex, education and field
strength.
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associations for decline over time for the bilateral hippocampi, insulae
and Rolandic opercula (all pFDR < 0.001; Fig. 3a). AD dementia par-
ticipants showed faster atrophy over time mostly in temporal regions as
compared to prodromal AD participants, while the atrophy pattern was
similar between prodromal and preclinical AD individuals with faster
atrophy for prodromal AD (all pFDR < 0.05).

3.3. Model 2 results: changes in grey matter volumes and MMSE as a
function of aging

When aligning individuals according to their age, we observed
smaller estimates as compared to modeling change as a function of
time, with −0.28 ± 0.03 points per year of age on the MMSE and
−8.87 ± 0.34 cm3 or 1.52% (95%CI; −1.65%, −1.4%) per year of
age in GM volume (all p < .001: Table 3 and Fig. 2b). Across clinical
stages, individuals with prodromal AD showed the fastest decline over
aging for MMSE (β ± SE; −0.22 ± 0.03 points per year of age) and

Fig. 2. Predicted changes in grey matter volumes and cognitive functioning (a) as a function of follow-up time, (b) as a function of aging and (c) as a function of
MMSE for the baseline clinical stages in individuals with abnormal amyloid markers. Predicted values are based on raw values and were estimated with linear mixed
models. The models included the terms age (for the time and MMSE models), sex, education, field strength and total intracranial volume (for grey matter volumes),
and time, age or MMSE as predictor, and the interaction term predictor × diagnosis. Regression lines are based on cross-sectional (intercepts) and longitudinal
(slopes) estimates of the respective model and are based on estimated marginal means for the clinical stages. Vertical line in (b) indicates mean age at baseline for the
total sample.
GM, grey matter.

Fig. 3. Surface plots of longitudinal associations of local grey matter volumes with (a) follow-up time, (b) aging and (c) decline in MMSE over time for the total
groups and per baseline clinical stage. The color bar indicates the effect sizes as t ratios based on local GM volumes standardized to the mean values of cognitively
normal individuals with normal amyloid at baseline (for descriptive data see Inline Supplementary Table 7) and were obtained with linear mixed models. Analyses
were adjusted for age (for time and MMSE models), sex, education, field strength and total intracranial volume. Note that t ratios indicate the strength of the effect
and do not correspond to betas. For associations in the total group and baseline clinical stages, negative values indicate steeper grey matter atrophy with increasing
time or age and positive values indicate steeper grey matter atrophy with worsening MMSE. For comparison of clinical stages, negative values indicate steeper
atrophy rates for e.g. prodromal AD as compared to preclinical AD and positive values indicate less steep atrophy rates for e.g. prodromal AD as compared to
preclinical AD. Subcortical structures are plotted in ventricular areas as approximation. The model for the association with MMSE for the total group did not converge
for the left supramarginal gyrus.
L, left hemisphere; R, right hemisphere; ⁎puncorrected < 0.05.

E. Dicks, et al. NeuroImage: Clinical 22 (2019) 101786
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GM volume (−9.6 ± 0.42 cm3 or −1.62% (95%CI; −1.76%,
−1.48%) per year of age) compared to AD-type dementia (MMSE:
−0.09 ± 0.04 per year of age, p > .05; GM: -7.94 ± 0.77 cm3 or
−1.45% (95%CI; −1.72%, −1.17%) per year of age, p < .001) and
preclinical AD participants (MMSE: −0.14 ± 0.05 per year of age,
p < .05; GM: -6.3 ± 0.74 cm3 or −1.05% (95%CI; −1.3%, −0.81%)
per year of age; p < .001). Similar to the time model, we found
widespread regional effects for decline in GM volumes with age, with
the strongest effects found for the bilateral hippocampi, insulae and
Rolandic opercula (all pFDR < 0.001; Fig. 3b). Compared to AD de-
mentia, prodromal AD participants showed faster atrophy in mostly
frontoparietal areas, while preclinical and prodromal AD showed a
largely similar atrophy pattern albeit with faster rates for prodromal AD
(all pFDR < 0.05).

3.4. Model 3 results: changes in grey matter volumes as a function of MMSE

When modeling disease progression as a function of MMSE, we
observed that steeper decline on the MMSE was correlated with steeper
GM volume loss (β ± SE=4.1 ± 0.25 cm3 or 0.7% (95%CI; 0.62%,
0.79%) per MMSE point, p < .001; Table 4 and Fig. 2c). Compared to
modeling atrophy as a function of time, where individuals showed an
atrophy rate of 2.1% and a 1.29 point reduction on MMSE per year (i.e.,
atrophy rate of 1.63% with 1 point decline on MMSE), when change in
both variables was modeled within individuals, atrophy decreased much
less with 0.71% decrease in GM volume per 1 point decline in MMSE
score. When using age as a proxy for disease progression we, similarly
to the model based on time, found steeper slopes for atrophy of 1.54%
and a 0.27 point decline on MMSE per year (i.e., atrophy rate of 5.7%
with 1 point decline on MMSE). This suggests that using time or age as a
proxy for disease progression may result in overestimation of disease-
related atrophy, which may not reflect individual decline on MMSE, as
a proxy for disease progression. Across clinical stages, prodromal AD
participants showed the strongest associations of MMSE and GM vo-
lume (β ± SE=4.46 ± 0.33 cm3 per MMSE point, p < .001) fol-
lowed by AD dementia patients (β ± SE=3.04 ± 0.48 cm3 per
MMSE point, p < .001) and preclinical AD (β ± SE=2.64 ±
0.84 cm3 per MMSE point, p < .01). Associations of GM volumes with
MMSE did not depend on educational level (see Inline Supplementary
Table 1).

At a regional level, when modeling atrophy as a function of decline
in MMSE, the strongest associations were observed in the bilateral
hippocampi, superior and middle temporal poles and insulae (all
pFDR < 0.001; Fig. 3c). The anatomical pattern of associations between
decline in MMSE and atrophy was similar for AD dementia and pro-
dromal AD patients, albeit with stronger associations for prodromal AD
compared to AD dementia patients especially in the left middle cingu-
late, Rolandic operculum, hippocampus and right inferior occipital
gyrus (pFDR < 0.05). Compared to preclinical AD, prodromal AD pa-
tients showed stronger associations of decreasing MMSE and atrophy in
the right inferior temporal gyrus (puncorrected = 0.04).

We further investigated whether the observed association with
MMSE, as a proxy for disease severity, could be explained by the effect
of follow-up time or aging. When we repeated the model additionally
accounting for time or age, associations of MMSE with GM volumes
remained significant for the total group and for individuals with pro-
dromal AD and AD dementia specifically (see Inline Supplementary
Tables 2 and 3), suggesting that modeling atrophy as a function of
MMSE in more advanced disease stages can explain variance in atrophy
in addition to time or aging. Similarly, refitting time and age models
with longitudinal measures of MMSE resulted in similar effects as
compared to the models that were not adjusted for within-individual
cognitive decline (see Inline Supplementary Tables 4 and 5), suggesting
that all measures can explain part of the variance in grey matter
atrophy. Model fit for all refitted models was significantly improved by
additionally adding time, age or MMSE, respectively. Ta
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3.5. Changes in grey matter volumes as a function of time, aging and MMSE
in individuals with normal amyloid

In order to investigate whether slopes in outcome measures differed
for individuals with abnormal and normal amyloid, we included base-
line amyloid abnormality as interaction effect with the respective pre-
dictor. In all models, longitudinal slopes for MMSE, grey matter atrophy
rates were steeper for individuals with abnormal amyloid as compared
to those with normal amyloid (see Inline Supplementary Table 6). We
subsequently repeated analyses in a sample of 387 individuals with
normal amyloid markers (190 CN, 180 MCI, 17 individuals with de-
mentia; see Inline Supplementary Table 7 for demographic and clinical
characteristics).

For these participants we found a slower decline in MMSE (β ± SE;
−0.09 ± 0.03 points per year; p < .01) and a slower decline in GM
volume over time (β ± SE; −5.32 ± 0.33 cm3 or −0.86% (95%CI;
−0.97%, −0.76%) per year; p < .001) with 1.6 times weaker effect
strength compared to individuals with abnormal amyloid markers (t
ratio (abnormal amyloid): −26.18; t ratio (normal amyloid): −16.13;
see Inline Supplementary Table 8 also for separate estimates for clinical
stages). Using aging as a predictor we similarly found slower decline in
MMSE (β ± SE; −0.04 ± 0.01 points per year; p < .001) and GM
volume (β ± SE; −4.85 ± 0.25 cm3 or −0.79% (95%CI; −0.87%,
−0.71%) per year; p < .001) with 1.3 times weaker effect strength for
individuals with normal amyloid compared to those with abnormal
amyloid (t ratio (abnormal amyloid): −25.78; t ratio (normal amyloid):
−19.68; see Inline Supplementary Table 9). The anatomical pattern for
regional volume loss over time or aging was similarly widespread
compared to those observed for abnormal amyloid individuals, while
we found reduced differences between the clinical stages (Fig. 4a–b; see
Inline Supplementary Fig. 2 for cross-sectional associations). When
modeling GM atrophy as a function of MMSE, we found that an atrophy
rate of only 0.13% (95%CI; 0.01%, 0.25%) was directly related to de-
cline on the MMSE (β ± SE; 0.83 ± 0.37 cm3 per MMSE point;
p < .05). Importantly, this association was of 7.2 times weaker effect
strength compared to individuals with abnormal amyloid (t ratio (ab-
normal amyloid): 16.23; t ratio (normal amyloid): 2.24; Table 5), in-
dicating that associations with MMSE were more specific for amyloid
pathology than associations with time or age. At a regional level, we
only found few associations between decreasing MMSE and atrophy and
mean effects were of 7 times weaker strength compared to the abnormal
amyloid group (Fig. 4c). The difference in the anatomical patterns and
weaker associations further suggest that observed associations between
decline in GM volume and MMSE are specific for individuals with ab-
normal amyloid.

For each model and both samples (i.e., amyloid abnormal and
normal) we then compared model fit statistics as based on differences in
AIC and likelihood ratio tests, calculated explained variance R2 and
estimated variances in random effects. For both samples, best model,
indicated by lowest AIC and/or highest log-likelihood, was observed for
models based on time, followed by models based on aging and then
MMSE (see Inline Supplementary Table 10). Aging models explained
most variance in declining grey matter volume, as indicated by mar-
ginal R2, followed by time and then MMSE. Variance in subject slopes of
decline on MMSE was greatest for time models as compared to aging
models. Variance in random slope effects was lowest for MMSE models,
followed by aging and then time models, suggesting that modeling grey
matter atrophy as a function of cognitive decline leads to less inter-
individual variance in atrophy slopes, which may reflect that in-
dividuals are better aligned according to their disease severity.

4. Discussion

In this study, we compared three different approaches to investigate
longitudinal changes in GM volume: by using follow-up time, aging or
MMSE, as an anchor point to align individuals according to theirTa
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disease severity. Compared to modeling atrophy as a function of time or
aging we observed less steep slopes when modeling disease progression
based on change in MMSE. Associations with time, aging and MMSE
generally remained after additionally correcting for the other pre-
dictors, suggesting that all measures explain part of the variance in GM
atrophy. For the MMSE, associations were specific for individuals with
amyloid pathology, suggesting that modeling longitudinal GM atrophy
with MMSE as a proxy for disease progression might be specific for
cognitive decline in individuals with evidence of AD pathology.

Previous studies taking time between first visit and follow-up to
model disease progression found whole-brain atrophy rates of 0.4–0.7%
for cognitively normal older individuals and of 0.6–2.2% for AD pa-
tients (see Frisoni et al., 2010 for review), which are similar to our
estimates of annual atrophy rates. Faster decline in annualized whole-
brain atrophy rates were furthermore found to correlate with faster
annualized change on the MMSE across individuals (Jack Jr. et al.,
2009; Sluimer et al., 2008). Using the MMSE at baseline to align in-
dividuals according to their initial disease stage, Jack Jr. et al. (2012)
found increasing hippocampal atrophy with advancing disease pro-
gression within individuals. Additionally, Donohue et al. (2014) and
Lorenzi et al. (2017) used self-modeling regression and Bayesian
Gaussian process regression respectively to place individuals according
to their disease stage and model declines in whole brain and hippo-
campal volume. Using the MMSE to align individuals according to their
disease severity as a simple approach, our findings are in line with the
results of those previous studies and we further show that other regions
besides the hippocampus are associated with cognitive decline as a
proxy for disease severity within individuals. Moreover, these associa-
tions were only observed in individuals with aggregated amyloid.

The most pronounced effect of modeling disease progression by
decreasing MMSE compared to follow-up time or age was in the spatial
pattern of associations observed in individuals with normal and with
abnormal amyloid: Using time or age abnormal and normal amyloid
participants showed, albeit with smaller atrophy rates, similar

anatomical patterns; but when we used MMSE to model disease pro-
gression, we found widespread regional associations in individuals with
abnormal amyloid across the clinical stages, whereas only few asso-
ciations were found in amyloid normal individuals, most of which for
cognitively normal individuals. In individuals with abnormal amyloid,
associations with cognitive decline were strongest for regions including
the hippocampus, superior and middle temporal pole and insula, which
have been associated with cognitive dysfunction in AD (Chang et al.,
2013; Dupont, 2002). In individuals with normal amyloid, we observed
most associations of regional atrophy rates and cognitive decline for
cognitively normal individuals in frontal and temporal regions (al-
though these effects did not survive correction for multiple testing).
These regions have previously been associated with cognitive perfor-
mance in ‘normal’ aging in the absence of amyloid pathology (Bakkour
et al., 2013). However, when additionally correcting for age the results
remained unchanged in regions that included the left superior temporal
pole, olfactory gyrus and right Heschl's gyrus (see Inline Supplementary
Fig. 3), areas that have been reported to be affected in frontotemporal
dementia (Landin-Romero et al., 2017; Moller et al., 2016).This sug-
gests that these alterations are not due to ‘normal aging’, but rather may
reflect that some of these individuals have non-AD pathology.

By modeling atrophy as a function of MMSE, we observed a much
less steep atrophy rate of 0.7% per 1 point decline on the MMSE
compared to 2.1% with 1.29 point decline on the MMSE per year or
1.52% with 0.28 point decline on the MMSE per year of age when
modeling atrophy as a function of time or aging, respectively. Possibly,
when individuals are not aligned according to their initial disease se-
verity, the steeper slopes may reflect differences between individuals
who were in early and those who were in more advanced stages of the
disease at their first visit. Our results suggest that modeling GM atrophy
as a function of MMSE shows involvement of anatomical areas that
seem to be specifically related to cognitive decline in AD. Still, the
slopes for the MMSE model were less steep as compared to the other
models, and so we cannot exclude the possibility that GM atrophy in

Fig. 4. Surface plots of longitudinal associations of local grey matter volumes with (a) follow-up time, (b) aging and (c) decline in MMSE over time for the total
groups and per baseline clinical stage in individuals with normal amyloid. The color bar indicates the effect sizes as t ratios based on local GM volumes standardized
to the mean values of cognitively normal individuals with normal amyloid at baseline (for descriptive data see Inline Supplementary Table 7) and were obtained with
linear mixed models. Analyses were adjusted for age (for time and MMSE models), sex, education, field strength and total intracranial volume. Note that t ratios
indicate the strength of the effect and do not correspond to betas. For associations in the total group and baseline clinical stages, negative values indicate steeper grey
matter atrophy with increasing time or age and positive values indicate steeper grey matter atrophy with worsening MMSE. For comparison of clinical stages,
negative values indicate steeper atrophy rates for e.g. prodromal AD as compared to preclinical AD and positive values indicate less steep atrophy rates for e.g.
prodromal AD as compared to preclinical AD. Subcortical structures are plotted in ventricular areas as approximation.
L, left hemisphere; R, right hemisphere; ⁎puncorrected < 0.05.
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other anatomical areas as observed in the time and age models may
have yet to affect the MMSE, or that those areas may be related to
decline in more specific neuropsychological domains. Future research
should further investigate this question by studying how GM atrophy
relates to decline on specific neuropsychological tests scores.

Compared to AD dementia, individuals with prodromal AD showed
steeper atrophy slopes in age and MMSE models, but not in time
models, suggesting that GM atrophy most closely relates with in-
creasing age and decline on MMSE within prodromal AD individuals.
Possibly, these findings can be explained due to increased variance in
this group of individuals, while participants with dementia might start
to show plateau or floor effects in either MMSE and/or atrophy rates. At
a regional level, we found similar atrophy patterns between preclinical
AD and prodromal AD for models based on time and age in individuals
with abnormal amyloid. Compared to prodromal AD participants with
AD dementia showed steeper atrophy slopes mostly in temporal regions
for time and less steep atrophy slopes mostly in frontoparietal regions
for age models. These results suggest that while GM volumes in the
temporal lobes continue to decline over time in the dementia stage,
atrophy is most associated with increasing age within individuals in the
prodromal stage of the disease. Previous studies found higher atrophy
rates for younger ages especially in dementia (Fiford et al., 2018;
Holland et al., 2012). However, these studies used baseline age to align
individuals while we model the effect of aging within individuals. Re-
gional atrophy as modeled over time and aging were also widespread in
both samples with steeper slopes for individuals with abnormal amyloid
and most pronounced in the medial temporal lobes, especially in the
hippocampus. These results provide further support for the notion that
amyloid aggregation is not part of normal aging and suggest that
atrophy of the hippocampus is not specific for AD per se (Fjell et al.,
2014; ten Kate et al., 2017), but rather the rate of hippocampal atrophy.

Finally, model fit comparisons showed that the time model showed
the best model fit. However, when additionally including time or age to
the MMSE model (and similarly MMSE to the age and time model) ef-
fects remained comparable and these refitted models significantly im-
proved model fit compared to the original models, suggesting that
adding information on where individuals are in their disease trajectory
explains additional variance GM atrophy. These findings further suggest
that time, aging and decline on MMSE all explained part of the variance
in GM atrophy within individuals. Future research should further in-
vestigate the possibility to develop composite measures that combine
time or age with decline on MMSE, and should test whether this could
improve estimates of GM atrophy over time.

Strengths of our study are the large number of individuals, which
we were able to include from ADNI, and patients with different levels of
cognitive impairment with and without biomarker evidence of AD over
a long follow-up period of up to 10 years. A potential limitation of our
approach is the use of MMSE as a measure for general cognitive func-
tioning in this study. The MMSE is a cognitive screening tool that might
not adequately capture subtle cognitive impairment and cognitive de-
cline (Tombaugh and McIntyre, 1992), and this may have contributed
to the less steep atrophy slopes we observed. Although the MMSE is
widely used and readily available for most studies, future research
should further investigate how atrophy correlates with other measures
that are more sensitive to subtle cognitive decline and to specific cog-
nitive domains, which might relate to distinct, regional atrophy pat-
terns. Furthermore, our sample of individuals with normal amyloid
included only few dementia cases, which might have contributed to the
weaker associations of MMSE and GM atrophy. Future research should
further investigate the association of GM atrophy with time, age and
cognitive decline in larger samples of individuals with non-AD de-
mentia. Another possible limitation of our study might be in amyloid
status classification. Here, we used PET when available, and otherwise
CSF results were used to classify participants. Although these measures
correlate (Zwan et al., 2014), they may reflect different aspects of
amyloid pathology (Landau et al., 2013; Mattsson et al., 2014;Ta
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Palmqvist et al., 2016), since PET tracers directly bind to amyloid fi-
brils, while in CSF amyloid accumulation is measured indirectly by
decreasing levels of soluble Aβ1–42. By using PET as first criterion for
amyloid abnormality we classified some participants as amyloid normal
although they had abnormal levels of CSF Aβ1–42 (n=76, 8.4%) and
vice versa (n=38, 4.2%). Given that this discordance occurred
in<10% of individuals, however, it is unlikely to have influenced the
results. Finally, scans included in the present study were obtained with
different field strengths. Although we ensured that, within subjects, the
same field strength was used, and we adjusted for this variable in all the
models, these field strengths may still have influenced our estimates on
grey matter atrophy. Additional post-hoc analyses stratifying analyses
for field strength showed that for abnormal amyloid individuals, esti-
mates of grey matter and hippocampal volumes for 1.5 Tesla scans were
slightly higher, those for 3 Tesla scans slightly lower as compared to the
original estimates, which were based on all individuals with abnormal
amyloid (see Inline Supplementary Table 11). Importantly, individuals
with 1.5 Tesla scans (who were most often included at the start of the
study) also showed steeper decline on the MMSE, while individuals
with 3 Tesla scans showed less steep decline on the MMSE over time.
For individuals with normal amyloid, stratifying by field strength re-
sulted in similar estimates for all outcome measures in all models. These
results suggest that differences in subsample characteristics might have
driven these differences, but not necessarily field strength per se.

5. Conclusion

One challenge in AD research is the estimation of where an in-
dividual is along their disease trajectory. Here, we modeled GM decline
as a function of MMSE, in this way aligning individuals according to
their disease severity and compared associations to those using follow-
up time or aging. Our results suggest that modeling GM with MMSE
decline within individuals, as a proxy for disease progression, provides
smaller atrophy rates than those based on follow-up time or aging and
are specific for cognitive decline in individuals with evidence of amy-
loid pathology.
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