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abstract

PURPOSE Tumor-infiltrating lymphocytes (TILs) and their spatial characterizations on whole-slide images (WSIs)
of histopathology sections have become crucial in diagnosis, prognosis, and treatment response prediction for
different cancers. However, fully automatic assessment of TILs on WSIs currently remains a great challenge
because of the heterogeneity and large size of WSIs. We present an automatic pipeline based on a cascade-
training U-net to generate high-resolution TIL maps on WSIs.

METHODSWe present global cell-level TIL maps and 43 quantitative TIL spatial image features for 1,000 WSIs of
The Cancer Genome Atlas patients with breast cancer. For more specific analysis, all the patients were divided
into three subtypes, namely, estrogen receptor (ER)–positive, ER-negative, and triple-negative groups. The
associations between TIL scores and gene expression and somatic mutation were examined separately in three
breast cancer subtypes. Both univariate and multivariate survival analyses were performed on 43 TIL image
features to examine the prognostic value of TIL spatial patterns in different breast cancer subtypes.

RESULTS The TIL score was in strong association with immune response pathway and genes (eg, programmed
death-1 and CLTA4). Different breast cancer subtypes showed TIL score in association with mutations from
different genes suggesting that different genetic alterations may lead to similar phenotypes. Spatial TIL features
that represent density and distribution of TIL clusters were important indicators of the patient outcomes.

CONCLUSION Our pipeline can facilitate computational pathology-based discovery in cancer immunology and
research on immunotherapy. Our analysis results are available for the research community to generate new
hypotheses and insights on breast cancer immunology and development.
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INTRODUCTION

The interaction between the tumor and its microen-
vironment (TME) plays a critical role in cancer de-
velopment and progression. TME consists of various
cells, including fibroblasts and a wide spectrum of
immune cells.1 The host immune system is crucial in
regulating tumor growth by continuous immuno-
surveillance and initiation of inflammatory reactions.2,3

Many observations indicate that tumor-infiltrating
lymphocytes (TILs) and their spatial characteristics
have significant diagnostic and prognostic values in
multiple types of cancers.4-9 For example, recent
studies suggest that high TIL densities correlate with
favorable clinical outcomes in colorectal cancer,
non–small-cell lung cancer, and head and neck
cancers.10,11 Currently, the quantification and scoring
of TILs on whole-slide images (WSIs) has been mainly
performed and interpreted by domain experts, which
can be subjective and influenced by human bias. As
a result, automated image analysis methods are

desired to reduce labor costs and provide consistent
and accurate TIL evaluations. A fully automatic ap-
proach for TIL quantification and analysis should in-
volve three technical issues: (1) selection of field of
views (FOVs) on WSIs, (2) lymphocyte detection in
FOVs, and (3) quantification of TILs for clinical
assessment.

Many approaches have been proposed for lymphocyte
detection.12-17 Lymphocytes typically have small (7-10
µm), round, and dark nuclei with little cytoplasm,
which is distinctive from malignant (epithelial) cells or
stromal cells. Based on these characteristics, some
studies first perform nuclei detection algorithms to
distinguish all nucleus from cytoplasm in the hema-
toxylin and eosin (H&E)–stained images, then use
a support vector machine algorithm to classify cellular
components into different categories based on nuclear
morphology.18,19 These methods are indirect and may
sacrifice the accuracy of lymphocyte detection for
overall classification performance. Recently, deep
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learning has become popular in computer vision and
image-processing tasks because of its outstanding per-
formance, and some studies have applied deep-learning
methods to detect lymphocytes.20-22 However, because
these methods require manual preselection of represen-
tative tumor regions for each slide, directly applying such
models for overall TIL analysis on WSIs remains a practical
challenge. Furthermore, this work did not deeply explore
the relationships between TILs and omics data.

For instance, Amgad et al23 has developed an effective
deep-learning–based method for joint region-level and
nucleus-level segmentation of TILs, even though their work
was limited by the lack of validation on large-scale image
datasets and additional analysis between spatial TIL fea-
tures and biologic data. Saltz et al24 have presented global
mappings, as well as the spatial organization andmolecular
correlation of TILs for over 5,000 H&E diagnostic WSIs from
The Cancer Genome Atlas (TCGA) dataset, which repre-
sented a benchmark for TIL analysis. However, because of
the convolutional neural network model in Saltz et al,24 with
only a calculated lymphocytic probability for each patch, it
could not provide more specific cellular information, such
as TIL counts and distribution that were related to clinical
outcomes. Klauschen et al25 summarized different auto-
mated TIL scoring approaches in computational pathology
and pointed out that it would increasingly contribute to the
applications in immune research, but also emphasized that
additional omics analysis, including mutational profiling,
gene expression, and machine learning, were needed to
enhance precision medicine.

Our study extended the limitations of previous work from
both the image and biologic analysis perspectives. We first
present a fully automatic image-processing pipeline fol-
lowing the clinical steps to quantitatively characterize TILs
on histopathologic slide images. Our framework consists of
three parts: (1) automatic identification of FOV; (2) a cas-
cade-trained U-net model for lymphocyte detection; and

(3) global quantification of TILs on WSIs. We applied our
method on 1,000 unannotated TCGA breast cancer di-
agnostic WSIs and generated TIL maps containing rich
cellular information of lymphocytes. We also extracted a set
of TIL spatial features based on our TIL maps and explored
the relationship between these TIL features and different
omics data for different breast cancer subtypes. The as-
sociations between TIL features and genetic mutations, as
well as gene expression, indicate that theremay be different
cell activation processes regulating the immune responses
in different breast cancer subtypes. A set of features related
to the spatial dispersion of TIL clusters was also found to be
associated with survival in different breast cancer subtypes.
All these analysis results are available for the research
community to generate new hypotheses and insights on
breast cancer immunology and development. The main
contribution of this article is that our work is a complete
pipeline using multiple sources, which not only enables
fully automatic TIL evaluation on images but also in-
corporates omics analysis from different biologic data. Our
pipeline can be easily extended to histologic images
of other cancers and can facilitate the computational
pathology-based discovery in immunology and re-
search on immunotherapy.

METHODS

Data Source and Selection

Two breast cancer datasets were used in this study,
namely, the TCGA-BRCA dataset and the lympho-
cyte detection dataset released by Janowczyk and
Madabhushi.20 The TCGA dataset includes matched H&E-
stained diagnostic images, transcriptome, somatic muta-
tion, and clinical information for patients with breast can-
cer. Patients with missing molecular data or images with
too-severe cryoartifacts or low-level lymphocyte infiltration
were excluded, leaving a set of 1,000 samples. The dataset
by Janowczyk and Madabhushi,20 denoted as D1, includes
200 small images of 200 × 200 pixels at 40×magnification

CONTEXT

Key Objective
To develop a fully automatic pipeline that enables accurate quantification and thorough exploration of tumor-infiltrating

lymphocytes (TILs) using histopathology image data and multiomics data.
Knowledge Generated
Correlations between TIL spatial features derived from our deep-learning–based pipeline and gene expression data indicate

that there are different cellular processes associated with the patient’s immune response in triple-negative and other breast
cancer subtypes. Both the genomic correlations and survival analysis results imply that the clustering dispersion pattern of
TILs is an important factor for evaluating immune response.

Relevance
Our image-processing pipeline can be easily used for TIL quantification on histopathology images, and help to reduce labor

costs and human bias. The difference between genes in correlation with TIL features in triple-negative and other breast
cancer subtypes will bring new insights into future immunologic research for breast cancer treatment.

Deep-Learning–Based Characterization of TILs

JCO Clinical Cancer Informatics 481



with lymphocyte centers annotated by human experts,
which contain a total of 3,064 lymphocytes. The de-
mographic and clinical information of the patients is
summarized in Table 1.

Histopathologic Image-Processing Pipeline

Figure 1A outlines the identification of FOV in our pipeline.
Because the H&E stains basic cellular structures either red
or pink in an image, we can distinguish different tissues
from the background area by color classification. Given
a WSI I, we first downsampled I into I′ by a factor of 16:1. I′

was then converted from the RGB color space to CIELAB
color space. Next, we performed a K-means clustering
algorithm to separate the pixels in CIELAB space into three
groups. Considering that corners of pathology images are
often unstained, pixels in the same cluster as the upper-left
corner pixel in I′ were considered background, whereas the
other pixels were considered either tumor or stromal tis-
sues. Denoting the smallest rectangle region containing the
largest continuous tissue area in I′ as FOVI′ , we mapped
the coordinates of FOVI′ onto I and obtained the FOV in the
original WSI, FOVI . Finally, FOVI was cropped from I for
later processing.

Next, we constructed a U-net–based neural network to
identify lymphocytic regions on H&E-stained images.
Considering that our annotated lymphocyte dataset might
not be large enough to train a robust model from scratch,
we adopted the first five blocks of the Resnet18 model26 as
the encoder in our model. This implementation was in-
spired by the success of using Resnet18 for objection
detection in Ren et al27 and Redmon et al,28 and we
perceived it would help to improve the efficiency and
performance of our model. The encoder was then followed
by a decoder containing five repeated upsampling blocks,
each of which consisted of a concatenation layer, a 2 × 2
deconvolution layer, and two 3 × 3 convolution layers.
Parameters in the encoder were initialized with the pre-
trained weights fromHe et al,26 and the decoder layers were
randomly initialized using the Xavier method.29

We proposed a cascade-training scheme that involved
feedback from domain experts to obtain a robust model for
lymphocyte detection. Our framework is illustrated in

Figure 1B. In the first stage, D1 was used for end-to-end
training and evaluation. Note that D1 only provided an-
notations for lymphocyte centers, which did not perfectly
match the design of our U-net–based network. Considering
that lymphocytes are usually round cells with diameters
approximately 8 µm (32 pixels at 40× magnification), we
constructed binary lymphocytic masks by dilating each
annotated center into a circular area with a diameter of 32
pixels to use the U-net–based model. Eighty percent of D1

(160 images of 200 × 200 pixels) were randomly picked out
for training, and the remaining 20% were used for testing.
Random mirror and random crop were performed to
augment the training set. Both the training and evaluation
loss converge on D1 after training for 200 epochs.

Denoting the U-net model well trained on D1 as U1,
whereas U1 can identify lymphocytes on D1, it was not
robust enough to detect lymphocytes in other cohorts. To
further improve the robustness, we performed the second-
stage training involving feedback from pathologists on U1.
In this stage, we used an iterative cycle of review and re-
finement for training. In the initial iteration, we manually
cropped a group of 1,000 patches of 200 × 200 pixels from
TCGA WSIs, denoted as G1. Fifty percent of G1 was col-
lected from immune hotspots with densely clustered
lymphocytes, whereas the remaining 50% were randomly
collected from tissue regions scattered by lymphocytes.
Each patch in G1 was fed into U1, and the predicted
lymphocyte mask was evaluated and refined by two domain
experts. Then, we used G1 and its refined masks to train U1

until convergence. We repeated this iterative process with
new groups of patches until the pathologists considered the
prediction accuracy to be 0.9. Two iterations were per-
formed on TCGA groups in our experiment. The model after
final iteration, denoted asU2, was then used to generate TIL
maps for all TCGA breast cancer WSIs.

Figure 1C outlines the steps for generating global TIL maps
in our pipeline. For each WSI I, its FOV, FOVI was split into
nonoverlapping patches of 200 × 200 pixels. Patches with
more than 80% background were discarded. The
remaining valid patches were then fed into U2, and all the
patch-level predictions were combined to generate a global
TIL map for I. We estimate an overall TIL score TIL% for I by

TABLE 1. Demographic and Clinical Characteristics of the Patients With Breast Cancer

Data Histopathology Image
No. of Patients With Matched Image and

Biologic Data

Cohort Subgroup Image Type No. of Images Total No. of Images mRNA Mutation Prognostic Information

D1 N/A H&E-stained image region (200 × 200) 200 200 N/A N/A N/A

TCGA ER positive Whole-slide image 773 1,000 661 661 663

ER negative 227 196 196 184

Triple negative 112 96 96 94

NOTE. For the TCGA cohort, samples in the triple-negative subgroup also belonged to ER-negative subgroup.
Abbreviations: ER, estrogen receptor; H&E, hematoxylin and eosin; N/A, not applicable. TCGA, The Cancer Genome Atlas.
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computing the percentage of TIL areas as:

TIL% ��
K

i
Li

,
�
K

i
Ti , (1)

where Li and Ti represent the region of lymphocytes and
the number of tissue pixels in the ith valid patch in I, re-
spectively, and K represents the total number of valid
patches in I.

Spatial Features of TIL

We estimated 42 TIL spatial features based on the TILmaps
derived from our pipeline. For each TIL map, we first picked
out TIL patches as independent data points. Then, we used
the APCluster R package30 to obtain local TIL cluster
patterns by applying the affinity propagation algorithm31 on
the data points. Next, we used the clusterCrit R package to
extract statistical TIL spatial features from the TIL clusters,
as listed in Table S1 of the Data Supplement.

Analysis of the Relationship Between TIL Score and

Multiomics Data, Including Gene Transcription and

Somatic Mutations

We divided all patients in the TCGA-BRCA cohort into three
subtypes, estrogen receptor (ER) positive, ER negative, and

triple negative, based on patients’ status of markers, in-
cluding ER, progesterone receptor, and human epidermal
growth factor receptor 2. We first computed and sorted the
Spearman correlation coefficients between gene tran-
scription levels and the TIL score, as well as all the 42 TIL
features derived from imaging data for each subtype. Then
we select the genes whose transcription levels were sig-
nificantly correlated with TIL scores (PSpearman . .3) for
each subtype. For the selected gene symbols, we per-
formed function and pathway enrichment analysis using
Ingenuity Pathway Analysis (IPA).

In addition, for each gene with somatic mutation in-
formation available, we performed the Wilcoxon rank sum
test between patients with and without nonsynonymous
mutations for the TIL scores in each subtype. Specifically,
we selected genes with nonsynonymous mutations in
at least 10 patients. In total, we had 33 genes for the
ER-positive patients, 61 genes for the ER-negative pa-
tients, and 25 genes for the triple-negative group.

Machine-Learning Methods for Prognostic Prediction

We performed both univariate and multivariate survival
analysis using the Cox proportional hazard model for pa-
tients with breast cancer of different subtypes, based on the

Whole-slide image

D1 dataset Patches from TCGA
slide images

Field of view

Valid patches Patch-level prediction

Global TIL map

Training

of U2

U2

Fed into U1

Prediction

Training of U1

U1

U2

Tissue mask

Field of view

Experts evaluate

and refine
U

A

B

C

FIG 1. The pipeline for identification of tumor-infiltrating lymphocyte (TIL) maps on whole-slide histopathologic images. (A) Identification of field of view
(FOV) for whole-slide image. (B) Cascade training of the U-net model for lymphocyte detection. (C) Generating the global TIL map. TCGA, The Cancer
Genome Atlas.

Deep-Learning–Based Characterization of TILs

JCO Clinical Cancer Informatics 483



TIL spatial statistical features. For the univariate method,
we followed the approach in Uhlen et al.32 Specifically, for
each feature, we selected different cutoffs (from the 20
percentile to the 80 percentile, with 1 percentile in-
crements) to stratify the patients into two groups using the
approach in Uhlen et al.32 Different cutoffs led to different
choices of patient groups. According to the group in-
formation, we then calculated the P values of the log-rank
test for comparing survival times between the two groups.

For the multivariate method, we compared the prognostic
power of different approaches by stratifying patients with
cancer into two subgroups (ie, the high- and low-survival
risk groups) with different predicted outcomes. Specifically,
for all the TIL spatial features of different patients, the
K-means clustering algorithm was adopted to aggregate the
patients into different subgroups. Then, we tested whether
these groups had significantly different survival outcomes
using the log-rank test. Finally, based on the divided groups
of different patients, the Lasso-based feature selection
model was applied to identify important biomarkers that
can distinguish different patient groups.

RESULTS

Detection and Quantification of TIL Spatial Patterns in

Histopathologic Images

To evaluate the effectiveness of the proposed U-net for
lymphocyte detection, we tested and compared our model
with three widely used open-source biomedical image
analysis software programs: CellProfiler,33 QuPath,34 and
Fiji,35 on D1. Comparison of lymphocyte detection results
with CellProfiler, QuPath, Fiji, and U-net are provided
in Figure 2C and Fig 2D. From Figures 2C and 2D, we
observe that Fiji achieves the highest average recall
(0.8439) and F1-score (0.7471) among the three existing
software programs. However, the proposed U-net model
had substantially better performance (recall, 0.9536;
precision, 0.901; F1-score, 0.9266). This makes sense
because the existing software programs perform un-
supervised algorithms for nuclei detection, whereas our
U-net model was specifically trained for lymphocyte
detection.

We applied our pipeline for identification of TIL maps to
1,000 TCGA-BRCA WSIs. Because there was no avail-
able TIL annotation for TCGA WSIs, we compared our
results with the only referable TIL maps in Saltz et al.24

Figure 2A shows the visualization of TIL maps for three
TCGA WSIs in different TIL patterns: Brisk Diffuse pat-
tern, showing a strong immune infiltration within the
tumor; Brisk Band-like pattern, showing immune in-
filtration forming boundaries bordering the tumor; and
Nonbrisk Multifocal pattern, showing a weak immune
response with loosely scattered TILs. Figure 2A dem-
onstrates that our framework can efficiently identify
different types of immune spots.

We also performed a more specific evaluation for the cell-
level performance of our framework compared with the TIL
maps in Salz et al.24 We compared the TIL scores derived
from our method with the molecular estimates of TIL
content from genomics assays.36 The Spearman correlation
coefficients between TIL proportion from imaging and
molecular estimates are shown in Figure 2B. As can be
seen, the TIL maps generated by our method are more
consistent with the molecular estimates (PSpearman, .3602;
P = 6 × 10–25) than TIL maps in Salz et al24 (PSpearman,

.3409; P = 3.622 × 10–22). This improvement indicates that
our cell-level TIL maps are not only in line with the asso-
ciated molecular data, but also provide more accurate and
detailed immune estimation than patch-level TIL maps.

Correlate TIL Spatial Features With Gene Expression

To investigate which genes contribute to the development
of immune infiltrating in different breast cancer subtypes,
we performed enrichment analysis for the genes that were
in high correlation with TIL scores. The enrichment results
are shown in Figure 3, with the gene lists in Table S2 of the
Data Supplement. When we applied a threshold value of
0.3 to the Spearman correlation coefficients, 54, 307, and
263, genes were selected for ER-positive, ER-negative, and
triple-negative breast cancer subtypes, respectively.
Among them, many were immune response–related genes.
For instance, important immune therapy–related genes,
such as PDCD1 (also known as programmed death-1 [PD-
1] and CD279) and CTLA4 were both observed in all three
subtypes. As can be seen in Figure 3, enrichment analysis
on canonical pathways and functions from IPA confirmed
the strong and consistent enrichment in processes related
to immune and inflammatory responses in all three sub-
types. An example of the strong involvement of the cancer
immunotherapy pathway is also shown with genes ob-
served for the ER-positive patient, marked in gray with
magenta boundaries in Figure 3 (ER positive: Gene
Network).

We also performed Spearman correlation between the
TIL spatial features and the gene expression data. We
found that in both the ER-positive and ER-negative
subtypes, the “banfeld_raftery” feature, which repre-
sents the TIL cluster extent, was highly correlated with
immune therapy genes, such as CD38 and CXCL9. These
genes are also correlated with the TIL score. But for the
triple-negative subtype, we found that there were high
correlations between the “g_plus” feature and genes
(PCDHGA2, PCDHGA3, and PCDHB12) that have un-
usual immunoglobulin-like organization similar to that of
B-cell and T-cell receptor gene clusters. These genes
have not been observed to be associated with TIL score.
Because the “g_plus” feature represents the cluster
dispersion, these observations may imply that the TIL
area and TIL distribution in the triple-negative subtype
are regulated by different sets of genes leading to dif-
ferent immune response.

Lu et al

484 © 2020 by American Society of Clinical Oncology



Compare TIL Score With Somatic Mutation Status

of Genes

We also investigated the relationship between somatic
mutations and TIL scores. Specifically, for each gene, the
patients with and without somatic mutations were sepa-
rated into two groups, and the rank sum test was applied to
test whether there was any difference between the TIL
scores. Figure 4 demonstrates two representative examples
of the results for each breast cancer subtype. Table S3 in
the Data Supplement lists the P values for genes whose
somatic mutation status is significantly associated with the
TIL score (P , .05). It is interesting to observe that the
genes whose mutation status was strongly associated with
the TIL scores were different between the ER-positive and
ER-negative groups, whereas there were some similarities

between the ER-negative and triple-negative breast cancer
groups.

TIL Spatial Pattern Predicts Survival in Different Breast

Cancer Subtypes

We also examined whether the spatial patterns of TIL might
affect or be associated with patient survival in different breast
cancer subtypes using both univariate and multivariate
methods. We calculated 43 spatial statistical features for the
detected TILs for each patient. Results of survival-associated
TIL features are shown in Figure 5. For univariate analysis,
we adopted the approach in Uhlen et al,32 where multiple
partitions of the patient cohort based on different thresholds
were used for log-rank tests, and the threshold leading to the
most significant difference was selected for the specific
spatial feature. For multivariate analysis, a Lasso-Cox

Method P

Our model .3602 6 × 10−25

Saltz et al24 .3409 3.622 × 10−22

Method Recall Precision F1_score

Our model 0.9536 0.901 0.9266

Janowczyk et al20 N/A N/A 0.9

Fiji 0.8439 0.6702 0.7417

QuPath 0.7212 0.6944 0.7075

CellProfiler 0.7416 0.6639 0.7006
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FIG 2. Evaluation and visualization of results for tumor-infiltrating lymphocyte (TIL) detection. (A) TIL maps for three breast cancer whole-slide images (WSIs)
from The Cancer Genome Atlas in different TIL patterns; (left) hematoxylin and eosin (H&E) whole-slide diagnostic image; (middle) predicted TIL maps;
(right) absolute error between our map and the map from Saltz et al.24 Values in the color bar represent different TIL levels: 0 (blue) corresponds to patches
without TIL, and 250 (red) corresponds to patches filled with TILs. (B) Spearman correlation for comparison of TIL proportion from WSI TIL maps and
molecular estimates of TIL content from genomics assays.36 (C) Cell-level results of lymphocyte detection predicted by our model and the three software
programs. Green, yellow, and magenta dots in the prediction represent true positive, false positive, and false negative, respectively. (D) Performance
comparison between our model and the three software programs for lymphocyte detection.
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regression model was used to select the features, with large
weights for influencing patient survival times. It can be
observed that different subtypes tend to be separated by
different TIL spatial features in both univariate and multi-
variate analysis. In addition, the univariate results are better
than the multivariate results. This unintuitive result is due to
the fact that the multivariate uses the Lasso-Cox model with
a single cutoff for separating the patients, whereas the
univariate used multiple cutoff values to identify the best
separation.

DISCUSSION

In this article, we proposed an automatic pipeline based on
a cascade-training U-net model to generate high-resolution

TIL maps on WSIs. Both qualitative and quantitative results
demonstrate that our framework can provide reliable
quantification of TILs from H&E-stained histopathology
images. The global TIL maps we present can also be used
for in-depth biologic analysis.37-39 For example, TILs in
different tissue regions can be examined separately for
survival prediction.40,41

The high-resolution TIL maps then enable comprehensive
integrative analysis with multiomics data and clinical out-
comes. The correlation analysis between the TIL score and
gene transcription levels clearly confirmed the validity of the
quantification of TILs using our method based on the strong
enrichment of immune response genes and pathways. In
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particular, the strong association with immunotherapy
pathway and genes (eg, PD-1 and CLTA4) suggests that the
WSI-based analysis can be potentially used in the future for
assessing or predicting immunotherapy potential.

The comparative analysis for genes with somatic mutations
suggests that multiple genes affect the TIL score. However,
because the somatic mutations are genetic alterations in
the tumor (epithelial) cells, their effects on the TIL score are
indirect through the interaction within the TME. The
mechanisms for the association warrant additional in-
vestigation. In addition, the observation that different
subtypes of breast cancers show TIL associations with
mutations from different genes suggests that different
genetic alterations may lead to similar phenotypes. For the
triple-negative subtype, observations between TIL spatial
features and gene expression data show that there may be
different cell activation processes governing the patient’s
immune response.

Last but not least, we also demonstrated that different
spatial statistical features for the TIL distributions can be

potentially used to predict patient outcomes (ie, survival
times). Most of these spatial features (eg, GDI12, PBM,
Tau, Gamma) were associated with dispersion and extent of
the clustering, suggesting the clumping patterns of the TILs
are important indicators of patient outcomes. Thus, except
from the overall TIL infiltration, clustering of dispersion of
TILs on histopathologic images should receive more at-
tention in clinical settings and will be of great interest as
a future research direction.

Overall, in this study, we developed an effective deep-
learning–based pipeline for detecting TILs at the cellular
level from WSIs of breast cancers. This pipeline was vali-
dated on multiple datasets, and correlation analysis with
molecular data confirmed its strong associations with im-
mune responses. Our results provide a resource for breast
cancer biologists and informaticians for deep investigations
between TIL patterns and molecular and clinical data,
which will lead to new hypotheses and insights for both
cancer biology and translational biomarker discovery. This
pipeline can also be applied to study other types of cancers.
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