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Abstract
 To elucidate potential markers of endometriosis andBackground:

endometriosis-associated endometrioid and clear cell ovarian carcinomas
using mass spectrometry-based proteomics.

 A total of 21 fresh, frozen tissues from patients diagnosed with clearMethods:
cell carcinoma, endometrioid carcinoma, endometriosis and benign
endometrium were subjected to an in-depth liquid chromatography-tandem
mass spectrometry analysis on the Q-Exactive Plus. Protein identification and
quantification were performed using MaxQuant, while downstream analyses
were performed using Perseus and various bioinformatics databases.

Approximately 9000 proteins were identified in total, representing theResults: 
first in-depth proteomic investigation of endometriosis and its associated
cancers. This proteomic data was shown to be biologically sound, with minimal
variation within patient cohorts and recapitulation of known markers. While
moderate concordance with genomic data was observed, it was shown that
such data are limited in their abilities to represent tumours on the protein level
and to distinguish tumours from their benign precursors.

 The proteomic data suggests that distinct markers mayConclusions:
differentiate endometrioid and clear cell carcinoma from endometriosis. These
markers may be indicators of pathobiology but will need to be further
investigated. Ultimately, this dataset may serve as a basis to unravel the
underlying biology of the endometrioid and clear cell cancers with respect to
their endometriotic origins.
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Introduction
Ovarian cancer (OvCa) is not a single disease but is made up of 
several distinct subtypes, including serous, endometrioid, clear 
cell and mucinous. It is now accepted that the majority of serous  
OvCa arise from carcinomas of the fallopian tube secretory  
epithelium due to histopathological evidence (Kurman & Shih,  
2016). Unfortunately, the origins of the endometrioid, clear 
cell and mucinous subtypes are not well-delineated and these  
subtypes remain poorly understood. Genomic and morphologic 
studies have identified links between endometriosis lesions that 
progress to endometrioid and clear cell OvCa (Prowse et al.,  
2006; Wang et al., 2015). Of note, ARID1A and PTEN/
PIK3CA mutations have been identified as hallmark features of  
endometriosis-associated OvCa (Jones et al., 2010; Kuo et al., 
2009; Wiegand et al., 2014); however, none of these associations 
have been characterized at the proteomic level and the mecha-
nisms driving tumourigenesis in these precursors have yet to be  
identified. As such, proteomic profiling may aid in substantiating  
these purported precursors of non-serous OvCa, as well as in 
revealing the underlying biology behind why these seemingly  
distinct diseases converge on the ovaries upon metastasis and  
clinical presentation.

Proteomic profiling of OvCa has mainly revolved around 
mass spectrometry (MS)-based analyses. The study of protein  
expression in OvCa has been increasingly important due to the 
central role of proteins in all biological processes. Moreover,  
the proteome integrates the cellular genetic information and  
environmental influences. As such, MS has been increasingly  
implemented as it allows for simultaneous examination of  
thousands of proteins in biospecimens. With respect to  
endometriosis-associated OvCa, there exist limited studies  
investigating the diseases on a proteomic level. One recent study 
utilized proteomic approaches to characterize ARID1A and  
PIK3CA mutations in endometriosis-associated clear cell  
and endometrioid OvCa (Wiegand et al., 2014), but currently,  
there are no studies aimed at comprehensive proteomic profiling of 
these cancers and their suspected endometriotic lesions.

To this end, an in-depth proteomic analysis was performed 
on gynaecological tissue specimens using a label-free, liquid  

chromatography-tandem mass spectrometry (LC/MS-MS) method. 
Specifically, tissue proteomes of the following specimens were 
delineated: clear cell ovarian carcinoma (CC); endometrioid  
ovarian carcinoma (EC); endometriosis (EMT); and benign 
endometrium (END). This exercise has identified approximately 
9000 unique proteins and represents one of the most compre-
hensive proteomes of endometriosis and its associated cancers  
to date. These discovery data may serve as the basis to identify-
ing markers of disease as well as understanding the pathobiology  
for these endometriosis-associated ovarian cancers.

Methods
Gynaecological Tissue Cohort
Gynaecological tissue samples from a total of 21 patients were 
retrospectively identified and selected for proteomic analysis. 
All samples were collected at University Health Network, 
Toronto, Canada (UHN REB Number 13-6360-CE) and imme-
diately stored in liquid nitrogen until retrieval. Approximately 
1 cm3 of each fresh, frozen sample was retrieved for proteomic 
analysis. All samples were histopathologically confirmed for their  
diagnoses and tissue purity (at least 70%) by a gynaecologic  
pathologist using matched formalin-fixed, paraffin-embedded  
tissue slides. With respect to the histopathological diagnoses: 
six cases of CC, seven cases of EC, three cases of EMT and five  
cases of END were identified. A detailed description of clinical 
and histological characteristics of the patients can be found in  
Table 1.

Tissue Sample Preparation
Fresh, frozen samples were first grinded with 0.05% RapiGest  
(Waters, MA, USA) in 50 mM ammonium bicarbonate. The 
tissue mixtures were then homogenized and sonicated in  
order to disrupt cell membranes. This was followed by two 
rounds of centrifugation at 16200 x g for 30 minutes at 4°C and  
collection of the supernatant. Total protein concentration of the 
supernatant was determined using the Bradford protein assay.  
After adjusting for 1 mg of total protein content, each sample  
was subjected to reduction with 15 mM dithiothreitol  
(Sigma-Aldrich, ON, Canada) in 50 mM ammonium bicarbonate at  
60°C for 30 minutes, followed by alkylation with 15 mM  
iodoacetamide (Sigma-Aldrich, ON, Canada) in 50 mM ammo-
nium bicarbonate for 45 minutes in the dark at room temperature. 
Protein digestion was carried out with trypsin (Sigma-Aldrich,  
ON, Canada) in 50 mM ammonium bicarbonate (1:50 trypsin 
to total protein ratio) overnight at 37°C. RapiGest and trypsin  
digestion were stopped with the addition of 1% trifluoroacetic  
acid followed by centrifugation at 16200 x g for 30 minutes at 
4°C. Digested samples were immediately frozen at -80°C until  
all samples were ready for fractionation via high-performance  
liquid chromatography (HPLC) – using strong cation exchange 
(SCX) columns – to reduce peptide complexity.

SCX HPLC
Trypsinized samples were diluted two-fold in mobile phase A  
(0.26 M formic acid, 5% acetonitrile, pH 2–3) and loaded  
directly onto a 500 μL loop connected to a PolySULFOETHYL 
A Column (2.1 mm × 200 mm; 5 μ; 200 Å; The Nest Group, 
Inc., MA, USA), containing a silica-based hydrophilic, anionic  

            Amendments from Version 1

We have implemented the reviewers' suggestions to further 
enhance our manuscript. Specifically:
     •   �A brief statement that only proteins identified with a 

minimum of two unique peptides were selected for further 
analyses has been added to the ‘Protein identification and 
label-free quantitation’ section.

     •   �Figure 1B and Supplementary Figure 1 from version 1 
have been switched as per the reviewer's suggestion. The 
caption for Figure 1b has been modified and has been 
switched with Supplementary Figure 1.

     •   �Centrifugation speeds are now reported in x g units in the 
‘Tissue Sample Preparation’ section.
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polymer (poly-2-sulfoethyl aspartamide). The Agilent 1100 HPLC 
system (Agilent Technologies, Germany) was used for SCX  
peptide fractionation. A 60-minute gradient was employed 
with a gradual increase of mobile phase B (0.26 M formic acid,  
5% acetonitrile, 1 M ammonium formate, pH 4–5) starting at  
30 minutes (30–40 minutes 20% mobile phase B; 40–55 minutes  
100% mobile phase B) for the elution of peptides at a flow rate 
of 200 μL/minute. The eluent was monitored at a wavelength  
of 280 nm and fractions were collected every three minutes  
from 28 to 55 minutes resulting in a total of 9 fractions per  
sample. SCX column and system performance were assessed by 
running a quality control peptide mixture consisting of 1 μg/μL  

alpha bag cell peptide, 1 μg/μL fibrinogen fragment, 5 μg/μL 
human adrenocorticotropic hormone, and 5 μg/μL angiotensin- 
converting enzyme inhibitor (American Protein Company, CA) 
after every biological sample.

LC-MS/MS
The SCX fractions were purified through C-18 OMIX Pipette  
Tips (Agilent Technologies, Germany) to remove impurities 
and salts as well as to resuspend the tryptic peptides in a buffer  
compatible with the mass spectrometer. The fractions were eluted 
in 5 μL of 65% MS buffer B (90% acetonitrile, 0.1% formic acid,  
10% water, 0.02% trifluoroacetic acid) and 35% MS buffer A  
(5% acetonitrile, 0.1% formic acid, 95% water, 0.02% trif-
luoroacetic acid). Using an auto-sampler, 18 µL of each sample 
were injected into an in-house packed 3.3 cm trap pre-column  
(5 μm C18 particle, column inner diameter 150 μm) and  
peptides were eluted from the 15 cm analytical column (3 μm C18  
particle, inner diameter 75 μm, tip diameter 8 μm). The LC  
EASY-nLC system (Thermo Fisher, Denmark) was coupled 
online to the Q-Exactive Plus (Thermo Fischer, CA, USA) mass  
spectrometer with a nanoelectrospray ionization source. A 60 min  
LC gradient was applied with an increasing percentage of MS 
buffer B for peptide elution at a flow rate of 300 nL/min. Full  
MS1 scan was acquired from a scan range of 400–1500 m/z in 
the Orbitrap at a resolution of 70000, followed by the MS2 scans 
for the top 12 precursor ions at a resolution of 17500 in a data- 
dependent acquisition mode and isolation window of 1.6 m/z. The 
dynamic exclusion was enabled for 45 seconds and unassigned 
charge, as well as charge states +1 and +4 to ≥8 were omitted  
from MS2 fragmentation. Each biological sample was sepa-
rated into nine fractions with each fraction being subjected to a  
60 minute LC gradient. To minimize for instrumentation bias,  
samples were run in batches with each batch containing approxi-
mately one patient from each disease cohort. Quality controls  
were run between each biological sample (before and after all  
nine fractions from a sample) as well as between batches to  
ensure consistent machine performance for all samples.

Protein identification and label-free quantification
RAW files were uploaded into MaxQuant ver. 1.5.2.8 (Cox  
& Mann, 2008) and searched with Andromeda (built into  
MaxQuant) against the human UniProtKB/Swiss-Prot database 
(January 2015 release; 550299 sequence entries). Search param-
eters included a fixed carbamidomethylation of cysteines and 
variable modifications of methionine oxidation and N-termi-
nal acetylation. Data was initially searched against a “human 
first search” database with a parent tolerance of 20 ppm and a 
fragment tolerance of 0.5 Da in order to calculate and adjust 
the correct parent tolerance to 5 ppm for the search against 
the UniProtKB/Swiss-Prot database. During the search, the  
UniProtKB/Swiss-Prot database was randomized and false  
detection rate was set to 1% at the peptide and protein levels. Data 
was analyzed using “Label-free quantification” checked, and the 
“Match between runs” interval was set to 2 minutes. Proteins 
identified with a minimum of two unique peptides were selected 
for further statistical analyses. “LFQ Intensity” columns corre-
sponding to the extracted ion current value of each protein were  
used for further statistical analyses to determine overexpressed  
proteins.

Table 1. Clinical and histological characteristics of the 
gynecological patients.

Cohort
Age at 

Diagnosis 
(years)

Histology Tumour 
Stage

Pre-surgical 
CA125 (IU/mL)

Clear Cell Carcinoma

CC 1 57 Clear cell IC 41

CC 7 56 Clear cell IIC 1258

CC 8 59 Clear cell IA 175

CC 9 74 Clear cell IA 60

CC 10 58 Clear cell IIB 117

CC 11 67 Clear cell IIB 3135

Endometrioid Carcinoma

EC 3 71 Endometrioid IA 9305

EC 18 61 Endometrioid IIB 110

EC 19 52 Endometrioid IIIB 92

EC 20 40 Endometrioid IA 361

EC 21 46 Endometrioid IC 11

EC 22 60 Endometrioid IA 58

EC 23 60 Endometrioid IIA 204

Endometriosis

EMT 4 49 Tubal 
endometriosis - 75

EMT 24 49 Tubal 
endometriosis - 49

EMT 25 46 Ovarian 
endometriosis - 64

Benign Endometrium

END 5 59
Secretory 

phase 
endometrium

- -

END 26 72 Atrophic 
endometrium - 7021

END 28 39 Proliferative 
endometrium - 19

END 29 38 Proliferative 
endometrium - 107

END 30 49 Atrophic 
endometrium - 58
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The produced MaxQuant output matrix was loaded onto the  
Perseus software (ver. 1.5.2.6) to perform statistical and bioin-
formatics analyses (Tyanova et al., 2016). Specifically, LFQ data  
were logarithmically-transformed and imputed by creating a  
Gaussian distribution of random numbers with a standard  
deviation of 30% relative to the standard deviation of the meas-
ured values and one standard deviation down-shift of the mean to  
simulate the distribution of low signal values. Hierarchical  
clustering of proteins was performed on logarithmized inten-
sities after z-score normalization of the data, using Euclidean  
distances. PCA was performed on logarithmized values using 
singular value decomposition in order to find the principal  
components. Gene Ontology, the Protein Analysis Through  
Evolutionary Relationships (PANTHER) Classification System 
(Mi et al., 2013), and ConsensusPathDB-human (Kamburov  
et al., 2009) were utilized to retrieve additional annotations.

Statistical analysis
Quantitative protein data were log-transformed before statistical 
analyses. Proteins with missing values (‘0’ normalized values) 
were imputed using the Perseus software. The elevated protein 
levels were detected using LIMMA, an empirical Bayes method  
proposed by Smyth (Smyth, 2004). The posterior probability 

of being elevated for each protein was computed using the two-
group model (Efron & Tibshirani, 2002) with true null probability  
estimated by the right-boundary procedure (Liang & Nettleton, 
2012). Protein levels in control tissues were assumed to follow 
normal distributions and estimated their means and variances  
conservatively.

Results
Deep proteomic analysis of tissue specimens
To decipher the in-depth proteome of the tissues, we utilized 
an offline two-dimensional LC-MS/MS workflow amenable to 
label-free quantification (LFQ) with minimal amount of protein  
required upfront (1mg total protein). As seen in Figure 1A, 
lysis, reduction and alkylation, and trypsin digestion were  
performed in a single-tube manner prior to SCX-HPLC. The  
additional offline SCX-HPLC coupled with online C18 reverse 
phase chromatography fractionation and MS/MS analysis on  
the Q-Exactive Plus ensured comprehensive proteome coverage 
and high mass accuracy.

Overall, 8793 unique proteins were identified across the  
21 patient samples with roughly 5000 unique proteins identified 
within each patient cohort, as seen in Supplementary Figure 1.  

Figure 1. Proteomic workflow and dataset. (A) Overview of the label-free LC-MS/MS workflow developed for proteomic analysis of tissue 
specimens. (B) Venn diagram displaying overlap of proteins between the four patient cohorts. (C) Interpatient correlation of the protein 
expression profiles.
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In terms of overlap, 5379 proteins were identified in all 
four cohorts (Figure 1B). Approximately 90% of all pro-
teins were identified with at least 2 or more peptides  
(Supplementary Figure 2). With respect to protein expression 
patterns, strong correlations between samples within the same  
patient cohort were observed. As seen in Figure 1C, protein  
expression was relatively consistent when comparing patients 
with the same diagnosis with Pearson correlation coeffi-
cients (PCC) above approximately 0.80 for CC, EC, EMT and 
END. A notable exception was patient EC 18 who displayed  
decreased correlation with the other EC patients with PCC ≤0.72. 
Interestingly, subsequent re-examination of Patient 18 revealed 
more mucinous-like histological features and it was con-
cluded that the final diagnosis of EC (as opposed to mucinous  
carcinoma) was due to the lack of metastatic gastrointestinal 
involvement (data not shown). Patient 18 was removed from  
further analyses given its mucinous-like features, thus making 
it less likely to be an endometriosis-associated cancer. The  
biological soundness of the proteomic data was further  

demonstrated by the stable expression of housekeeping proteins, 
such as ribosomal biogenesis and  assembly proteins, across all 
samples (Supplementary Figure 3). Collectively, the minimal  
variation with respect to patient cohort and housekeeping pro-
tein expression (despite being processed in different batches)  
suggests that any differences observed in this dataset are due to  
true biological differences and not from technical artefacts.

Correlation with clinical markers
As an initial assessment of the accuracy of proteomic profiling, 
we investigated the expression of various immunohistochemical 
(IHC) markers used in histopathological analysis of endome-
triosis-associated ovarian cancers (Kalloger et al., 2011; Köbel 
et al., 2008; Köbel et al., 2014). A spectrum of markers 
including general epithelial ovarian carcinoma markers and  
markers specific to various subtypes (serous, endometrioid, 
clear cell, and mucinous) were identified with the full panel of  
markers summarized in Figure 2. Overall, the proteomic data  
across the six CC and six EC samples correlated well with 

Figure 2. Correlation with immunohistochemical (IHC) markers. An expression matrix demonstrating the correlation of proteomic data 
with known IHC markers. Label-free quantification values (in arbitrary units represented by the purple gradient scale) were generated from 
MaxQuant and known IHC markers across the various subtypes were based on collating literature evidence. The expression of the markers 
across the serous (SC), clear cell (CC), endometrioid (EC) and mucinous (MC) subtypes are denoted by the red, green, blue and indigo lines, 
respectively.
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IHC expression based on literature evidence. Serous-specific  
markers such as Wilm’s Tumour 1 (WT1), p53 (TP53), cytokeratin 7  
(CK7) and cytokeratin 20 (CK20) and mucinous-specific  
markers such as carcinoembryonic antigen (CEA) and mucin 2  
(MUC2) were found to be expressed in almost none of the 
CC or EC samples. Meanwhile, EC-specific markers such as  
estrogen receptor (ER), progesterone receptor (PR), p16  
(CDKN2A), trefoil factor 3 (TFF3), Dickkopf-related protein 1 
(DKK1), and matrix metalloproteinase 7 (MMP7) and the  
CC-specific marker hepatocyte nuclear factor 1β (HNF1B)  
displayed near exclusive expression in their respective subtypes.  
Expression of these markers in endometriotic and benign  
endometrial tissues was mostly low with the exception of ER 
and PR which were found to be constitutively expressed in the  
benign endometrial tissues (data available in “MaxQuant  
Analysis” dataset).

Interestingly, mucin 16 (MUC16) and WAF four-disulfide core 
domain protein 2 (WFDC2) displayed high overall expression  
in the EC cohort and variable expression in the CC cohort. 
Mucin 16 (also known as CA125) and WAF four-disulfide core 
domain protein 2 (also known as HE4) are the only clinically- 
approved serum markers of ovarian cancer and have been shown 
to perform better for serous OvCa compared to other subtypes  
(Leung et al., 2016; Shen et al., 2017). Here, our data suggests 
that serum levels of such tumour markers (Table 1) do not entirely  
capture the biology of the actual tumours and may actually be 
dependent on tumour release of the markers into circulation  
rather than tumour production.

Furthermore, protein expression of ARID1A, PTEN, and PIK3CA 
was investigated as mutations in these genes are often prevalent 
in endometriosis-associated cancers and have been suggested 
to be involved with genomic instability and tumourigenesis  
(Jones et al., 2010; Kuo et al., 2009; McConechy et al., 2014;  
Wiegand et al., 2014; Yamamoto et al., 2012). Despite genomic 
data that suggests concurrent loss of tumour suppressors  
ARID1A and PTEN with activating mutations of PIK3CA 
are involved in the pathogenesis of CC and EC, our data  
demonstrates that these genomic findings do not necessarily  
translate at the protein level. Indeed, variable expression of the  
three proteins is observed across the CC and EC cohorts. However, 
it is important to note that expression of these proteins does not 
imply proper functionality and thus, they may still contribute to 
tumourigenesis due to deleterious mutations.

Mapping the CC- and EC-specific proteomes
To evaluate how biological differences between tumours (CC 
or EC) and their precursors (EMT and END) were reflected at 
the proteomic level, unsupervised clustering was performed 
using the entire proteomic dataset without a priori enrichment.  
Using normalized log

2 
expression values, samples were analyzed 

using principal component analysis (PCA) to visualize the  
clustering of samples from the same cohorts as well as the  
separation between the cohorts. As expected, PCA revealed 
that in both comparisons of CC to EMT and END, and EC to 
EMT and END, samples within a cohort clustered together to  
produce clear separation between the cohorts with respect to 
overall protein expression (Figures 3A). The strong segregation  

between the END, EMT and CC/EC cohorts suggested, once  
again, that differences between the cohorts are due to  
biological variation and that inspection of the proteomic  
landscape recapitulated these differences very well.

To elucidate the biological mechanisms contributing to the  
differences between tumours and their precursors, proteins  
demonstrating the highest variances between the cohorts had to be  
enriched for first. Using an ANOVA test with a Bonferroni- 
Hochberg FDR of 0.01, 127 proteins for the comparison of 
CC versus EMT/END and 119 proteins for the comparison of 
EC versus EMT/END were identified as having the strongest  
differential expression between the cohorts (Supplementary  
Table 1). Subsequently, unsupervised hierarchical clustering was 
performed using these differentially-expressed proteins to verify 
the ability to distinguish between the cohorts, as well as to  
identify any notable clusters of differential expression patterns 
as seen in Figures 3B and 3C. As expected, the differential  
proteins were able to accurately separate all of the cohorts and  
produced distinct patterns of differential expression between 
tumours and their precursors. To identify overrepresented  
ontologies within these patterns of differential expression, enrich-
ment analysis for Gene Ontology annotations was performed 
using the PANTHER Classification System. For CC, two major  
clusters were found to be characterized by predominantly  
muscle- and cytoskeletal-related processes (Figure 3B), while for 
EC, two major clusters were found to be characterized by cell  
junction- and extracellular matrix-related processes (Figure 3C). 
A condensed list of overrepresented annotations in both cancers  
are displayed in Supplementary Table 2.

Integrating proteomic with genomic data
To assess concordance with existing genomic data, the proteomic 
dataset was compared against reported ‘subtype-specific gene  
signatures’ for CC and EC in previous RNA expression studies.  
For CC, a 113-gene signature that was reported to be able to  
differentiate between CC and high-grade serous OvCa was 
used (Hughes et al., 2016) while for EC, two studies comparing 
EC against high-grade serous OvCa were used after identify-
ing 15 underexpressed genes and 40 overexpressed genes in EC  
(Banz et al., 2010; Uehara et al., 2015). Of the 113 CC-specific 
genes, 11/34 of the underexpressed genes were downregulated 
at the proteomic level while 40/79 overexpressed genes were  
upregulated at the proteomic level (Figure 4A). It is important 
to note that 10 of the 40 concordant genes were significantly  
upregulated in our data (FDR = 0.05, S0 = 1) with many of 
them being known markers of CC including napsin A (NAPSA),  
annexin 4 (ANXA4) and hepatocyte nuclear factor 1-beta  
(HNF1B). Furthermore, cystathionine gamma-lyase (CTH) 
and interleukin-6 receptor subunit beta (IL6RB) – markers that 
have been associated with CC (Cochrane et al., 2017; Hughes  
et al., 2016; Yanaihara et al., 2016) – were found to be elevated 
in CC compared to EMT samples. CTH was found to be signifi-
cantly elevated in CC compared to EMT (p=0.01) while IL6RB  
was undetectable in all EMT samples but expressed in 4/6 of 
the CC samples. For EC, 3/15 of the underexpressed genes were  
downregulated at the proteomic level while 21/40 overexpressed 
genes were upregulated at the proteomic level (Figure 4B).  
Unlike the observations in CC, only one of the concordant  
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Figure 3. Principal component and clustering analyses. (A) Principal component analysis of entire proteomic dataset without enrichment. 
Hierarchical clustering of differentially-expressed proteins between CC, EMT and END (B) and EC, EMT and END (C) with overrepresented 
GO annotations identified through enrichment analysis.

proteins (desmoplakin or DSP) was significantly upregulated.  
Interestingly, the concordant genes for both CC and EC were  
able to discriminate cancer from control patients at the proteomic 
level but could not distinguish EMT from END patients  
(Supplementary Figure 4).

To further assess how well existing genomic data translates at the 
proteomic level, ARID1A and PIK3CA/PTEN-related proteins 
were inspected for their expression levels as these pathways are 
often perturbed in EC and CC. Overall, 21/37 ARID1A compo-
nents and 49/254 PIK3CA/PTEN components were identified in  
our proteomic data (components identified using Reactome;  
http://www.reactome.org/). Unfortunately, these pathway-related 
proteins were poor discriminators and did not show obvious  
differential expression between the cancer and control cohorts  
(Supplementary Figure 5), further highlighting that fact that 
genomic features do not always translate at the proteomic level.

Identifying potential disease markers
In order to identify potential disease markers on a proteomic 
level, proteins with progressively increased expression from 

END to EMT to CC/EC were identified using LIMMA (see  
Materials & Methods for details). Using the following criteria:  
(A) progressively increased expression from END to EMT to  
EC/CC; (B) only increased expression from END to EMT; and  
(C) only increased expression from EMT to EC/CC, 25 proteins for 
EC and 252 proteins for CC were identified as ‘disease markers’  
(Supplementary Table 3–Supplementary Table 4). These disease 
marker signatures were able to discriminate between the dif-
ferent disease cohorts more accurately than the genomic signa-
tures, especially with respect to differentiating between EMT and  
END patients (Supplementary Figure 6). Further analysis of the 
CC signature revealed that there was an overrepresentation of  
pathways involving hepatocyte growth factor receptor (MET),  
α6β4 integrin, and retinoic acid (Figure 4C). Pathway analysis  
was not performed for the EC signature due to a low number of 
proteins.

Dataset 1. MaxQuant Analysis Guide

http://dx.doi.org/10.5256/f1000research.13863.d193746

An interpretive guide for the spreadsheet output from the MaxQuant 
analysis.
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Figure 4. Integration with genomics and disease signature analyses. Volcano plot of CC versus EMT proteomes (A) and EC versus 
EMT proteomes (B) overlaid with concordant genomic features. The black lines denote statistical significance. (C) depicts overrepresented 
pathways identified in the ‘disease signature’ derived for CC.

Dataset 2. MaxQuant Analysis

http://dx.doi.org/10.5256/f1000research.13863.d193821

Spreadsheet output from the label-free quantification analysis 
using the MaxQuant software. The spreadsheet contains the details 
of the identification and quantitation of all proteins across the 21 
biological samples.

Discussion
In this study, a comprehensive proteomic analysis of 21 tissues  
from CC and EC tumours, as well as benign endometriotic  
precursors was performed. The identification of almost 9000 
unique proteins represents the most in-depth proteomic pro-
files of these gynaecological specimens to date. In fact, the  
workflow used has generated one of the largest datasets to date  
with the Q-Exactive Plus. As a comparison, in a study  
delineating the proteomes of pancreatic tissue specimens from 

controls and Type 1 diabetic patients, approximately 5500 
unique proteins were identified using a similar workflow on the  
Q-Exactive Plus (Liu et al., 2016).

Although isotope-based labeling methods are the gold standard 
for quantitative proteomics, LFQ is becoming increasingly  
utilized due to its simplicity and practicality. Unlike labeling  
methods, LFQ avoids extra pre-analytical steps and can be  
applied to any type of sample. This is especially relevant in  
clinical samples that cannot be metabolically labeled using  
standard labeling techniques. Furthermore, recent advances 
with the MaxLFQ algorithm in the MaxQuant software have 
greatly increased the accuracy and robustness of LFQ (Cox et al.,  
2014). In this study, quality assessment demonstrated that  
proteomic data was consistent across all samples with respect to  
intracohort variation and housekeeping protein expression. Fur-
thermore, correlation and clustering analysis without enrichment 
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demonstrated that samples separated into relatively distinct  
clusters within their respective cohorts.

The ability of label-free quantitative proteomics to accurately 
recapitulate CC and EC was further highlighted by the correla-
tion of the proteomic data with clinical IHC markers. Whereas  
known markers specific to the serous and mucinous subtypes 
were not identified almost none of the CC and EC samples,  
markers specific to CC and EC were identified almost exclusively 
in their respective subtypes. A caveat here is that our proteomic 
analysis will not capture specific expression patterns (such as  
focal or diffuse) that are commonly used in IHC-based differ-
ential diagnosis of ovarian tumours (Kaspar & Crum, 2015).  
On the other hand, proteomic profiling may reveal insights that 
IHC-based diagnoses are unable to as the former considers  
protein expression across the entirety of the tumour while the  
latter interrogated localized areas. For example, the expression of  
HNF1B in one of the EC samples (sample EC4) may indicate a 
mixed CC/EC origin in that tumour due to the fact that HNF1B 
is often used to rule in a diagnosis of CC. Retrospective analysis 
of such ‘discordant’ tumours would be useful to determine if 
these tumours contained any areas of CC-like histology. Addition-
ally, re-examination of sample EC18 via histopathology revealed 
more mucinous-like features which was reflected in its proteomic  
profile being discordant with the other EC samples. In these  
regards, proteomic profiling may thus enhance IHC-based diag-
noses by offering a macroscopic view of ovarian tumours that 
would otherwise be missed.

Finally, bioinformatic analyses revealed that the CC and EC 
proteomes are potentially more informative than genomic data 
with regards to markers potentially implicated in disease patho-
genesis. The CC proteome was characterized by muscle- and 
cytoskeleton-related processes, while the EC proteome was 
represented by cell junction- and extracellular matrix-related  
processes. Further analysis with the disease signatures revealed 
novel contributions from MET, α6β4 integrin and retinoic acid  
pathways for CC. This is the first study to identify these associa-
tions as possible avenues of pathogenesis from endometriosis, but 
further functional studies will need to be performed to elaborate 
their true roles in tumourigenesis. Nevertheless, such distinc-
tions may be indicative of the different underlying biology and  
mechanisms that contribute to development of CC and EC from 
EMT. As a result, each subtype could be targeted for their key 
pathogenic mechanisms instead of the standard platinum-based  
chemotherapy administered to all OvCa patients. Future stud-
ies should thus expand on the use of proteomic-based profiling  

of endometriosis-associated cancers in order to provide novel 
insights into the etiology and pathogenesis of the diseases,  
which in turn, will affect diagnosis and treatment of these cancers.

In summary, this study has generated proteomic data for  
endometriosis and its associated (ovarian) cancers. Overall, we 
have demonstrated that not only is our dataset robust and com-
prehensive, but it is also reflective of the molecular profiles of the  
various diseases. Clustering analysis revealed unique expres-
sion patterns within the cohorts and that proteomic profiling may 
serve as a more accurate representation than genomic profiling.  
As well, disease signature analyses have demonstrated that each 
cancer subtype is characterized by distinct markers which can be 
exploited for further insight into the etiology of each subtype as 
well as identification of novel therapeutic targets.

Data availability
The output of the MaxQuant analyses is available in the spread-
sheet ‘MaxQuant Analysis’ along with an interpretive guide  
(‘MaxQuant Analysis Guide’). Additional files or raw data can  
be provided upon reasonable request.

Dataset 1: MaxQuant Analysis Guide – An interpretive guide 
for the spreadsheet output from the MaxQuant analysis. 10.5256/
f1000research.13863.d193746 (Leung et al., 2018a)

Dataset 2: MaxQuant Analysis – Spreadsheet output from the 
label-free quantification analysis using the MaxQuant software. 
The spreadsheet contains the details of the identification and quan-
titation of all proteins across the 21 biological samples. 10.5256/
f1000research.13863.d193821 (Leung et al., 2018b)
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Supplementary Table 3 – Differential proteins identified with significant increased expression from END to EMT to EC.
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Click here to access the data.
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standard deviation of protein identified with at least two unique peptides within each patient cohort.
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Supplementary Figure 2 – Identified proteins categorized according to the number of peptide hits associated with each protein  
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Supplementary Figure 3 – Conservation of levels of ribosomal biogenesis and assembly proteins across the 21 biological replicates. The 
protein intensity levels are derived from the label-free quantification intensities generated from MaxQuant.

Click here to access the data.

Supplementary Figure 4 – Clustering analysis of concordant proteins across the cancer and control cohorts.

Click here to access the data.

Supplementary Figure 5 – Expression levels of ARID1A-related proteins (A) and PIK3CA/PTEN-related proteins (B) across the cancer 
and control cohorts.
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Supplementary Figure 6 – ‘Disease signatures’ for CC (A) and EC (B) derived from identifying proteins with progressively increased  
expression from END to EMT to EC/CC.

Click here to access the data.
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Leung et al., has applied a proteomic profiling approach to solubilized gynecological tissue samples to
delineate protein markers differentiating subtypes of non-serous ovarian cancer. Notably, these sub-types
include protein markers that may differentiate endometrioid and clear cell carcinoma. Using 21 patient
samples, of which 6 patients were histopathologically diagnosed with clear cell carcinoma and another 6
samples with endometrioid carcinoma, the authors have identified over 5000 proteins in the small cohorts
using mass spectrometry based label-free quantitative proteomics approach. In this regard, I found
Supplementary Figure 1 with the Venn diagram to be more informative than Figure 1b. It may be
worthwhile to consider swapping Figure 1b with supplementary Figure 1. In general, this manuscript has
many figures that nicely complement each other, including the covariance analysis presented in Figure 1c
and the principal component analysis in Figure 3a.

The experimental procedures applied here are sound. However, I am curious to know if the 1 cm  of the
tissue is a randomly selected segment or purposely segmented region of the tissue that define the tumor
stage. This may be important for the samples in the early tumor stages and in general where there is
heterogeneity as may be the case for sample 18. Nonetheless, it appears the approach is to be a
macroscopic view as the authors note and the results are encouraging. I found the strength of the study
was in the ability to show the contrast between previous genomic data and the author’s proteomic findings
(notably for the expression of ARI1DA, PTEN, and PIK3CA). However, the authors also indicate some
closeness of their findings to previous genomic data on markers associated with clear cell carcinoma.

Although the size of samples or cohorts may be small, these initial findings are easily appreciated and
much needed to pursue further directions toward understanding non-serous ovarian cancer subtypes.
Given the novelty of potential pathways implicated in clear cell carcinoma from the findings and need for
further evaluation on a clinical and scientific basis, I believe this manuscript needs only minor revisions
and should be accepted for indexing.

Minor comments:
Report centrifugation speeds in x   unit, as the RPM is not indicative of the force and varies withg
radius of the centrifuge.
Figure 1b caption. Authors note the error bars are the standard deviation. Briefly elaborate on the
standard deviation or spread of which data (e.g. within each data set based on 2 minimum
peptides, or software determined, etc).

Is the work clearly and accurately presented and does it cite the current literature?

3
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 09 Jun 2018
, University Health Network, CanadaVathany Kulasingam

Thank you for raising these important points. The caption for Figure 1b has been modified to
explain that the standard deviations were calculated within each data set based on protein
identifications with a minimum of 2 unique peptides. As well, Figure 1b has been switched with
Supplementary Figure 1.

Dr. Selvaratnam’s point of heterogeneity within the tissue sample is valid. It was decided that
macroscopic dissection of the frozen tissue block combined with histopathological review for
tumour purity of that section (>70% tumour tissue with minimal necrotic/benign tissue) was
sufficient for the purposes of this study. Some degree of heterogeneity is unavoidable but as the
reviewer has noted, our proteomic data does show concordance with some of the more prominent
genomic markers for both endometrioid and clear cell carcinomas.

The centrifugation units have been modified as per the reviewer’s comments.

 No competing interests were disclosed.Competing Interests:

 03 April 2018Referee Report

doi:10.5256/f1000research.15069.r31989

 Nathalie Lepage
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1.  

 Nathalie Lepage
Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada

The authors of the manuscript evaluated protein content and quantitation of tissues collected from 21
patients with a range of ovarian diseases (endometriosis, endometrioid and clear cell ovarian
carcinomas). They used a well-designed proteomics approach. Their findings were unique and did not
exactly correlated with current knowledge from genomic analysis. Clearly additional work will be required
to confirm and expand on their current findings.
 
Minor comments:

There are some proteins that were identified only using 1 peptide (>500 proteins). The authors
should elaborate of the expected protein size for these proteins and confirm that the identification
based on 1 peptide is sufficient.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 09 Jun 2018
, University Health Network, CanadaVathany Kulasingam

Thank you for raising this point. We would like to clarify that although the dataset contains proteins
identified only using 1 peptide, these proteins were not selected for further analyses (only those
with a minimum of 2 unique peptides were investigated further). We have modified our manuscript
to reflect this point. We are confident that through setting the false discovery rate (FDR) at 1% for
both the peptide and protein levels, we were able to minimize false identifications even for proteins
of higher molecular weight. This has been shown to be fairly resistant to false identifications even
with 1 peptide identification (Gupta N & Pevzner PA. J Proteome Res 8:4173-4181 2009). The
expected sizes of the proteins (identified using 1 peptide) range from approximately 10-670 kDa. 

 No competing interests were disclosed.Competing Interests:
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