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This article presents research on the detection of pathologies affecting speech through

automatic analysis. Voice processing has indeed been used for evaluating several

diseases such as Parkinson, Alzheimer, or depression. If some studies present results

that seem sufficient for clinical applications, this is not the case for the detection of

sleepiness. Even two international challenges and the recent advent of deep learning

techniques have still not managed to change this situation. This article explores the

hypothesis that the observed average performances of automatic processing find their

cause in the design of the corpora. To this aim, we first discuss and refine the concept of

sleepiness related to the ground-truth labels. Second, we present an in-depth study of

four corpora, bringing to light the methodological choices that have been made and the

underlying biases they may have induced. Finally, in light of this information, we propose

guidelines for the design of new corpora.
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INTRODUCTION

Speaking is a complex task involving multiple muscular, neurological, and cognitive processes. In
Krajewski et al. (1), a 2-block model of speech production is proposed. The first block describes
the cognitive planning of the tasks, which involves the intention to speak and the creation of the
idea, the linguistic programming, and the generation of articulatory targets and neuromuscular
commands. The second block concerns themotorical actions, involving respiration, phonation, and
articulation. Proprioceptive feedback adjusts the neuromuscular commands based on themotorical
actions, whereas auditory feedback corrects it based on the resulting audio speech waves. These two
blocks can be completed, depending on the speaking task, by memory and other cognitive actions
for spontaneous speech or reading-related cognition when reading texts out loud.

Numerous diseases impact these processes and, thus, can be detected through voice (2). We can
differentiate two axes. On one side, the estimation of neurodegenerative pathologies that impact
directly and typically the voice production of the subjects, such as pre-symptomatic Hungtington’s
disease [87% of accuracy reported in Rusz et al. (3)], Alzheimer’s disease [80% of accuracy inWeiner
et al. (4)], dysphonia [89% of accuracy in Tulics et al. (5)], or Parkinson’s disease [84% of accuracy
inVasquez-Correa et al. (6)].

On the other side, the estimation of psychiatric pathologies that impact both motorical actions
and cognitive planning, with complex phenomenology. They include bipolar disorders [57.4% of
accuracy in Ringeval et al. (7)], autism spectrum [69.4% on four categories in Asgari et al. (8)] or, the
most studied so far, depression [88% of accuracy in in Vázquez-Romero and Gallardo-Antolín (9)],
a complete review is proposed in Cummins et al. (10).
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Among all the other existing psychiatric disorders, we focus
in this study on chronic and instantaneous sleepiness. Regarding
sleepiness detection through voice, two main objectives are
studied in the literature.

• Chronic sleepiness. Patients affected by sleep disorders
require a customized and regular follow-up. Regrettably,
sleep medicine is a domain suffering from too long queuing,
resulting in spaced and uneven interviews. Given this
situation, a virtual physician has been designed to follow-up
patients at home (11, 12), allowing a regular collection of data
and the measure of the variation of symptoms in response
to the treatment. To integrate chronic sleepiness detection
through voice systems into these virtual assistants, two corpora
have been designed at the Sleep Clinic of Bordeaux Hospital.

First, the Maintenance of Wakefulness Test Corpus
(MWTc) has been elaborated between 2018 and 2019. Based
on the recordings of 75 patients undertaking a Maintenance
of Wakefulness Test (MWT) (as shown in section 1.6.2), this
corpus suffers from multiple methodology defects that have
prevented us from exploiting it. As a consequence, no study
has been published based on this corpus. Nevertheless, it has
paved the way to other corpora such as the Multiple Sleep
Latency Test corpus (termed hereafter MSLTc) and shows
interest in being analyzed to discuss these methodological
flaws. It is extensively presented in section 3.3.

The only available studies aiming at estimating chronic
sleepiness through voice are based on the MSLTc (13),
which contains recordings of 106 patients affected by
sleep pathologies. These patients present symptoms such
as hypersomnolence, a chronic sleepiness impacting their
everyday life. The available labels are the sleep latencies to a
medical test measuring their daytime propensity to fall asleep
[the Multiple Sleep Latency Test (MSLT)], and the answer to
a short-term subjective sleepiness questionnaire [Karolinska
Sleepiness Scale (KSS)]. This corpus is extensively presented
in section 3.4.

At this time, the studies based on this corpus only led
to preliminary results. In Martin et al. (14), an Unweighted
Average Recall (mean of the recall on the two classes—termed
hereafter UAR) of 60% has been obtained on the detection of
daytime propensity to sleep based on voice biomarkers. The
same studies achieved a UAR of 82.6% with a system based on
reading errors (15).

However, the implementation of these systems in medical
applications is not ready yet: the first suffers from too
low accuracy, and the second was a proof of concept
based on manual annotation of the recordings by human
annotators, not a fully automated process. These preliminary
studies have nevertheless paved the way to other paradigms
and applications on objective sleepiness and pathological
populations.

• Immediate sleepiness. On the other side, most of the
studies found in the literature focus on the detection
and the estimation of short-term subjective sleepiness on
healthy subjects, finding applications in the monitoring
of performances for tasks requiring high cognitive loads,

such as driving (16). This task has been the subject of
two international challenges: the Interspeech 2011 (IS11)
challenge on speakers state estimation (17), introducing the
Sleepy Language Corpus (SLC), and the Interspeech 2019
(IS19) challenge on continuous sleepiness estimation (18)
that introduced the SLEEP corpus (also referred to as the
Dusseldorf Sleepy Language Corpus). Based on different
corpora, the two challenges share the same way of labeling
instantaneous sleepiness with the KSS, amedical questionnaire
aiming at measuring instantaneous subjective sleepiness (see
section 2.1.1 for more information).

During the IS11 challenge, the objective was to achieve
the highest UAR on binary classification Sleep (SL) and Non-
Sleepy (NSL). SL and NSL were delimited by a 7.5 threshold in
the KSS. On the six systems that have been proposed for the
IS11 challenge, only three outperformed the baseline UAR of
70.3%. The best performances have been obtained by a system
based on the ASIMPLS algorithm (19, 20) and reach 71.7%.
More recently, a work focusing on the longer reading tasks
of the SLC has reported an accuracy of 76.4% (21). Even if
this study shows a significant improvement on a subset of the
SLC, this performance is still below the necessary 80–85% for
medical uses.

Eight years later, the SLEEP corpus was introduced during
the IS19 challenge. This new challenge has brought both
a new paradigm and a new corpus: the SLEEP corpus has
been introduced for the changing from binary classification
(SL vs. NSL) to regression between the estimated label and
the ground-truth KSS. Indeed, the SLEEP corpus, with more
than 16,000 samples, seemed more suited for regression
(that requires more data) than the SLC, which contains
9,000 samples.

The baseline for this challenge was Spearman’s correlation
between estimated KSS and the ground truth value of ρ =

0.347. Over the dozen systems that have been proposed, two
studies (22, 23) introduced deep learning systems for the first
time in the task of sleepiness detection through voice. They
achieved respective correlations of ρ = 0.369 and ρ = 0.343
while the winner of the challenge, who used Fischer vectors
and bag-of-features (24), achieved a correlation of ρ = 0.387.
Since then, two other systems using deep learning have been
proposed (25, 26), both achieving performances below the
winner of the challenge (resp. ρ = 0.317 and ρ = 0.367).

However, although all these efforts, there still exist pitfalls and
problems in analyzing sleepiness through voice. First, regarding
sleepiness-related problems, semantic plays an important role.
For instance, a recent study has already shown that the wording
of questions and the used scales significantly affect the response
of the patients when self-assessing their sleep duration (27).
In the same manner, the precision of the definition of task
impacts the experimental conditions and the labeling of data. If
in common language, lack of vigilance, a drop of performances,
fatigue, sleepiness or drowsiness are interchangeable, these terms
have different medical definitions, remediation, measures, and
expressions through voice. The misunderstanding of such
concepts could lead to inappropriate labeling of data, leading to a
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loss of the meaning of the machine learning algorithm designed
on such corpora.

Furthermore, facing the unexploitable performances and the
inability for deep learning to produce exploitable systems—
although it has brought significant improvements in other
fields (28)—a recent study (29) questioned the feasibility of the
task: is it even possible to estimate sleepiness through voice?
Are the vocal changes induced by sleepiness visible enough to
be detected and used for classification? To answer this question,
a sub-corpus of 99 samples of the SLEEP corpora has been
annotated by 25 trained annotators. The labels obtained in this
way have reached a correlation of ρ = 0.72 with the ground-truth
KSS and binarizing the KSS label using the same 7.5 threshold as
in the SLC, they achieved an UAR of 93.6%. As a consequence,
human audition can detect subjective sleepiness through voice.
This result implies that the task is feasible and that the unusable
performances of the state-of-the-art machine learning algorithms
are not a consequence of the difficulty of the task, but the
consequence of another issue. Facing this observation, the
authors of this study have examined the SLEEP corpus and
concluded that there are too many samples per speaker and that
they have been recorded in a too restrained diversity of sleepiness
states. This creates an intrinsic link between the identity of
speakers and their KSS levels, that prevents algorithms from
learning the impact of sleepiness through voice. We hypothesize
that other biases could exist in corpora, maintaining the glass
ceiling of sleepiness through voice performances.

The objective of this study is fourfold. First, we propose a
practical definition of sleepiness and related concepts. Second,
we describe precisely, based on the previous definitions, the
tools used in the corpora to measure sleepiness. Then, we study
extensively the four previously mentioned corpora to highlight
their strengths and weaknesses and identify their sources. Finally,
we propose guidelines to design relevant corpora for sleepiness
detection through voice, based on the previous observations.

1. TASK STATEMENT

Sleepiness is a concept used in multiple studies, but no consensus
exists on what exactly this refers to. If some studies restrict this
term to the subjective feeling of the patient, it is often mixed up
with vigilance or cognitive performance. A better understanding
of these concepts would allow a better choice of sleepiness
label when designing corpora and give a better insight into the
impact of the measured phenomena on voice accordingly. We
rely on two recent studies identifying different tools to measure
and characterize hypersomnolence (30, 31) and to propose the
following practical definitions. The objective of this part is not to
give a definitive model but to sensibilize database designers to the
multiplicity of sleepiness and its measure. All these phenomena
and their measures used in the studied corpora are represented
in Figure 1.

1.1. Speaker State
To begin with, we introduce notions related to the state of the
speaker, i.e., non-chronic phenomena manifesting on durations
about minutes or hours (top of the Figure).

• Arousal could be defined as the sensitivity of the organism
to stimuli (46). It varies with circadian and homeostatic
processes, external and internal stimuli, and the waking
process. It influences both physiological sleepiness and
cognitive performance.

• Physiological sleepiness is defined as the state of the subject on
the continuum between sleep and wakefulness (30). A related
concept is the propensity to sleep, which could be defined as
the momentum to go to the lower part of this continuum.
Physiological sleepiness is influenced by the level of arousal,
but also by the sleep quantity and quality of the subject. It
is usually evaluated by neurophysiological measures (KDT,
Vigall, or MSLT).

• Self-perceived sleepiness—or subjective sleepiness—is the
awareness one has of physiological sleepiness. It is measured
by psychometric scales [Stanford Sleepiness Scale (SSS), KSS].

• Fatigue is defined as a “progressive exhaustion of cognitive
and physical capacities linked with an effort” (31). It is
opposed to fitness, i.e., optimal performances. The state
of the subject on the continuum going from fatigue to
fitness corresponds to its cognitive level of performance. To
simplify, we grouped cognitive performances, attention, and
vigilance under the same concept, sometimes referred to as
behavioral sleepiness (30). This concept is usually estimated by
neuropsychological measures such as Psychomotor Vigilance
Task (PVT), Sustained Attention to Response Task (SART).

• Self-perceived fatigue, for its part, is the awareness one has of
their cognitive performance and is usually measured by the
Visual Analog Scale-Fatigue (VAS-F).

1.2. Speaker Trait–Hypersomnolence
Feeling sleepy is a consequence of the natural course of the
interaction between the homeostatic balance and the circadian
cycle across the day. However, when sleepiness induces a
temporary or chronic alteration of the quality of life, it becomes
a clinical symptom known as hypersomnolence.

If so, sleepiness loses its instantaneous dimension and
becomes a trait of the subject, affecting it for a long period of time
(weeks or months). Hypersomnolence can be divided into three
main categories, each one subdivided into two subcategories.
These are described in Figure 1, in which we also provide
numerous sleepiness-related measures. In the following, we will
focus on the two measures given by the studied corpora.

First, high propensity to sleep, which is a subcategory
of Excessive Daytime Sleepiness (EDS) and studied in the
MSLTc. Second, alteration of the wakefulness implies altered
vigilance, which is measured by the MWT. As they measure
phenomena linked to hypersomnolence—that is a trait symptom
of the subjects—objectively, these measures are sometimes
referred to as “objective long-term sleepiness,” to differentiate
from subjective long-term sleepiness measures and short-term
states measures.

2. SLEEPINESS MEASURES

This part introduces the different sleepiness measures that will be
encountered later on.
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FIGURE 1 | Explicating figure highlighting the links between the commonly blended notions around sleepiness, and their measures. Light green dashed boxes:

neurophysiological measures; Forest green dashed boxes: neuropsychological measures; Yellow dashed boxes: psychometric questionnaires. KDT, Karolinska

Drowsiness Scale (32); VIGALL, Vigilance Algorithm Leipzig (33); MSLT, Multiple Sleep Latency Test (34); PVT, Psychomotor Vigilance Task (35); SART, Sustained

Attention to Response Task (36); SSS, Stanford Sleepiness Scale (37), KSS: Karolinska Sleepiness Scale (32); VAS-F, Visual Analog Scale–Fatigue (38); SIQ, Sleep

Inertia Questionnaire (39); Forced Awakening, Event-related potentials during forced awakening (40); PSG, Polysomnography; ESS, Epworth Sleepiness Scale (41);

MWT, Maintenance of Wakefulness Test (42); THAT, Toronto Hospital Alertness Test (43); FSS, Fatigue Severity Scale (44); FOSQ, Functional Outcomes of Sleep

Questionnaire (45).
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2.1. Subjective Sleepiness and
Hypersomnolence Measures
The following questionnaires aim at estimating the subjective
experience of the subject, being its sleepiness or its
hypersomnolence.

2.1.1. Karolinska Sleepiness Scale
The KSS is a medical subjective questionnaire aiming at
estimating sleepiness (32). Two versions of it exist: a 1–9 version
ranging from “1–Extremely alert” to “9–Very sleepy, great efforts
to keep alert, fighting sleep,” and a 1–10 version adding a
supplementary item labeled as “10–extremely sleepy, cannot stay
awake.” However, these two versions of the questionnaire are
medically similar and can be used interchangeably (47). Not
requiring much time to fill for the validity of a dozen minutes,
the KSS is a reliable and easy way to measure instantaneous
sleepiness (32, 48).

The most common approach found in the literature to
estimate sleepiness from voice is to simplify the problem into
binary classification. To do so, a threshold has to be set to define
the SL and NSL classes. Based on the experiment conducted in
Krajewski et al. (16), the reference threshold proposed during
the IS11 challenge is set to 7.5, the threshold above which no
micro-sleep event has been observed during the vocal tasks that
were monitored by electroencephalography (EEG). Moreover, an
in-depth study about the KSS (48) has concluded that a score
higher than 7 is a relevant measure of altered awakening state
and cognitive performances, i.e., altered vigilance, comforting
this choice.

2.1.2. Epworth Sleepiness Scale
The Epworth Sleepiness Scale (ESS), is an 8 items questionnaire,
each one scoring from 0 to 3 the chance to doze in different
situations, the resulting score being between 0 and 24 (41). This
questionnaire has been elaborated to detect subjective propensity
to sleep. It is widely used, for example, to assess chances to doze
at the wheel (49, 50), or to assess the need for objective measures
such as an MSLT to make a diagnostic for patients affected by a
sleep disorder.

2.2. Objective Excessive Sleepiness
Related Measures
2.2.1. Maintenance of Wakefulness Test
The MWT is the gold standard test to measure objectively
chronic impaired vigilance (51). It measures precisely the ability
to maintain cognitive performances with regards to wakefulness
and arousal, to assess altered wakefulness. Concretely, it consists
of asking the patients to resist sleeping when put to bed, with
subdued light. The test is divided into four periods (10 a.m., 12
p.m., 2 p.m., and 4 p.m.), each separated by a 2 h gap. During the
tests, EEG is recorded and lately scored by specialists, allowing to
assess a sleep onset if one. The time between the test onset when
the patients are put to bed and the lights are switched off, and the
sleep onset (at least one epoch of any sleep stage) is called MWT
sleep latency.

The reference medical measure mentioned in section 1 is the
mean of the MWT sleep latencies across the four sessions. Each
session has a maximal length of 40 min: sessions during which

patients do not have slept are labeled with a MWT sleep latency
of 40 min. Between iterations of the test, the patients have to
stay awake and are free to perform any activity except sport.
They have to stop smoking 30 min before the beginning of each
nap and coffee, tea, or any stimulant substance consumption is
prohibited. To simplify the problem into binary classification, we
have labeled speakers as SL—i.e., having an altered vigilance—
and NSL with a threshold of 19 min on the averaged MWT sleep
latencies for each speaker, with respect to Doghramji et al. (52)
and Sagaspe et al. (53).

2.2.2. Multiple Sleep Latency Test
The MSLT is the gold standard measure of excessive
sleepiness (51). It differs from the previous one in the dimension
it measures: the MSLT is an objective measure of the propensity
to sleep in a context of EDS, a symptom of numerous sleep
disorders. Concretely, the MSLT procedure consists of asking the
patients to take five naps a day, at 9 a.m., 11 a.m., 1 p.m., 3 p.m.,
and 5 p.m. The clinical procedure is the same as the MWT, and
the duration between the beginning of the test and sleep onset is
calledMSLT sleep latency.

Each session has amaximal length of 20min: sessions in which
patients did not sleep are labeled with a 20 min MSLT sleep
latency. On the contrary, patients having fallen asleep extend
their naps until they have slept 15 min. The main difference
between the MSLT and the MWT relies on the instructions,
asking the subjects to “relax and drift off to sleep” whereas in the
MWT they are asked to fight against sleep. Regarding the inter-
sessions, the same instructions are given to the subjects as in the
MWT procedure. More details about the MSLT procedure could
be found in Littner et al. (34).

Relying on the interpretation of EEG by specialists to assess
sleep onset, this medical test has been approved for numerous
pathologies, including narcolepsy. For this latter pathology,
the threshold to discriminate patients affected by narcolepsy
against others is an averaged sleep latency of 8 min (54).
In the same vein as a reference study on this test (51), we
keep this threshold between SL speakers—i.e., patients having a
pathological propensity to sleep—and NSL speakers in this study.

3. CORPORA

This study is about corpora for automatic detection of sleepiness
or excessive sleepiness. To our knowledge, few databases contain
enough data for machine learning purposes (13). We, thus,
decided to focus on four of them. Two of them have been used
for international challenges on sleepiness estimation, and two of
them have been recorded to design a machine algorithm that
will be implemented in a virtual physician. On every one of
them, we have computed statistics of the available data, dividing
the speakers and samples between two classes (SL and NSL),
following the threshold detailed in each part. When this piece of
information is available for both the speakers and the samples, the
two levels are labeled individually: the label of the speakers does
not influence the label of the individual sample. Besides statistics
on the data available on the corpora, we have also computed the
total length of recordings, the mean length of the recordings, and,
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when the IDs of the patients were available, the mean number of
samples per speaker.

3.1. Sleepy Language Corpus
Collected at the Institute of Psychophysiology, Düsseldorf, and
the Institute of Safety Technology, University of Wuppertal,
Germany, the SLC has been released in 2011 during the IS11
paralinguistic challenge (17) and comprises the recordings of
99 German speakers. Before the release of the SLEEP corpus
in 2019, it has been the reference corpus for all the state-of-
the-art systems (28). Even if the corpus is given with a train-
development-test label for machine learning classification, we
have chosen not to take into account this division to focus on
medical information and corpus construction: the division being
given for machine learning algorithm design, that is not the scope
of this study.

3.1.1. Population and Speech Tasks
The SLC is the aggregation of six partial sleep deprivation studies
based on healthy subjects (55). The subjects are drafted from

the general population and screened with the Pittsburgh Sleep
Quality Index—(PSQI) (56)—to ensure that they are not affected
by sleep disorders. Vocal samples were recorded either in a car
environment [precisely described in Golz et al. (57)] or in lecture
rooms. The vocal tasks performed by the subjects can be classified
into five different categories:

• The reading of four simulated pilot-air traffic controller
communication statements in English–labeled Eng. reading.

• The reading of the novel “Die Sonne und der Nordwind,”
the German version of the story “the North Wind and the
Sun”–labeled Northwind;

• The reading of simulated driver assistance system
commands/requests–labeled Reading;

• Spontaneous speech (self-presentation);
• “Normal,” loud and smiling sustained vowel phonation.

Except for the readings of flight control simulations that
are in English, all the other samples are in German. The
distribution of the samples among these classes is represented
in Figure 2A.

FIGURE 2 | (A) Distribution of the speech tasks in the Sleepy Language Corpus (SLC). Eng. Reading: reading of simulated pilot-air traffic controller communication

statements in English; Northwind: German version of the story “the North Wind and the Sun”; Reading: simulated driver assistance system commands/requests; Sp.

Speech: self-presentation (spontaneous speech); Sus. vowel: sustained vowel. n: Number of samples in the category. (B) Duration of the samples depending on the

task. Outliers removed for readability.
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3.1.2. Sleepiness Label (KSS)
In the SLC, data are labeled with the 1–10 scale version of the KSS.
The KSS value proposed in the SLC is slightly different from the
medical version of the questionnaire that has been presented in
section 2.1.1, as it is the average of three different KSS: one filled
by the subjects, and two scored by external annotators, trained
to evaluate sleepiness. Instead of the only subjective evaluation
by the patient himself or herself, the proposed score is a mix
between self-evaluation and behavior estimation of the sleepiness
of the subject.

3.1.3. Metadata
For this corpora, the other information associated with audio
samples and sleepiness labels is the speaker ID and sex. No
supplementary metadata concerning the participants is given.
These data are presented in Table 1.

3.2. SLEEP Corpus
Collected at the same location as the SLC, the SLEEP corpus
has been released in 2019 during the IS19 paralinguistic
challenge (18). The main advantage of this corpus relies on the
great number of speakers (915) that were recorded, producing a
total of 16,464 samples.

3.2.1. Population and Speech Tasks
As no information is given on the recorded subjects, we assume
that they are from the general population and have been screened
with a PSQI. The subjects were recorded during sessions lasting
between 15 min and 1 h. The speech material is divided between
different reading passages and speaking tasks. Spontaneous
speech has been recorded by asking subjects to comment on an
event of their life (for example their last weekend or the best
present they ever got) or to describe a picture. Unfortunately, no
more precise information is given about the tasks in the article
introducing the challenge, and this piece of information is not

TABLE 1 | Global statistics of the Sleepy Language Corpus (SLC).

SPEAKER SCALE (SLC)

Men 43

Women 56

Samples/speaker

(std)

91.8 (146.7)

SL NSL TOTAL sig.

SAMPLES SCALE (SLC)

Total length 6 h 6 min 9 s 15 h 10 min 39 s 21 h 16 min 48 s

Avg. length of a

sample (std)

7.0 s (11.3 s) 9.2 s (17.0 s) 8.15 s (15.3 s) MW: ****

Samples 3,137 5,952 9,089

Men 716 1,974 2,690 χ
2: ****

Women 2,421 3,976 6,397

KSS (std) 8.33 (0.57) 4.35 (1.78) 5.72 (2.41)

SL, Sleepy [Karolinska Sleepiness Scale (KSS)≥ 7.5)]; NSL, Non-Sleepy (KSS< 7.5); sig.,

significance of the statistical test; MW, Mann-Whitney’s U-test. ****p<0.0001.

given in the database. In the same way, as for the SLC, the SLEEP
corpus is given with divisions into training, development, and
test subcorpora. The label annotation not being available in the
test subset (this corpus is used for an international challenge), we
focused on the train and the development subsets.

3.2.2. Sleepiness Measure (KSS)
In the SLEEP corpus, the sleepiness measure is the same as in the
SLC, except that annotations have been made with the 1–9 scale
version of the KSS and that the averaged value is truncated to an
integer.

3.2.3. Metadata
Unfortunately, no metadata is available on this corpus: the only
piece of information given in the corpus are the audio samples
and their annotations with a KSS score. Only age is given by the
article presenting the database (from 12 to 84 years, mean age:
27.6 ± 11 years). The data available on this corpus are presented
in Table 2.

3.3. Maintenance of Wakefulness Test
Corpus
To our knowledge, the MWTc was the first attempt to
elaborate a large voice corpus annotated with objective sleepiness,
measured by EEG. It has been recorded at the Sleep Clinic
of Bordeaux’s University Hospital on 75 patients undertaking
an MWT. Due to numerous biases and incomplete data for a
large number of speakers, this database has not been released.
Nevertheless, it has paved the way for other corpora, such
as the MSLTc, presented in section 3.4. Moreover, it presents
interesting characteristics to nourish the later discussions
about methodology.

3.3.1. Speech Tasks
Before each iteration of the test, the patients are asked to read
a text, that is either a summary of a scientific article or a fable.
The recordings are made with a microphone integrated into a
webcam, at a distance of approximately 30 cm of the mouth of

TABLE 2 | Global statistics of the train and development subsets of the SLEEP

corpus.

SPEAKER SCALE (SLEEP CORPUS)

Men 551

Women 364

SL NSL TOTAL sig.

SAMPLES SCALE (SLEEP CORPUS)

Total length 3 h 17 min 1 s 8 h 24 min 15 s 11 h 41 min 17 s

Avg. Length of

a sample (std.)

3.84 (0.66 s) 3.88 (0.64 s) 3.87 (0.64 s) MW: *

Nb. samples

(train + dev)

3,081 7,811 10,892

  KSS (std) 7.61 (0.66) 4.07 (1.4) 5.07 (2.01)

SL, Sleepy (KSS≥ 7.5); NSL, Non-Sleepy (KSS< 7.5); sig., significance of the statistical

test; MW, Mann-Whitney’s U test. *p<0.05.
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the patient. A brief description of these texts (number of words
andmean duration of the corresponding recordings) is presented
in Table 3A. The speakers of the MWTc present signs of EDS
and are suspected to be affected by pathologies causing a drop
in attention during the day. As data are missing for numerous
patients, statistics made at the sample level are separated from
speakers statistics, the latter being made on the 57 speakers for
whichwe have the four values ofMWT, to give ameaningful value
for the averaged MWT value.

3.3.2. Sleepiness Label (MWT)
The samples of the MWTc are labeled in two different ways:
with the averaged MWT sleep latency of the speaker, for speaker
trait estimation; and with the individual MWT sleep latency, for
speaker state estimation. The individual sleep latencies are not
medically validated but can be an objective marker of short-
term wakefulness variations across the sessions. The independent
samples are labeled into SL and NSL with the same 19 min
threshold as the averaged MWT sleep latency, independently
from the label of the speaker having vocalized it.

3.3.3. Metadata
Supplementary data contains the ID, age, sex, Body mass index
(BMI), diagnostic of speakers for Obstructive Sleep Apnea (OSA),
and the ESS is filled by each patient. The Toronto Hospital
Alertness Test (43) and the Cartoon Faces Sleepiness scale (58)
have also been collected, but due to too few gathered values, they
are not reported in this article. The data available on this corpus
are presented in Table 4.

3.4. Multiple Sleep Latency Test Corpus
The MSLTc has been elaborated following the MWTc. Also
recorded at the Sleep Clinic of the Bordeaux’s University

TABLE 3 | Brief description of the texts read by the patients of the Maintenance of

Wakefulness Test Corpus (MWTc) (A) and Multiple Sleep Latency Test corpus

(MSLTc) (B) corpora.

Session Text Length (Nb. words) Mean length±std

(A) MWTc

1 Rats holding court 196 words 75.5 ± 15.0 s

2 Why you should

not drink sea

water to stay

hydrated

282 words 112.0 ± 18.4 s

3 Providential

glasses

163 words 60.1 ± 12.0 s

4 Science gives you

an excellent

reason to eat

chocolate !

278 words 123.5 ± 26.2 s

(B) MSLTc

1 Text 1 231 words 77.9 ± 11.6 s

2 Text 2 235 words 79.3 ± 12.2 s

3 Text 3 228 words 72.7 ± 10.8 s

4 Text 4 221 words 77.2 ± 12.2 s

5 Text 5 257 words 80.6 ± 12.4 s

Hospital, this corpus follows the same goal as the MWTc,
i.e., linking objective measures of hypersomnolence and
vocal recordings.

3.4.1. Population and Speech Tasks
The methodology to collect the data of the MSLTc is thoroughly
described in Martin et al. (13). It consists of the recordings of
106 patients taking a medical test for diagnosis or follow-up
at the Sleep Clinic of the Bordeaux University Hospital. This
test is a MSLT, consisting of asking the patient to take a nap
five times a day. Before each nap, the subjects are recorded
reading a text of approximately 200 words, and fill a KSS. The
subjects are generally sat down at their desks or on their bed.
No recording has been done with lying down patients. The
read texts are extracts from “Le petit prince” of Antoine de
Saint-Exupéry. Basic characteristics of these texts (number of
words and mean duration of the corresponding recordings) are
presented in Table 3B.

3.4.2. Sleepiness Label (MSLT)
In the same way, as in the MWTc, samples are labeled with
both averaged MSLT sleep latency and individual sleep latencies.
The same threshold of 8 min is used to binarize averaged MSLT
sleep latencies and individual sleep latencies independently. The
individual MSLT sleep latencies are not medically validated but

TABLE 4 | Global statistic of the MWTc on the speakers and the samples levels.

SL NSL TOTAL sig.

SPEAKERS SCALE (MWTc)

Spk. 11 46 57

Age (std)

years

45.9 (15.6) 46.2 (15.9) 46.14 (15.72) MW: n.s.

BMI (std)

kg/m2

30.2 (4.4) 18.5 (13.0) 20.8 (12.4) MW: **

OSA 9 25 34 χ
2: n.s.

W.o. OSA 2 20 22

Men 10 29 39 χ
2: n.s.

Women 1 17 18

MWT (std)

minutes

10.36 (4.9) 34.1 (7.21) 29.53 (11.64)

ESS (std) 13.44 (4.53) 10.93 (5.24) 11.38 (5.17) MW: n.s.

SAMPLES SCALE (MWTc)

Total length 2 h 04 min 14 s 5 h 08 min 36 s 7 h 12 min 51 s

Avg. Length

(std)

1 min 33 s

(31.9 s)

1 min 30 s

(31.3 s)

1 min 32 s

(31.7 s)

MW: n.s.

Samples 83 199 282

Men 63 126 189 χ
2: n.s.

Women 20 73 93

MWT (std)

minutes

6.37 (4.12) 38.52 (4.37) 29.06 (15.3)

SL: Sleepy (avg. MWT ≤ 19 min and MWT ≤ 19 min respectively for speaker and sample

levels). NSL, Non-Sleepy; sig., significance of the statistical test; MW, Mann-Whitney’s U

test; n.s., not significant, **p<0.01.
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can be an objective marker of short-term propensity to sleep
across the naps.

3.4.3. Metadata
This corpus contains numerous Supplementary Materials about
the speakers: physical measures (height, weight, BMI, neck size),
age, sex, cigarettes and alcohol dependency, fatigue, insomnia,
and multiple sleepiness-related questionnaires.

In this study, we will restrain to measures that can be
compared with the other corpora: sleepiness measures, age, sex,
BMI, ESS, and KSS distribution are presented in Table 5. To our
knowledge, this corpus is also the first to collect the pathologies of
the patients whose voices are recorded, represented in Figure 3A.

4. COMPARISON BETWEEN CORPORA

In the following, Mann-Whitney statistical tests will be referred
to as MW.

4.1. Speech Tasks and Audio Samples
Measures
4.1.1. Length Depending on the Sleepiness Class
On both the SLC and SLEEP corpora, the NSL
samples are significantly longer than the SL ones
(MW, SLC: p = 6.5× 10−10, SLEEP: p = 0.03). On the

TABLE 5 | Global statistics of the MSLTc on the speaker and the sample levels.

SL NSL TOTAL sig.

SPEAKERS SCALE (MSLTc)

Spk. 28 78 106

Age (std)

years

33.5 (15.9) 36.7 (13.5) 35.9 (14.2) MW: n.s.

BMI (std)

kg/m2

24.1 (4.7) 24.3 (5.6) 24.2 (5.3) MW: n.s.

Men 15 28 43 χ
2: n.s.

Women 13 50 63

avg. MSLT

(std)

minutes

4.84 (2.05) 13.53 (3.22) 11.23 (4.85)

avg. KSS (std) 4.37 (1.22) 4.47 (1.28) 4.45 (1.26) MW: n.s.

ESS (std) 15.91 (5.68) 14.19 (4.53) 14.65 (4.89) MW: *

SAMPLES SCALE (MSLTc)

Total length 4 h 30 min 9 s 6 h 54 min 44 s 11 h 24 min 54 s

  Avg. length

of a sample

(std)

1 min 17 s

(12.0 s)

1 min 17 s

(12.2 s)

1 min 17 s

(12.1 s)

MW: n.s.

Samples 210 320 530

Men 100 115 215 χ
2: **

Women 110 205 315

MSLT (std)

minutes

4.55 (2.21) 15.62 (4.28) 11.23 (6.51)

KSS (std) 4.58 (1.89) 4.36 (1.92) 4.45 (1.91) MW: n.s.

SL, Sleepy (avg. MSLT ≤ 8 min and MSLT ≤ 8 min respectively for speaker and sample

levels); NSL, Non-Sleepy; sig., significance of the statistical test; MW, Mann-Whitney’s

U-est; n.s., not significant; *p<0.05, **p<0.01.

contrary, on the MSLT and MWT corpora, the length of the
samples is the same in the two sleepiness classes.

4.1.2. Length Depending on the Task/Iteration
The length of the samples depending on the task on the SLC
is represented in Figure 2B. Except for samples containing
spontaneous speech, the majority of samples are shorter than 10
s, because of the vast representation of reading and sustained
vowels samples. Some reading tasks are longer than others,
with English language readings being on average 8.7 s long and
Northwind readings being at least two times as long, with a mean
duration of 36.6 s.

The length of the samples depending on the read text (and
the iteration of the test) of the MWTc and MSLTc corpora are
represented in Figures 4A,B. On the MSLTc, all the recordings
have similar sizes (approximately 75 s) except for the third one,
which is shorter than all the others. Already studied in Martin
et al. (13), this observation is not only due to a difference of
lengths of the texts, but it has been linked on this iteration to a
diminution of the KSS—i.e., an augmentation of the alertness of
the speakers.

On the contrary, on the MWT database, all the sessions have
different lengths. This difference mainly comes from the fact that
there are two types of texts in this database: fables during the first
and third iterations, and popular science articles for the second
and fourth iterations. These texts have not the same number of
words: fables have a respective length of 187 words and 161 words
for the first and third iteration, whereas popular science articles
have a respective length of 269 and 286 words.

4.1.3. Number of Samples per Speaker
On the SLC, depending on the sub-experiment they took part in,
the subjects were recorded between 3 and 909 times, showing an
important disparity. In Figure 5A, five speakers separate from
the main distribution: the statistics concerning this metric have
been re-computed without these five outliers, changing the mean
value from 91 samples to 61 samples per subject. The resulting
histogram is represented in Figure 5B.

In the SLEEP corpus, the recording sessions have a length
between 15 min and 1 h: the number of samples per speaker
could be unbalanced when comparing speakers being recorded
during a session of 15 min and those who are recorded during a
1-h session.

Finally, in the MSLT and MWT corpora, the number of
samples per speaker is set by the iterations of the medical test.

4.2. Medical Labels
4.2.1. MWT and MSLT Sleep Latencies
On the MWT and MSLT iteration values, a sleep latency
saturation is observed for patients that do not fall asleep and
that are assigned to the maximal value of the test (40 min for
the MWT and 20 min for the MSLT). We employ in this study
the term “saturation” as these values not only unbalance the
global distributions (cf Figures 6A,B), but they also represent an
important part of the two corpora. Indeed, they represent 62 and
24% of the samples in the MWTc and the MSLTc, respectively.
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FIGURE 3 | (A) Diagnosed pathology for the patients of the Multiple Sleep Latency Test corpus (MSLTc). H. (Unspecified): Non-specified hypersomnia

(complementary exams needed); H. ADHD: Hypersomnia in an attention-deficit hyperactivity disorder context; H. Neuro: Neurological hypersomnia; H. OSA:

Hypersomnia with Obstructive Sleep Apnea; H. Psy. Troubles: Hypersomnia accompanied by psychiatric troubles; Idiopathic H.: Idiopathic Hypersomnia; N. T1: Type

1 Narcolepsy; N. T1+OSA: Type 1 Narcolepsy + OSA; N. T2: Type 2 Narcolepsy; Not diag.: Not yet diagnosed. (B) Averaged MSLT sleep latencies depending on the

pathology. N: Narcolepsy. Mann-Whitney’s U-test: *p<0.05; **p<0.01; ***p<0.001.

4.2.2. MWT and MSLT Averaged Sleep Latency
The averaged sleep latencies of the MWT and MSLT are
represented in Figures 6C,D. On the MWTc, the prominence
of the iteration sleep latencies labeled as 40 min seems to
have a consequent impact on the distribution of the averaged
sleep latencies, which has the same saturation on the 40 min
values. On the contrary, on the MSLTc, few speakers have all
their sleep latencies equal to 20 min, leading to a smoothing
of the averaged MSLT sleep latencies and the disappearance of
the saturation.

4.2.3. Karolinska Sleepiness Scale
The KSS on the SLC, SLEEP corpus, and MSLTc are, respectively,
plotted in Figures 7A–C. These three measures are different: on

the SLC, it is the average of three 1–10 scale KSS questionnaires,
one filled by the patient, the other two being filled by external
annotators; on the SLEEP corpus it is the same procedure with
the 1–9 scale KSS with a truncated mean; finally, on the MSLTc, a
1–9 scale KSS is filled only by the patient.

On the SLC, the speakers outlying the number of samples per
speaker also influence the KSS distribution. Indeed, the difference
observed on the KSS distribution of the whole corpus with and
without these outliers, represented in Figure 7D, is significant
(MW, p < 10−13). This difference leads to an important
change in the balance between SL and NSL: with the outliers,
SL samples represent 34% of the 9,089 samples; whereas, without
them, this ratio falls to 27.5% (1,589 samples) of the 5,776 total
remaining samples.
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FIGURE 4 | (A) Length of the samples depending on the iterations of the Maintenance of Wakefulness Test (MWT). Significance masked for readability. (B) Length of

the samples depending on the iterations of the Multiple Sleep Latency Test (MSLT). Mann-Whitney’s U-test: **p<0.01; ***p<0.001; ****p<0.0001.

FIGURE 5 | Histogram of the number of samples per speaker on the SLC with (A) and without (B) outliers.

The distribution of the KSS on the MSLTc differs from the
two other corpora by the over-representation of the uneven
scores compared with the even ones. The item “3–Alert” is
the most represented, followed by “5–neither alert nor sleepy”
and “7–sleepy, but no effort to stay awake.” Contrary to the
exclusion of the speakers having been recorded too many times
on the SLC, the exclusion of the samples corresponding to
the 20 min saturation value on the MSLTc does not have any
influence on the KSS distribution. Indeed, the two distributions
(with and without these samples) plotted in Figure 7E do not
show major differences, which is confirmed by a statistical test
(MW: p = 0.91).

4.2.4. Correlation Between KSS and MSLT
We have first hypothesized that the absence of correlation
between the MSLT sleep latencies and the KSS (Spearman’s

ρ between KSS and MSLT iteration value, with saturation:
ρ = −0.034) were due to the saturation. This hypothesis is
contradicted by the negligible augmentation of the correlation
factor when keeping out the samples causing it (ρ = −0.042).
Therefore, there seems to be an intrinsic difference between the
MSLT iteration value taken individually and the KSS to evaluate
instantaneous sleepiness, which is discussed in section 5.5.

4.2.5. Epworth Sleepiness Scale
On the MWTc, the ESS distribution is almost significantly
different across the two sleepiness categories (MW, p = 0.067).
On the MSLTc, it differs from the SL class compared with the
NSL class (MW, p = 0.04). Moreover, this metric is almost
anti-correlated with the averaged MSLT value (Spearman’s ρ =

−0.186, p = 0.057): it is in line with the fact that ESS measures in
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FIGURE 6 | Histogram of the objective measures of the short-term (A,B) and the long-term (C,D) sleepiness on the MWTc and MSLTc. MWT, sleep latency to the

Maintenance of Wakefulness Test; MSLT, sleep latency to the Multiple Sleep Latency Test; avg. MWT, average sleep latency across the four sessions of the

Maintenance of Wakefulness Test; avg. MSLT, average sleep latency across the five naps of the Multiple Sleep Latency Test; n, number of samples corresponding to

saturation.

a subjective way the same phenomena as MSLT (high propensity
to sleep, as shown in Figure 1).

4.3. Metadata
4.3.1. Sex
In the SLC, the ratio between men and women is almost balanced
on the speaker scale, but an important significant imbalance is
observed between samples containing the voice of women and
men (χ2, p < 2.2 × 10−16). This imbalance is mainly due to
the few speakers that produced a lot of samples (referred to
before as outliers): without these five speakers, the samples are
almost balanced (3,084 performed byWomen and 2,690 byMen)
and their distribution among SL and NSL classes is balanced
(χ2, p = 0.16).

In the MWTc, the 57 speakers are distributed among 39
men and 18 women. The distribution of sex between sleepy
and non-sleepy speakers seems to be imbalanced, but a χ

2 test
processed on this distribution shows independence between sex

and sleepiness class on both the speaker scale (χ2, p = 0.15) and
the sample level (χ2, p = 0.056).

Contrary to the MWTc, there is an imbalance of sex across the
SL and NSL classes in the MSLTc. It is not proven significant at
the speaker level (χ2, p = 0.16), but it is significant at the sample
level (χ2, p = 9.6× 10−3).

4.3.2. Age
The speakers of theMWTc (mean age 46.3 years) and those of the
MSLTc (mean age 35.9 years) are older than the speakers of the
SLC or SLEEP corpus, with respective mean ages of 24.9 and 27.6
years. In the two first corpora, only few differences are observed
between SL and NSL patients (MW, p = 0.93 for the MWTc,
p = 0.96 for the MSLTc).

Their differences with the SLEEP and the SLC can be
explained by the fact that the MSLT and MWT corpora do not
contain recordings from juvenile patients, and that the recorded
patients are drafted from a pathological population in which the
prevalence of the pathology is linked with age.
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FIGURE 7 | (A–C) KSS distribution on the SLC, the SLEEP corpus, and the MSLTc. (D) KSS distribution of the outliers on the SLC and their impact on the distribution

of the whole SLC. (E) Influence of the saturation on the KSS in the MSLTc.

4.3.3. Body Mass Index
The significant imbalance of BMI observed between SL and NSL
classes in the MWTc corpus (MW, p = 0.003) may not be
exclusively the consequence of the unbalance between men and
women in this corpus. Indeed, in the general French population,
the average BMI is 25.8 kg/m2 with only a slight difference
between men (25.8 kg/m2) and women (25.7 kg/m2) (59). The
values of these general populations are higher than the observed
values in the MWTc.

On the contrary, on the MSLTc, the BMI is closer to the
precedent normative values with a mean BMI of 24.2 kg/m2, with
no significant differences between the SL and the NSL patients
(MW, p = 0.89).

4.3.4. Pathologies
In the MWTc, the only available medical diagnosis is OSA that is
balanced between the two sleepiness classes (χ2, p = 0.21). This
factor is still to take into account when estimating the sleepiness
from voice as these patients could have a different shape of the
superior airways.

In the MSLTc, the distribution of the averaged MSLT sleep
latencies depending on the diagnosed pathologies is plotted in
Figure 3B. Merging the classes “NT1” and “NT2” into a unique

“Narcolepsy” category, the patients affected by this disease have
significantly lower averaged sleep latency in the MSLT than
almost all the other subjects. Regarding the other categories, all
the other patients have equivalent averaged sleep latency.

5. GUIDELINES

The following sections discuss the different questions that any
corpus designer could ask when designing a database, aiming at
one or the other paradigm.

5.1. Choice of the Subjects
5.1.1. Healthy Subjects, General Population, Patients
When designing a corpus, one of the first questions that are
raised is the population to be recorded. Regarding the tasks of
estimating sleepiness or excessive daytime sleepiness through
voice, two populations should be considered: on the one hand,
included subjects should be patients when the task is the follow-
up of patients; on the other hand, subjects should be picked
from the general population when the task is the estimation of
a “general” sleepiness state. On the MSLT andMWT corpora, the
recorded subjects are patients of the Sleep Clinic of Bordeaux,
affected by excessive sleepiness.
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On the SLC and SLEEP corpus, the recorded speakers
are drafted from the general population and screened with
a PSQI questionnaire to ensure they are healthy regarding
sleep disorders. The difference between general and healthy
populations is a key point in this study: one can be drafted from
the general population and suffering from undiagnosed sleep
diseases. However, the notion of “healthy subject” does not stop
at the primary outcome of a study: ideally, they should be healthy
(i.e., negative to a diagnostic—or a screening questionnaire) not
only regarding sleep disorders but also regarding all the other
cofactors that could influence the measured phenomena, such as
anxiety, depression, and fatigue.

5.1.2. Balancing the Dataset
Balancing the dataset is both important for ethical reasons (60)
but also to ensure that vocal characteristics or measured
phenomena are independent of the characteristics of subjects
such as sex, age, and BMI. However, balancing all these
characteristics is technically impossible. To shrug these biases
off databases, we propose two directions. First, the inclusion
of these metadata in databases, such as the machine learning
engineers using them could take them into account. Second, a
difference should be made depending on the objective of the
study. To study a phenomenon in the general population, the
best practice is to include enough subjects so that these biases
might be randomized. On the contrary, when working with a
population affected by a disorder having a greater prevalence in
a specific subset of the population, restraining to this subgroup
allow a good generalization of the concepts (61).

5.1.3. Reading Level and Oral Communication
In the case of reading text, reading them out loud is a
process involving multiple neuro-lingual and neuro-motor
processes (62), that can be affected by both sleepiness and
the reading capacities of the reader. To ensure that all the
information extracted from the recordings to design algorithms
is impacted only by the neuro-psychiatric measure (sleepiness
in this case) and not by the speaker reading capacities,
corpora designers should exclude the speakers presenting reading
troubles, or that do not have sufficient reading abilities. This is
the case, to our knowledge, of only one previous work (15) that
has paid attention to selecting the speakers based on their reading
level in collaboration with speech therapists.

The same precaution should apply when dealing with
spontaneous speech, ensuring that the hesitations and all the
other extracted vocal features are linked to sleepiness, not by the
emotional state or pathology of the speaker. For example, patients
affected by dysphonia, anxiety, or vocal tract problems should
have a voice different from the other speakers of the database,
not based on their sleepiness but on other pathologies that affect
their vocal production. While a lot of attention is paid to the
medical condition of speakers in corpora, we encourage database
designers to take into account this key point in the future.

5.1.4. Conclusions and Recommendations for Choice

of Subjects
• Choice of the population

– For following-up patients, a pathological population with
controlled comorbidities is required;

– Recording healthy subjects seem more fitted for sleepiness
detection in the general population, but they require more
exigent inclusion and exclusion criteria than the general
population. This could make the recruitment of subjects
difficult but avoids interference between the measured
phenomena and comorbidities.

• Speakers characteristics

– When working on the general population, the number of
subjects should be high enough to randomize the effect of
co-factors.

– When working with patients, they should comply with the
specificity of the pathologies.

– In both cases, co-factors should be included in the
databases.

• Disorders affecting reading or voicing capacities

– Subjects should not be affected by pathologies interfering
with their abilities to read a text or talk naturally.

5.2. Design of the Recording Session(s)
When the population to be included in the study has been
selected, multiple recording configurations are still possible.

5.2.1. Equality of Recordings per Speaker
First, the best practice when constructing a database is to ensure
that the same number of samples is recorded for each speaker,
in the same conditions. As seen in section 4.1.3, all the speakers
of the SLC have not been recorded the same number of times.
This results in substantial changes in KSS and sex distribution
between the two sleepiness classes. In this corpus, sex and KSS
were the only available data about the speakers, but the over-
representation of these speakers may also have created biases on
unmeasured data, such as age, and BMI.

5.2.2. Number of Recordings per Speaker
We have argued that the best practice is to record each speaker
the same number of times, but how many recordings per speaker
have to be recorded?

A recording of the voice necessarily contains both the
expressions of the traits of the speaker (sex, age, long-term
sleepiness, ...) and those of the state of the speaker (mood,
fatigue, short-term sleepiness, circadian cycle, ...). Consequently,
isolating one phenomenon expression from the other requires
either measuring both and taking into account the undesired
one when estimating the interesting one; or randomizing the
undesired factor. Both strategies imply multiple measures.

In the MSLT and the MWT procedures, iteration sleep
latencies are measured at different standardized times before
being averaged, to estimate the traits of speakers independently
from their short-term variations states: the state of the speaker
varies across the recordings, whereas its traits remain invariant.

Regarding speaker state estimation, the same procedure has
been set up in the MSLTc with the collection of the KSS: regularly
timed measures allow to estimate the traits of the speaker that
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remain constant before keeping variations from these to estimate
speaker states. Collecting regularly timed measures of the KSS
has also been set up in the car simulator part of the SLC (57):
between 45 min driving sessions, the subjects performed various
vocal tasks and filled a KSS.

However, except when designing the collection of data upon
another study, it seems complicated to record subjects along
long periods of time needed to record subjects in different states.
To avoid the creation of an intrinsic link between the speaker
identity and the labels, due to the over-representation of speakers
by samples with few state variations, Huckvale et al. (29) suggests
investing efforts on recording numerous speakers fewer times.
This randomizes speaker traits and allows a correct estimation
of speaker states, independently from the characteristics of the
speaker. However, the drawback of this method is that a sufficient
amount of subjects is required to randomize the characteristics of
the speakers, which could be difficult regarding the inclusion and
exclusion criteria on the subjects (cf section 5.1).

5.2.3. Recording Session Length
In the SLEEP corpus, the recording sessions have a length
between 15 min and 1 h but the samples have a maximum length
of 5 s: the recordings have been sliced to augment the number of
samples in the corpus. This has some advantages, such as making
the most of the presence of each speaker by recording them on
the longest possible sessions or having large corpora including
only a few speakers. But doing so has mainly three drawbacks.

First, psychometric questionnaires which are used to label
data are designed to embrace a state during a specific period.
As the state of the speaker may vary quickly, it is possible to
make multiple measures of the same speaker presenting different
states in a small period of time. However, regarding the KSS, this
questionnaire is not originally designed and medically validated
for repeated measures (63). Reiterating the filling of a KSS
questionnaire after less than 10 min could give different scores,
not because of changes in the sleepiness of the speaker but only
because the questionnaire has not been designed and validated
to do so. One filling of a KSS by an interval of 10 min should be
sufficient to assess the sleepiness state on the whole temporal slice
and to collect enough data per session.

Second, the number of samples would not be the same for all
the speakers, over-representing some speakers and other biases
linked to the recording session. Moreover, it goes in the opposite
direction of the discussion in the previous paragraph. Finally,
recording sessions of this length induce both vocal fatigue (64)
and cognitive fatigue that could affect both voice production and
sleepiness estimation. Even if slicing samples can be done—with
some precaution such as the minimum length to slice, discussed
in section 5.4—the length of the session should be kept reasonable
and equal among the participants.

5.2.4. Recordings Location
After having discussed the design of the recording sessions,
the question of the location of the recording is still to be
answered. The literature mentions three different recording set-
up: in a hospital room (13), in a car simulator (57), and in
a quiet room (18). Two methodological choices are opposing.

First, recording in condition as near as possible from the final
application, such as the driving simulator for example. However,
this recording environment creates a bias on the feelings of the
patients, limiting the exploitation of the study.

On the other side, logistic facilities tend to favor hospital
conditions. Admittedly, they can create stressful conditions for
people not being used to being hospitalized (65). But they also
offer easy access to EEG, the only way to measure objective
sleepiness, and perfectly controlled conditions: the participants
are treated equally, have their meal at the same time, and
their sleep the night before the medical test is controlled.
All these advantages tend to encourage recordings in hospital
conditions in the first place, before extending the problem to
ecological conditions.

5.2.5. Recording Quality
The quality of the recordings can be affected by multiple sources
of noise in both realistic (noise due to the car simulator or from
car traffic for example) and hospital conditions, even in sleep
clinics (due to ventilation noise for example). As a consequence,
a quiet and non-reverberating room should be favored.

The other aspect impacting the quality of the recordings
is the chosen recording device, which takes over the previous
dichotomy between realism and control over the collected data.
While an increasing number of studies are based on smartphones
recordings [e.g., Huang et al. (66)], it could be feared that acoustic
features extracted from these recordings may suffer from the low
recording quality of these devices.

A recent study did, however, not find differences in
performance on Parkinson’s disease identification from voice,
comparing high-quality recording and smartphone data (67).
Moreover, the features extracted from the speech are not limited
to acoustic parameters: diverse linguistic features also give useful
hints on diverse pathologies (15, 68) and are less affected by the
quality of the recording than the acoustic ones.

5.2.6. Conclusion and Recommendations on the

Recording Session
• Multiplying the measure

– Either multiplying the measures of the same speaker in
different states for speaker trait estimation, or multiplying
the number of recorded subjects to randomize the traits of
the speaker for speaker state estimation.

• Length of the recording session

– For both biases and fatigue reasons, we encourage the
standardization and the limitation of the length of the
recording session.

• Recordings location

– We encourage to favor in hospital rooms first, then
to extend to location as close as possible to the final
application.

• Recordings quality
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– We encourage to process the recordings in calm and non-
reverberating environments,

– The choice between smartphone or high-quality
microphone recordings depends on the features used
in the study and the need for realism or at-home
deployment. However, it is still possible to deteriorate
audio recorded from a high-quality microphone to make
it imitate smartphone recordings if needed, while the
opposite is not possible.

5.3. Material to Record Voice
Having chosen the temporal sequence of the recording, the task
on which recording speech has to be chosen.

5.3.1. Spontaneous Speech vs. Reading
Being during the interaction with a virtual or real physician
or during a telephonic call, spontaneous speech can be easily
recorded in ecological conditions. As a consequence, designing
a corpus based on spontaneous speech seems the most natural
way to record the voice of the participants for ecological usage.
Nevertheless, this paradigm suffers from three main drawbacks.
First, when elaborating machine learning algorithms, the voice
of the subject has to be the least possible polluted by his
or her emotional state, to prevent the system to discriminate
emotions instead of sleepiness states. Open questions implying
memories or the emotions induced by a painting—as is the case
in the SLEEP corpus—change the emotional state of the speaker.
Second, as stated in a previous study (69), this paradigm suffers
another disadvantage: if the questions are identical, the samples
have neither the same vocalic content nor the same approximate
length. This prevents relevant comparison between samples and
creates biases between them. Finally, this paradigm does not
guarantee a minimal length of the samples: on our first attempts
to design such a corpus, we have faced patients that answered the
quickest possible way to our questions, leading to very short vocal
samples, useless to make a corpus.

On the other hand, spontaneous speech benefits from its
proximity to ecological conditions and the analysis of the
content of speech. Indeed, a recent study in depression detection
has linked the augmentation of pronouns and negatively
valenced language with the mood of patients affected by bipolar
disorders, making it possible to detect through voice (70).
Such a system could be developed for sleepiness and excessive
sleepiness estimation with the detection of words such as “tired,”
“exhausted,” and “sleepy.”

Reading tasks ensure that recordings have the same sizes, the
same content and that they are less polluted by emotions. This
task seems difficult to implement in an ecological condition, but
it allows to study the voice of the subjects in a perfectly controlled
environment and with comparable contents, before extending
the scope to more “natural” speaking. Moreover, it allows the
comparison with a reference medium, to design new biomarkers
such as reading errors for example inMartin et al. (15). Finally, on
a preliminary study of the MWTc based on spontaneous speech,
sleepy patients spoke little if ever: reading texts guarantee the
recording of a minimum speech content length.

5.3.2. Performances Depending on the Speech

Material on Depression Classification
To our knowledge, no comparative study on the topic of
sleepiness has already been made. On the contrary, in the
field of depression detection through voice, a previous study
studied both reading speech (the Grandfather Passage) and
spontaneous speech (patients telling how they feel emotionally
and physically) to estimate depression in patients under
treatments (71). They reported an accuracy of 64.3% using
reading speech against 71.4% for spontaneous speech, seeming
to encourage the use of spontaneous speech when designing
such corpora. On the contrary, another study (72) based on
the reading of the fable “Northwind and the sun,” and a 5–
10 min interview for the spontaneous speech, has reported
similar performances in the two modalities (83 and 85% for
reading and spontaneous speech, respectively), encouraging
equally both practices.

Moreover, these two modalities were detected with different
vocal features, namely prosody features for spontaneous speech
and formant-based features for readings. This is in line with
the observation made in Martin et al. (21) on the read parts
of the SLC: the features have to be adapted to the type of
recorded vocal production. In conclusion, both paradigms have
benefits and harms: while reading texts keeps the advantage to
guarantee a minimum and comparable vocal production along
with the recording sessions, spontaneous speech benefits from its
closeness with ecological conditions.

5.3.3. Choice of the Text
This part discusses the choice of such a text. Indeed, to allow
speaker state or trait estimation through voice, the chosen texts
have to comply with the following constraints.

The chosen texts have to be different for each session of the
recordings. Indeed, in the case of the MSLT or the MWT, if the
text is the same for all the iterations, there would be both obvious
learning and fatigue effects, due to the repeat. However, the texts
have to be as similar as possible to keep away a bias due to the
type of the text.

First, one of the common points they should have is their
length: having different lengths, like it is the case in the
MWTc, could lead to bias in terms of fatigue level and time to
maintain the needed attention necessary to read. Second, in the
MWTc, the content is completely different from one iteration to
another, creating biases of emotions that can later pollute the
recordings. Indeed, one does not feel the same reading a fable
or a vulgarization article: this emotional state, combined with
the difference of size, has—partly—prevented us from using the
MWTc in sleepiness estimation through voice.

Moreover, the content should not interfere with the sleepiness
measure: a stimulating or boring text could change the level
of sleepiness of the speaker and could change the result of the
KSS, the MWT, or the MSLT sleep latency for example. As
a consequence, the chosen texts have to present contents that
induce the same emotional state for the reader, both for the vocal
production and the medical test.

Besides length and emotional content, other parameters are to
be taken into account. For example, the two fables read in the
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MWTc and the five texts read in the MSLTc are not equivalent
as in both cases, some of them have dialogues whereas others
do not: since dialogues need a different level of visuo-attentional
competencies, the texts have different difficulties, resulting in
different readings. To avoid such disparities, we recommend
choosing texts without dialogues to ensure that all the patients
are on equal terms concerning this point.

Likewise, the MSLT is based on Le Petit Prince as it has
simple grammar and vocabulary, to prevent the reading level
of the speakers from interfering with the detection of sleepiness
through the reading: this practice should be generalized to every
corpus based on reading texts. To conclude, we do not see interest
in proposing a supplementary difficulty to speakers by proposing
them texts that are not in their native language: the chosen texts
should be in the language spoken by the participant, i.e., the main
language of the country in which the study is conducted.

5.3.4. Conclusion and Recommendations on the

Speech Task
• Recording material

– Read speech allows to control the content of the recordings,
but is away from ecological conditions;

– Spontaneous speech results in different recording contents
but allows analysis of speech.

• Texts content

– Texts should be as similar as possible on emotional and
phonetic aspects, with simple grammar and vocabulary.

5.4. Length of the Audio Samples
Facing the diversity of length of samples on the four corpora, we
investigated this crucial point. Indeed, answering this question
allows at the same time to design the vocal task (i.e., length
of the text or minimum length of the answer of spontaneous
speech), and to choose the length of the chunks when slicing
samples to augment data. In the SLEEP corpus, all the samples
have a length under 5 s, with a mean of 3.87 s. Indeed, these
recordings come from longer audio samples that were sliced
into chunks of approximately 4 s. The same practice is usually
employed in systems designed for depression (9, 73), in which
this sample length has been demonstrated to maximize the
accuracy of the employed dataset. Another study on the same
task uses chunks of 10 s (74), but the goal behind this choice
is not clearly expressed. However, sleepiness detection through
voice is a completely different task and sleepiness could manifest
differently in voice compared with depression: the question of the
length of the samples allowing sleepiness detection still needs to
be answered.

5.4.1. Previous Studies
To answer this thorny question, we have already proposed two
approaches in the previous study. In Martin et al. (21), after
having trained a classifier on the SLC with custom-designed
features that achieved performances in the same order as the
state of the art, we studied the performances during the inference
depending on the length of the samples. The best performances
were obtained with samples longer than 8 s. We first proposed

this value as the minimum length for the samples. In Martin
et al. (14), we sliced the audio samples into increasing-sized
chunks and computed the cosine similarity between the features
vector of a sample of length n seconds and the same sample of
length n-1 s. This led to the conclusion that the minimum length
for the features to converge (i.e., the cosine similarity reaches 0.95
and stays above this limit) was 8 s. To do so, we have used both
a custom set of features and the openSMILE IS11 features set,
which is the reference set of features in the literature (17). The
main bias of this technique is that all the features do not have the
same scales, and in the end, only the biggest features direct the
convergence of the cosine similarity. To overcome this obstacle,
we propose in this study a complementary measure, based on
statistical tests.

5.4.2. Method
Our technique is summarized in Figure 8A. First, all the audio
samples are sliced into audio sub-samples of length 1, 2, 3 s, etc.
On each of these sub-samples, the state-of-the-art IS11 features
are extracted with the openSMILE toolbox (75). Then, for each
length n s, for each feature i, we process a Mann-Whitney test
between the features i extracted from samples having a length of
n s and the features i extracted from samples having a length of
n + 1 s. Applying this procedure for all the 4,368 features, we
compute the ratio of features for which the distribution for n s
and n + 1 s are significantly different (p < 0.05). When it is the
case, a supplementary 1-s length to the audio sample results in
significant variations of the features, meaning that they did not
reach convergence: increasing the length of the sample still brings
new information.

5.4.3. Results
Doing so on the four corpora, we obtain the Figure 8B. The
SLEEP corpus contains samples lasting less than 5 s, the
corresponding graph ends at 5 s with more than 75% of the IS 11
features not having converged. As a consequence, we did not plot
it in the graph. Concerning the three other corpora, a length of 20
s leads to ratios less than 15% of features not having converged.
According to this metric, the 8 s duration that we previously set
up leads to more than 25% of features not having converged yet
on the MSLT database and the SLC, and more than 15% for the
MWT database: regarding this new metric, an 8 s threshold does
not seem enough to guarantee the stationarity of the features. As
a consequence, we recommend a minimum length of 20 s.

Taking into account that the IS11 features include complex
features comprising double derivatives, these peculiar features
need time to be correctly computed and to converge. Although,
even if taking into account these features, we encourage machine
learning system designers to test if the features fit the sample
length of the database they are using. Being aware that the
convergence of the features is not directly connected to the
sleepiness of the speaker, we assume that regardless of what
is to be detected through voice, working with features that
would change if the audio sample could have been longer
is perilous. Indeed, we have observed the same results for
other sets of features available in openSMILE, namely IS09 for
emotion recognition, IS10 for depression classification, IS12 for
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FIGURE 8 | (A) Flowchart of the system aiming at estimating the length of minimal audio samples for the computed features to converge. (B) The ratio of features

having converged depending on the length of the samples, on the SLC, MWTc, and MSLTc. MW, Mann-Whitney’s U.

speaker traits estimation, and IS13 ComParE features. As a
consequence, independently from the task and the associated
features, a minimum length is needed for the features to
converge.Moreover, every sample being longer than this minimal
length would have the same features, leading to the same
interpretation: in case of absence of consensus on this question,
we recommend working with samples that are at least 20 s long,
to guarantee that the features reached stationarity.

5.4.4. Length of Samples for Depression Detection
Another argument in favor of the use of this threshold is the
result obtained in a study dedicated to the length of samples
for depression detection through spontaneous speech (76).
Studying the influence of the length (number of words) on
the performances of two deep learning-based classifiers, they
conclude that 1) the minimum length to ensure a generalization
of the concept is about 30–50 words (about 20 s in the used
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corpora), and 2) the accuracy increases with the length of
the utterances.

5.4.5. Maximum Length
Nevertheless, we have to warn against too long texts: some
patients are easily bored, and too-long text could result in the
expression of fatigue or irritations in voice, biasing themeasure of
sleepiness in it. Moreover, in line with our opinion, the previously
cited article (76) shows that accuracy saturates for speeches
longer than 120–200 words. As a consequence, we recommend
sticking to reasonable lengths: maximal lengths between 1 and 2
min seem reasonable.

5.4.6. Conclusion and Recommendations on the

Length of Audio Samples
• Samples length

– Aminimum 20 s seem necessary to have the convergence of
the features: we recommend not to slice samples under this
length;

– A maximal length of 1–2 min is enough to have sufficient
content without inducing fatigue or boredom of the
speaker.

5.5. Labeling Data
Having chosen the texts and designed the recording sessions,
one fundamental question still needs to be answered: when
elaborating a database, how to label data? When working
with neuro-psychiatric processes, for which concepts are not
directly measurable (“sleepiness,” “emotion,” “fatigue,” ...) and the
paradigms not easy to formulate, this question is not trivial (77).
In the specific case of sleepiness, a relevant way to determine the
labeling of data is to ask:

1. What is the phenomenon to be measured? Short-term
sleepiness? Sleepiness-related disease? Fatigue? Performances
at the wheel? All these tasks seem the same at first glance, but
they are medically different, and the answer to this question
will depend on the way to measure it;

2. What is the targeted population? This question completes the
previous one: the medical tests/questionnaires calibrations are
sensible to the population they are applied to.

Choosing the right sleepiness measure needs close cooperation
between data scientists and physicians (78), to comply with
three main constraints: the adequacy between the measure and
the objective on the one hand (what is to be measured?), the
need for machine learning algorithms to have balanced labels on
the other hand (are the labels balanced or unbalanced because
of the chosen measure?), and finally, the necessity to keep a
medical meaning of the process to finish (need for medical
validation). Satisfying the three constraints is an ideal goal
but choices have to be made being aware of the compromises
they imply. The different sleepiness measures mentioned in
this study are represented through these three components
in Figure 9.

5.5.1. Sleepiness Measurements Used in the

Presented Corpora
The SLC and the SLEEP corpus have been designed to detect
short-term sleepiness in healthy subjects. The choice has been
made to focus on a mixed sleepiness measurement, scored by
both the speaker and two external trained annotators. This score
is relatively suited for classification problems and seems relevant
for the task it is employed to. The main drawback of this measure
relies on its medical validity: the use of KSS as a mixed measure is
not, to our knowledge, a medically validated sleepiness measure.

FIGURE 9 | The different sleepiness measures of this study place on the three axes of the ideal label: medical validation, machine learning fitting and goal fitting. KSS,

Karolinska Sleepiness Scale; ESS, Epworth Sleepiness Scale; MSLT, Multiple Sleep Latency Test; MWT, Maintenance of Wakefulness Test.
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The question that still needs to be answered is: what does this
value exactly measure?

While the question of the medical meaning of this
questionnaire is stills unanswered, achieving great classification
performances using it could still lead to new perspectives (the
manifestation of sleepiness through voice is not necessarily
correlated to referencemedical measures of it), but these will have
a real meaning only when they will be medically validated and
confronted to other measures.

On the MSLTc, the KSS aims at measuring the subjective
sleepiness of patients affected by diverse sleep disorders. Fitting
the objective of short-term subjective sleepiness detection, this
questionnaire suffers from medical validity on pathological
populations (79–81), resulting in uncertainty regarding the
reliability of the subjective labeling of the speakers.

Compared with the SLC and the SLEEP corpora, the
MWTc and MSLTc corpora have been designed with different
goals. Indeed, based on validated medical tests, they aim at
following patients already being affected by sleep pathologies.
The averaged MSLT and MWT sleep latency are both gold
standard neurophysiological measures of excessive sleepiness
phenomena (51): they both fit the goal of excessive sleepiness
measure and are medically validated. Their main drawback is the
amount of collected data that makes the elaboration of machine
learning systems difficult. Indeed, the collection of these values
for one speaker requires multiple recordings throughout the
day, and the number of speakers recorded each day depends
on the number of recording rooms dedicated to these medical
exams. Moreover, as stated in section 4.2.1, the averaged MWT
sleep latency suffers from saturation effects, making its machine
learning exploitation difficult.

Before averaging them, the independent sleep latency on
the MSLT and MWT test could be respective measures of
short-term propensity to sleep and altered vigilance. But
these measures suffer from two main drawbacks: on the
one hand, individual latencies are not medically validated
measures of instantaneous objective sleepiness and have not
been confronted with other sleepiness-related measures; on the
other hand, they suffer from saturation effects (as shown in
section 4.2.1). As a consequence, the attempt to use them as a
measure of objective short-term sleepiness seems compromised.
Collected on the MSLT and MWT corpora, the ESS aims
at measuring subjectively pathological propensity to sleep.
Medically validated (41) and machine-learning-friendly (refer
to distribution on Supplementary Materials), this questionnaire
seems to fit the goal of subjectively pathological propensity to
sleep label. However, its main drawback is its usage according
to the population that it is administered to, leading to different
cut-off values.

5.5.2. Other Sleepiness Measurements
The sleepiness measurements do not stop at the six ones studied
in this article. Figure 1 completes the list but the tools designed
to measure sleepiness are numerous and as diversified as its
nature: questionnaires, EEG-based measures, eye-activity-related
metrics, behavioral features, ... This diversity emphasizes the need
for a close collaboration between clinical practitioners and data

scientists, to find the labels that exactly fit the requirements of
both parties.

For reviews on this topic, one may check the following
articles: (30, 31, 82–86).

5.5.3. Binary Classification vs. Regression: Mimic the

Medical Practitioners
A relevant way for machine learning engineers to decide to
binarize the problem or to keep it as a regression problem
could be to mimic the medical practices. Indeed, when some
measures are acknowledged as categorical questionnaires, the
binarization of the problem using a threshold seems relevant. On
the contrary, when clinicians use these scores in a continuous
manner, the binarization of the problem is meaningless, even
if it eases the machine learning classification. In all the cases,
we recommend corpus designer to provide raw measurement in
corpora, to allow machine learning engineers and physicians to
test different settings.

5.5.4. Metadata
As mentioned in Qian et al. (87), to fully understand the
concepts brought into play when working on these corpora,
the best practice is to collect numerous data about the speakers
and the recording conditions. This allows unraveling biases
that are not necessarily identified and to ensure that, when
elaborating classifiers, the samples are classified by what they are
meant to, and not by a related bias (88, 89). Moreover, these
measures allow studying the robustness of systems with respect
to other factors (sex, age, demographic data, comorbidity, ...). For
example, a recent study (90) has re-examined a system aiming
at detecting depression through voice, including demographic
data and emotions labeling. This has led to the conclusion
that the studied system is independent of both demographic
data and the emotional state of the speaker: this conclusion
could not have been made possible without such information
in their corpus. As a conclusion, we encourage to label voice
recordings with a maximum of relevant information (physical
information about the speaker, comorbidities, demographic data,
etc ...), to allow at the same time the evaluation of the robustness
of elaborated systems to the phenomena measured by these
data, but also to correct and study precisely the label used
in the database, and to give insights on its manifestation
through voice.

5.5.5. Conclusion and Recommendations on Data

Labeling
From the discussion of this section, we have identified the
following points of interest:

• Choosing the relevant label

– We encourage to emphasize collaborations between the
different fields needed to relevantly label data (mainly data
scientists and clinical practitioners), avoidingmislabeling of
the task and guaranteeing the quality of the labeling (78).

• Providing raw measurement in corpora

• Collect the most possible metadata
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– As it has been proven useful, we encourage to maximize the
relevant collected metadata about the speakers;

– In the same vein, systematically reporting the population
and the experimental conditions in which they have
been recorded when communicating about a corpus or a
machine learning system allows relevant comparisons and
identification of the phenomena.
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