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Graph neural networks (GNNs), as a branch of deep learning in non-Euclidean space,
perform particularly well in various tasks that process graph structure data. With the
rapid accumulation of biological network data, GNNs have also become an important
tool in bioinformatics. In this research, a systematic survey of GNNs and their advances
in bioinformatics is presented from multiple perspectives. We first introduce some
commonly used GNN models and their basic principles. Then, three representative tasks
are proposed based on the three levels of structural information that can be learned by
GNNs: node classification, link prediction, and graph generation. Meanwhile, according
to the specific applications for various omics data, we categorize and discuss the related
studies in three aspects: disease prediction, drug discovery, and biomedical imaging.
Based on the analysis, we provide an outlook on the shortcomings of current studies
and point out their developing prospect. Although GNNs have achieved excellent results
in many biological tasks at present, they still face challenges in terms of low-quality data
processing, methodology, and interpretability and have a long road ahead. We believe
that GNNs are potentially an excellent method that solves various biological problems in
bioinformatics research.

Keywords: bioinformatics, graph neural networks, deep learning, omics data, network biology

INTRODUCTION

In recent years, deep learning has met with great success in machine learning tasks such as speech
recognition and image classification. Nevertheless, most of the theories of deep learning are focused
on explaining regular Euclidean data (Figure 1A). With the rapid accumulation of non-Euclidean
data represented by graph structure data (Figure 1B), more and more researchers begin to pay
attention to the processing of graph structure data that can represent complex relationships between
objects. For example, graph embedding algorithms are used to perform the mapping of graph
structure data to simpler representations (Scarselli et al., 2008). However, this method may lose the
topological information of the graph structure in the pre-treating stage, thereby affecting the final
prediction result. Gori et al. (2005) proposed the concept of graph neural networks (GNNs) and
designed a model that can directly process graph structure data based on research results in the field
of neural networks. Scarselli et al. (2008) elaborated on this model, which showed that GNNs could
deliver significantly better results than traditional methods due to using the topological information
of graphs in an iterative process. Subsequently, new models and application research on
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GNNs have been proposed. With the increasing interest in graph
structure data mining, the research direction and application
fields of GNNs have been greatly expanded.

In general, GNNs are actually a connectionist model that
captures the dependence of graphs through message passing
between nodes, which take into account the scale, heterogeneity,
and deep topological information of input data simultaneously.
At present, GNNs show reliable performance in mining deep-
level topological information, extracting the key features of data,
and realizing the rapid processing of massive data, such as
predicting the properties of chemical molecules (Duvenaud et al.,
2015), extracting text relationship (Peng et al., 2017), reasoning
the structure of graphics and images (Wang et al., 2018),
link prediction and node clustering of social networks (Zhang
and Chen, 2018), network completion of missing information
(Bojchevski and Günnemann, 2017), drug interaction prediction
(Zitnik et al., 2018), etc.

In the era of biomedicine “big data,” the aggregation
and growth of large amounts of multiform data created
enormous challenges to bioinformatics studies. In response to the
characteristics and demands of these data, many algorithms in the
field of machine learning, especially in deep learning, have been
widely used in bioinformatics and propelling the development
of bioinformatics. In many cases, biological data is constructed
as a biological network in non-Euclidean domains, such as
the molecular structure of proteins and RNAs, genetic disease
association networks, and protein interaction networks. These
biological networks have a great contribution to bioinformatics
studies, especially for revealing the complex mechanisms of
diseases. Network-based disease prediction methods had been
proposed in 2011 (Barabasi et al., 2011), which was based on
the assumption that “if a few disease components are identified,
other disease-related components are likely to be found in their
network-based vicinity.” Goh et al. (2007) pointed out that the
number of interactions between proteins in the same disease
pathway was 10 times higher than in random experiments.
Navlakha and Kingsford (2010) proved that the network topology
method was effective in predicting the association of diseases
and even the interaction of biomolecules. Compared with other
models in deep learning, the natural advantage of GNNs in
capturing hidden information in biological networks brings new
opportunities to design computational models in the biology
field. Besides this, GNNs are not only suitable for non-Euclidean
data but also able to extract potential graph structures from
data without apparent graph structures like images and make
inferences and judgments based on this structure. Therefore,
GNNs have been widely adopted in the field of medical imaging.

Through extensive literature investigation, we find that
the application of GNNs in bioinformatics has been rapidly
developed in recent years, and the number of research papers in
this field has shown a rapid growth. Figure 2 shows the statistics
of published GNN articles in bioinformatics from 2015 to 2020.

Although previous studies have surveyed deep learning
applications in bioinformatics (Wood and Hirst, 2004; Min et al.,
2016; Sun et al., 2019) recently published a review paper of
GCN in bioinformatics, these studies are confined to a narrow
field such as drug discovery in reference. To the best of our

knowledge, this is the first effort to review the application and
development of GNNs for bioinformatics. The rest of this paper is
carried out from the following aspects: (1) several standard GNN
models are introduced for a better understanding on how GNNs
extract potential information from biological data; (2) three levels
of GNN applications (node level, edge level, and graph level)
are illustrated in specific biological tasks. Meanwhile, existing
applications of GNNs for bioinformatics are classified based on
various biological problems and data forms, and the role of GNNs
in these studies is discussed; (3) according to the discussions
on existing studies, we summarize the limitations of this field,
including imbalances of biological data, and the methodological
and interpretability challenges of GNNs. Finally, future research
directions on various applications are proposed.

MODEL PRINCIPLE AND
DEVELOPMENT

There have been various GNN models for processing graph
structure data. In this section, we present the original GNN
and its variant models, including graph convolutional network
(GCN), graph attention network (GAT), and graph autoencoders.

Graph Neural Network
Gori et al. (2005) proposed a novel neural network model capable
of processing graph structure data–graph neural network in
2005. As a pioneering work of deep learning methods in non-
Euclidean spaces, the goal of GNN is to learn how to generate
an accurate state embedding vector hi, that is, the state of the
node is constantly updated with the information dissemination
mechanism on the graph; each update depends on the state
information of the neighboring nodes at the previous time.

The related concepts are introduced as follows: let the input
graph be G = (V,E,XV ,XE), V = {v1, v2, ..., vn} represents the
set of nodes, and E =

{(
i, j
)
|when vi is adjacent to vj

}
is the set

of edges. xi denotes the feature vector of node vi, and XV =

{x1, x2, ..., xn} is the set of feature vectors of all nodes. x(i,j)
denotes the feature vector of edge (i, j), and XE = {x(i,j)|(i, j) ∈
E} is the set of feature vectors of all edges.

The input graph G is converted into a dynamic graph Gt
=

(V,E,XV ,XE,Ht) in the graph neural network model, where
t = 1, 2, ...,T represents time and Ht

= (h(t)1 , h(t)2 , ..., h(t)n ),
h(t)i represents the state vector of node vi at time t, which depends
on the graph Gt−1 at time t − 1. The equation of h(t)i is as follows:

h(t)i = fw(xi, xco(i), ht−1
ne(i), xne(i)) (1)

where fw (·) denotes the local transformation function with
parameter w,xne(i) is the set of feature vectors of all nodes adjacent
to node vi, xco(i) is the set of feature vectors of all edges connected
to node vi, and h(t)ne(i)is the set of state vectors of all nodes adjacent
to node vi at time t. GNN updates the node status in an iterative
manner, and this process is shown in Figure 3.

The long-term dependency problem of the original GNN (it
is difficult for the node features to affect the state after multiple
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FIGURE 1 | Examples of Euclidean and non-Euclidean data. (A) Euclidean data: regular data such as images, text, video, voice, etc. These data are characterized
by excellent translation invariance, that is, the number of neighbor nodes of each node is fixed. (B) Non-Euclidean data: social networks, chemical molecular
structures, knowledge graphs, etc.; each node has an unfixed number of neighbors.

updates) makes it laborious to learn the deep structure. Based on
GNN, some variant models appear successively.

Graph Convolutional Networks
The existing GCN models can be divided into two categories:
spectral-based and spatial-based GCN. Spectral-based GCN is
defined from the perspective of graph signal processing, which
exploits the principle of Laplacian and Fourier transform to map
the irregular structure of a graph to a regular Euclidean space for
convolution operation. Spatial-based GCN directly utilizes the
information dissemination mechanism on the graph to define the

FIGURE 2 | Statistics of published graph neural network (GNN) articles in
bioinformatics from 2015 to 2020. The orange bar shows the total number of
GNN papers in bioinformatics that year (note: the number of papers in 2020 is
counted until October). The remaining colors, in turn, represent the number of
papers related to GNNs in bioinformatics in terms of disease association
prediction, drug research, and medical image processing, which are the
components of the orange bar.

convolution operation, and its propagation method is similar to
the original GNN. These two models will be discussed next.

Spectral-Based GCN
Spectral-based GCN uses the graph Laplace matrix as an
important tool to extend the Fourier transform to the graph
structure. Let A be the adjacency matrix with weighted
undirected graph G, and the element A(i, j) in the i-th row and
j column of the matrix is the weight of the edge (i, j). Degree
matrix D is defined as follows:

D(i, j) =
n∑

j=1

A(i, j) (2)

The symmetric normalized Laplace matrix of graph G is defined
as follows:

L = I − D−
1
2 AD−

1
2 (3)

As a real symmetry positive semidefinite matrix, L can be
decomposed into:

L = UΛUT (4)

where U = (u0, u1, · · · , un−1) is the eigenvector matrix, and

Λ =

λ1 ... 0
... ... ...

0 ... λn

is the diagonal matrix of eigenvalues. The

normalized Laplacian matrix L and its eigenvector u form an
orthogonal space as the Fourier transform ecosystem on the
graph. The graph signal represents the feature vector of all nodes
in the graph, expressed by x = (x0, x1, · · · , xn−1) ∈ Rn. The
Fourier transform of the graph signal x is given below.

x̂ = UTx (5)

Calculate the convolution between the two signals as:

x ∗ g = U((UTx)
⊙

(UTg)) (6)
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FIGURE 3 | Update of node status. (A) Input graph structure data G. (B) Diagram of each node iteration from time t-1 to time t. (C) The overall iteration process,
where oi is the output of the i-th node iteration.

If gθ = diag(UTg) is used as a filter for the graph signal x, we can
define the graph convolution as follows:

x ∗ gθ = Ugθ (Λ)U
Tx (7)

This is the first generation of a spectral-based GCN model
proposed by Bruna et al. (2013), which contains multiple
convolutional layers. Spectral-based GCN maps the graph
structure to Euclidean space through the Laplacian matrix
of the graph to realize the spectral convolution of the
graph. Nevertheless, due to matrix–vector multiplication, the
computational complexity of the model is relatively high, which
is O(n2). To solve this problem, Defferrard et al. (2016) proposed
a model ChebNets that uses a K-degree polynomial filter in the
convolutional layer. The κ-th polynomial filter of the spectrum
in the model is expressed as shown below.

gθ =
K∑

k = 0

θkλ
k
l (8)

The K-th-order polynomial filter of the spectrum is expressed
in the node domain as aggregating K-th-order neighborhoods
to maintain spatial locality, and the number of filter parameters
is also controlled to O(K) = O(1). In order to further reduce
the computational complexity, the model uses Chebyshev

polynomial Tk (x) = 2Tk−1 (x)− Tk−2(x) for recursive
calculation, where T0(x) = 1 and T1(x) = x. Therefore, the
convolution of the graph signal x and the filter is defined as
shown below.

x ∗ gθ = U(
K∑

k=0

θkTk(̃L))UTx (9)

As a simplification of the above-mentioned ChebNets, the graph
convolutional network model proposed by Kipf and Welling
truncates the Chebyshev polynomial to one time (Kipf and
Welling, 2016a). For numerical stability, the adjacency matrix A
is adjusted to obtain Ã, which results in a simplified combined
convolutional layer.

H = X ∗ gθ = f (D̃−
1
2 ÃD̃−

1
2 X2) (10)

where Ã = I + A, and D̃ij =
∑

jÃij, f (·)is the activation
function;2 is the filter parameter matrix.

Although the above-mentioned methods based on frequency
domain perform well in feature extraction, their limitations are
also obvious. First of all, due to the problem of data volume,
the method based on the Laplacian matrix of graphs is hard to
calculate on large graphs. Second, the trained GCN can only
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be applied to a fixed graph structure rather than to arbitrary-
structure graphs.

Spatial-Based GCN
The above-mentioned methods are based on the convolution
theorem and define the graph convolution in the spectral domain,
while the spatial method starts from the node domain and
aggregates each central node and its neighboring nodes along the
edge. Diffusion convolutional neural network (DCNN) (Atwood
and Towsley, 2015) proposes that convolution is a process of
diffusion between nodes and uses the k-hop transition probability
obtained after random walking to define the weight between
nodes. The structure of layer m is as follows:

H(m+1)
= f (WPkHm) (11)

where Pk denotes the k-hop reachability probability between two
nodes in a random walk, and W is a learnable model parameter.
DCNN describes the high-order information between nodes, but
it is hard to extend to a large graph because the computational
complexity of the model is O(n2K).

GraphSage (Hamilton et al., 2017) randomly samples the
neighboring nodes so that the neighboring nodes of each node
are less than the given number of samples so as to adapt to
the application on large-scale networks. The graph convolution
operation is as follows:

h(k)v = σ(Wk
· fk(h(k−1)

v , {h(k−1)
u ,∀u ∈ SN(v)})) (12)

where fk(·) is the aggregate function, and SN(v) is the random
sampling result of neighbors of node v. GraphSage gives a variety
of forms of aggregation functions, which are mean aggregator,
LSTM aggregator, and pooling aggregator.

There are also some studies aimed at defining the general
framework of GCNs. Among them, mixture model networks
(MoNet) (Monti et al., 2017) focus on the lack of translation
invariance on the graph and map the local structure of each node
to a vector of the same size by defining a mapping function.
Finally, learn the shared convolution kernel on the result of
the mapping. The message passing neural network (MPNN)
(Gilmer et al., 2017) is based on information dissemination
and aggregation between nodes and proposes a framework by
defining a general form of the aggregation function.

Mixture model networks defines a coordinate system on the
graph and expresses the relationship between nodes as a low-
dimensional vector in the new coordinate system. At the same
time, a weight function is defined on all adjacent nodes centered
on a node, and a vector representation of the same size is obtained
for each node.

Dj(x)f =
∑

y∈N(x)

wj (u(x, y))f (y), j = 1, · · · , J (13)

where N(x) represents the set of adjacent nodes of x, f (y)
represents the value of node y on the signal f , u(x, y) refers to the
low-dimensional vector representation of the node relationship
in the coordinate system u, wj represents the j-th weight function,
and J represents the weight function number. This operation

makes each node get a J-dimensional representation, and the
shared convolution kernel is defined on this.

Differently from MoNet, MPNNs point out that the core
of graph convolution is to define the aggregation function
between nodes using the aggregation function to get the
local structure expression of each node and its neighboring
nodes and then applying the update function to itself and
the local structure expression to get the new expression of
the current node. The convolution operation is as follows:

h(k)v = Uk (h(k−1)
v ,

∑
u∈N(v)

Mk (h(k−1)
v , h(k−1)

u , xe
vu)) (14)

where Uk and Mk are update function and aggregate
function, respectively. The aggregate function learned
under the spatial framework can be adapted to
the task and the specific graph structure and has
greater flexibility.

Graph Attention Networks
In order to solve the shortcomings of GCN and its similar
structure, GAT (Veličković et al., 2017) introduces the attention
mechanism into the propagation step of the graph to learn
the weight between two connected nodes. In the GAT model,
input the set x = {x1, x2, ..., xn} of the node feature to an
attention layer; a new learned set h = {h1, h2, ..., hn} of node
feature will be output. The attention coefficient of edge
(i, j) is represented by αij, and the equation is as follows:

αij =
exp(LeakyRELU(aT [Wxi||Wxj

]
))∑

k∈Ni
exp(LeakyRELU(aT [Wxi||Wxk]))

(15)

where Ni is a set composed of adjacent nodes of node
Vi, a represents the learnable weight vector, and W is
a shared linear transformation weight matrix. The output
features of each node are calculated by the following equation:

hi = σ(
∑
j∈Ni

αijWxj) (16)

Multi-head attention expands the attention layer
into K independent attention mechanisms to make
the learning process of self-attention more stable,
and the final expression is given as shown below.

hi = σ(
1
K

K∑
k=1

∑
j∈Ni

αk
ijW

kxj) (17)

Parallel computing operations give GAT a higher
efficiency, and the applicability of GAT on completely
unknown graphs makes up for the limitation
of spectral GCN.

Graph Autoencoder Networks
The wide application of autoencoder (AE) and its variants in the
field of unsupervised learning has led to an increasing number
of AE-based graph generation models. Sparse autoencoder
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(SAE) (Tian et al., 2014) is the source of AE-based graph
neural network. It uses the following L2 reconstruction loss:

min
θ

L2 =

N∑
i=1

||P(i, :)− P̂(i, :)||2, (18)

P̂(i, :) = G(hi), hi = F(P(i, :)), (19)

where P is the transition matrix, and P̂ is the reconstruction
matrix; hi ∈ Rd represents the low-dimensional representation
of node vi, and F and G are encoder and decoder,
respectively. d is the dimension of hidden variables, and
N is the number of nodes and d� N. On the basis
of SAE, Wang et al. (2016) proposed a structural deep
network embedding (SDNE) model, which modified
the reconstruction loss function as shown below.

min
θ

L2 =

N∑
i=1

||(A(i, :)− G(hi))
⊙

bi||2 (20)

when A(i, j) = 0, bij = 1; otherwise, bij = β > 1, and β is a
hyperparameter. The supervised learning method is used to learn
the first-order approximation. The loss function is as follows:

L1 =

N∑
i,j=1

(A(i, j)|
∣∣hi − hj

∣∣ |22) (21)

Finally, the loss function of SDNE is obtained:

L = L2 + αL1 + Lreg (22)

The variational autoencoder (VAE) (Kingma and Welling,
2013) is suitable for learning graph node representation
without supervision information. Kipf and Welling (2016b)
proposed a variational graph autoencoder (VGAE),
which was the first time that VAE was extended to
graphs. The generation model of VGAE is as follows:

p(A|H) =
N∏

i=1

N∏
j=1

p(A(i, j)|hi, hj) (23)

p(A(i, j) = 1|hi, hj) = sigmoid(hT
i , hj) (24)

Variational graph autoencoder learns parameters
by minimizing the lower bound of variation L.

L = Eq(H|FV ,A)[logp(A|H)]−KL[q(H|FV ,A)||p(H)] (25)

Among them, KL(·) represents the Kullback–Leibler
divergence function, which is used to measure the distance
between two distributions. The time complexity of the
model is O(N2).

APPLICATION PRINCIPLE OF GNNS IN
BIOINFORMATICS

Modeling Methods
In the data analysis of bioinformatics, the biological data with
graph structure can be modeled in two ways: molecular structure-
based modeling and biological network-based modeling. For
molecular structured-based modeling, atoms or valid chemical
substructures (Jin et al., 2018) are used as nodes, bonds are used
as edges, and then the molecular graph is constructed as shown
in Figure 4A. Molecular graphs have a wide range of applications
in predicting the properties of molecules and de novo molecular
design. For biological network-based modeling, various entities
are used as nodes, such as gene, disease, RNA, etc. The edges
between nodes mean that there is a known association between
pairs of entities, such as miRNA–disease interaction. Then, a
relational network is generated, as shown in Figure 4B. GNNs
are known to have a perfect performance in extracting potential
information from graph structures, so they can process omics
data in the biological field, including genomics, proteinomics,
RNomics, and radiomics. Combined with the above-mentioned
two modeling methods, applying GNNs in these omics data can
be employed for a variety of tasks, such as molecular property
prediction, de novo molecular design, link prediction, node
classification in biological networks, etc.

The Tasks of GNNs in Bioinformatics
Based on the modeling methods cited above, the structural
information learned by GNNs provided a basis for different levels
of graph analysis tasks: node level, edge level, and graph level
(shown in Figure 5).

Node Level
Node classification is the typical task at the node level
(Figure 5A), which can be performed by way of supervised
learning, unsupervised learning, and semi-supervised learning.
As the most commonly used method of node classification, semi-
supervised learning combines the characteristics of supervised
learning and unsupervised learning. Compared with supervised
learning and unsupervised learning, semi-supervised learning
on the graph extracts high-level node representations through
information dissemination, which does not need to label all
nodes and make good use of some known associated information.
This setting is powerful for the task of inferring the association
between entities in the biological network. For example, Ioannidis
et al. (2019) constructed multiple protein–protein interaction
(PPI) networks based on protein connectivity for different types
of cells and proposed a graph residual neural network (GRNN)
architecture for semi-supervised learning over multi-relational
graphs. The influence of different relations was measured by
learnable parameters. For the protein function prediction in
generic cell, brain cell, and circulation cell data sets, GRNN
had a macro F1 score of 0.86, 0.77, and 0.80, which was far
better than the baseline model. In allusion to population disease
prediction, Parisot et al. (2017) modeled population information
as a graph, medical imaging data as the feature of the subject
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FIGURE 4 | Two modeling methods of biological data with graph structure. (A) Molecular structure-based modeling. (B) Biological network-based modeling.

FIGURE 5 | Examples of graph analysis tasks in three levels. (A) Node level: the prediction of unlabeled proteins through labeled proteins in the protein–protein
interaction network. (B) Edge level: predicting the unknown link between RNA nodes and disease nodes through the RNA–disease association network. (C) Graph
level: the generation of synthetic molecules through actual molecular graph learning.
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node, and phenotype data as the weight of the edge. GCN
was utilized to simultaneously model individual features and
associations between subjects from potentially large populations.
In the setting of semi-supervised learning, conditioning the GCN
on the adjacency matrix provides the representation learning for
all nodes. Compared with the standard linear classifier, their work
improved the quality of prediction.

Edge Level
As the main task of the edge level, link prediction is defined
as, given some graphs, an edge prediction model is trained
based on the features of nodes or edges for predicting the
connectivity probability between node pairs in these graphs
or newly given graphs, as indicated in Figure 5B. The link
prediction task has captured the attention of different research
fields due to its broad applicability. Predicting the interaction
between biological entities from complex biological networks
also plays an important role in the research of bioinformatics
and has become increasingly important and more challenging.
The GNN models are also effective for solving the link
prediction tasks. Zhang and Chen (2018) proposed the SEAL
(learning from subgraphs, embeddings, and attributes for link
prediction) model based on information dissemination, which
used GNN to replace the fully connected neural network in
the traditional Weisfeiler–Lehman neural machine method and
learned general graph structure features from local subgraphs.
Its performance on public biological network data sets such as
yeast, Caenorhabditis elegans, and Escherichia coli was superior
to the traditional graph embedding models. In addition, GCN
has been utilized to predict various interactions in biological
networks. For example, PPI networks with a small amount of
label information that were encoded to predict the relationship
between drugs and diseases (Bajaj et al., 2017), disease similarity
networks, and microRNA (miRNA) similarity networks were
built to indicate the association between miRNA and disease by
VGAE (Ding et al., 2020).

Graph Level
The task of graph level is mainly related to graph generation
(Figure 5C). Learning to generate graph structure data by
training on a set of representative data is the core of graph
generation tasks. For discovering new chemical structures, a
graph generative model based on GNNs was first proposed
with the motivation of molecular graphs generation. Simonovsky
and Komodakis (2018) combined GNN and VAE to propose
GraphVAE, which was used for small-scale molecular graph
generation. Experiments on the QM9 database and ZINC
database proved that GraphVAE has a higher accuracy than
the previous methods. Jin et al. (2018) proposed a junction
tree variational autoencoder (JT-VAE), which allowed the
model to gradually expand the molecule while maintaining the
chemical validity of each step. The experimental results on the
ZINC database had shown that JT-VAE could generate better
results than the traditional model and GraphVAE. MolGAN
(De Cao and Kipf, 2018) is a generative model for small
graphs, which is able to generate discrete graph structures and
promote the generation of molecules with specific chemical
properties through reinforcement learning methods (Figure 6).

The MolGAN model produced nearly 100% effective compounds
in experiments on the QM9 chemical database. In practice,
the abilities of graph generative models for protein structure
prediction and chemical molecular map generation play an
important role in related applications, such as drug design and
protein structure design.

In general, as a novel type of graph embedding method, GNNs
can perfectly integrate the features of nodes and the structural
information between nodes in various specific applications. To
better illustrate the application status and mechanisms of GNNs
in bioinformatics, more comprehensive existing research on these
three levels are summarized for specific biological problems,
which are discussed in the next section.

TYPICAL APPLICATION OF GNNS IN
BIOINFORMATICS

Based on various biological tasks, the existing application of
GNNs in bioinformatics can be categorized into three typical
topics: disease association prediction, drug development and
discovery, and medical imaging. Note that these applications
are also based on the three levels of graph analysis tasks
in the previous section. In this section, the way and the
development of GNNs handle representative problems are
described in more detail.

Disease Association Prediction
Discovering the associated factors with various diseases is
an important task in bioinformatics. At present, the existing
methods of disease association prediction mainly include matrix
decomposition (Koren et al., 2009; Wang et al., 2017) network
propagation (Lee et al., 2011; Guan et al., 2012; Li and Li,
2012; Sun et al., 2014; Zhou et al., 2015), and machine learning
(Luo et al., 2016; Zhou and Skolnick, 2016; Frasca, 2017;
Xuan et al., 2019b; Jiang and Zhu, 2020). Essentially, some
machine learning methods are also based on similarity measures
and matrix decomposition. Nevertheless, matrix factorization
methods map the features of entities to a latent space but ignore
the representation of topological relationships between entities.
In other methods, the shallow models ignore the rich structural
information in disease-related networks, which ultimately affects
the quality of entity feature representation. Recently, GNNs
have been used to capture the nonlinear relationship between
diseases and other entities in biological networks. More and
more methods have introduced convolution operations into
heterogeneous networks for extracting features of local sub-
graphs. All of the studies discussed in this section have directly
or indirectly contributed to the development of deep learning
methods in the field of disease prediction. Different biological
networks were constructed in these studies, which were based on
RNA–disease associations, disease–gene associations, and other
association information.

RNA–Disease Association
A large amount of evidence has shown that microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), circular RNAs
(circRNAs), and Piwi-interacting RNA are widely involved in the
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FIGURE 6 | Flow chart of MolGAN. The generator extracted a sample from the prior distribution and generated a molecular graph corresponding to a specific
compound. The graph neural network-based discriminator and reward network directly operate on the representation of the graph structure. The discriminator learns
to distinguish whether the molecular graph comes from the real data set or the generator. The reward network assigned rewards to each molecular graph based on
samples and optimized the generation process through reinforcement learning methods.

FIGURE 7 | Flow chart of DimiG in RNA–disease association. The protein-coding gene (PCG)–miRNA association network was used as the input of the two-layer
graph neural network. The PCGs were labeled, and the miRNAs were unlabeled. The yellow nodes in the network represented the weighted sum of neighbor
embeddings. The final output could infer the probability between diseases and unlabeled miRNAs.

occurrence and development of diseases (Xuan et al., 2019a; Li J.
et al., 2020; Wang L. et al., 2020; Zheng et al., 2020). Therefore, the
identification of these RNA–disease associations plays a crucial
role in exploring the pathogenesis of complex diseases. The
RNA and disease data analysis methods based on computational
models make up for the high cost and time-consuming defects of
biological experimental verification methods.

Starting in 2019, GNNs have been introduced into this type
of research. Pan and Shen (2019) proposed a semi-supervised

multi-label graph convolution model (DimiG), which did not
rely on known association information between miRNAs and
diseases. DimiG integrated multiple networks related to protein-
coding genes and used network knowledge transfer to indirectly
predict the association between miRNAs and diseases; taking
DimiG as an example, Figure 7 shows how GCN uses the
associated information in the network to generate features for
unlabeled nodes. Li J. et al. (2020) used GCN to learn the
feature representations of miRNAs and diseases from the miRNA

Frontiers in Genetics | www.frontiersin.org 9 July 2021 | Volume 12 | Article 690049

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-690049 July 23, 2021 Time: 17:38 # 10

Zhang et al. Graph Neural Networks in Bioinformatics

functional similarity network and disease semantic similarity
network, respectively, and utilized the neural induction matrix
to generate an association matrix, combining known miRNAs
and disease association information to train the model. This
model can predict all miRNAs related to breast cancer without
any known related miRNAs. Based on the similarity method,
the association prediction between RNAs and diseases can also
integrate more useful information. Li C. et al. (2019) integrated
miRNA–disease, miRNA–gene, disease–gene, and PPI networks.
Furthermore, based on the information extracted by GCN, the
top 10 unknown interactions between miRNAs and diseases
were analyzed. Using the FastGCN algorithm and the Forest by
Penalizing Attributes (Forest PA) classifier, Wang L. et al. (2020)
can accurately predict potential circRNA disease associations.
In order to better learn the hidden representation of node
features, Zhang J. et al. (2019) used GCN combined with an
attention mechanism to extract domain features and conducted
experimental tests on two different RNA disease networks. There
have also been some studies that used the autoencoder method
on the graph to reconstruct node features. Wu et al. (2020)
used GCN as an encoder to learn the feature representation
of lncRNAs and diseases from the bipartite graph associated
with lncRNA–disease, and the score of the lncRNA–disease
interaction was calculated from the inner product of the two
potential factor vectors. In the research of Ding et al. (2020),
VGAE was used to reduce the noise effect caused by randomly
selecting negative samples. In the prediction of disease-related
RNAs with limited known data, the integration of multi-view
information can help us understand complex biological networks
more comprehensively. Therefore, to capture a deeper interaction
mode between multiple related data, the integration method of
different types of data by graph deep learning model needs to be
further explored.

Disease–Gene Association
Single-cell RNA sequencing technology provides gene expression
data for a single cell. GNNs can infer the interaction between
cells (Jiahua et al., 2020; Zeng et al., 2020; Wang et al., 2021)
and simulate cell differentiation (Bica et al., 2020) and disease
state prediction (Ravindra et al., 2020). Precise gene–disease
association prediction can help researchers reveal the function
of disease-causing genes and provide evidence for disease
prevention. Prioritizing candidate genes for various diseases is
able to accelerate the development of early treatments and solve
the DGP problem to a certain extent. Rao et al. (2018) proposed a
rare disease gene sequencing method, which was different from
the previous association network method. They integrated the
combination pairwise ontological and curated associations into
a heterogeneous network and used the frequency qualifier from
Orphanet to calculate the edge weights. The qualifiers included
terms such as “obligation,” “very frequent,” and “frequent.” Since
the learning algorithm outlined in the standard VGAE does not
focus on learning the relationships between different node types,
Singh and Lio (2019) proposed a constrained VGAE variant
for predicting specific node associations on the disease–gene
association network by improving the optimization objectives
of an algorithm. Wang et al. (2019a) defined a new cluster loss

function and a dropout mechanism based on the GCN and graph
embedding method to improve the generalization ability.

Although a large amount of medical data has been reserved
in various database, accurate prediction of cancer remains a
challenge. As a group of complex diseases, cancer is caused by
multiple gene defects, and there is synthetic lethality between
genes. Therefore, the interaction network of genes plays an
important role in cancer prediction (Iglehart and Silver, 2009).
In order to analyze the underlying mechanism of cancer, Schulte-
Sasse et al. (2019) initially used GCN to classify and predict
cancer genes. Layer-wise relevance propagation was used to
identify the gene input signals and the network topology of the
learned model, which is in the neighborhood of a gene. The
synthetic lethality between genes is extremely sparse. In order
to solve the over-fitting problem, Cai et al. (2020) proposed
a new GCN model based on fine-grained edge dropout and
coarse-grained node dropout to reduce the over-fitting in sparse
graphs. Chereda et al. (2021) combined the PPI network and
gene expression data for patients and utilized GCN to classify
the nodes in the patient’s sub-network for predicting breast
cancer metastasis. In the classification of breast cancer subtypes,
there are also related studies based on local GCN, which was
used to combine with the PPI network and the gene expression
matrix information of multiple patients (Rhee et al., 2018). The
correlation generated by the GNNs for each data point not only
improves the interpretability of the model but also makes it
more advantageous in predicting tasks related to patient-specific
disease networks.

Others
In addition to the studies listed above, GNNs are also introduced
into some research of other related fields, for instance, the
discovery of disease proteins (Eyuboglu and Freeman, 2004).
The disease protein prediction problem can naturally be defined
as a semi-supervised classification problem on the protein–
protein interaction network. The realization of the neighborhood
positioning for visualized disease pathways proved that most
diseases do not have obvious neighborhood positioning. Some
studies utilized graph structures to model RNA secondary
molecular structures for RNA classification (Rossi et al., 2019)
and RNA-binding proteins prediction (Uhl et al., 2019; Yan
et al., 2020), where bases were considered as nodes in the
graph and phosphodiester bonds and hydrogen bonds were two
different types of edges. In other studies, miRNA, lncRNA, and
other elements were used to construct heterogeneous networks
for predicting the interactions between miRNA and lncRNA
as well as lncRNA-targeted genes. For multi-group biomedical
data classification, a weighted patient similarity network was
constructed based on various omics data and cosine similarity
method (Wang T. et al., 2020), and GCN performs a feature
extraction on these networks so as to find the cross-omics
correlation in label space for integrating multi-omics effectively.

Drug Development and Discovery
The drug development process mainly includes drug target
determination, lead compound discovery and optimization,
candidate drug determination, preclinical research, and clinical

Frontiers in Genetics | www.frontiersin.org 10 July 2021 | Volume 12 | Article 690049

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-690049 July 23, 2021 Time: 17:38 # 11

Zhang et al. Graph Neural Networks in Bioinformatics

research (Vohora and Singh, 2017). However, the lack of drug
targets, the poor clinical transformation of animal models,
disease heterogeneity, and the inherent complexity of biological
systems have made drug development a long and arduous
process. The purpose of modern drug development is to speed
up the intermediate steps through machine learning methods
so as to save development costs. Therefore, more and more
researchers tend to utilize machine learning models for predicting
early molecular properties, which can tremendously reduce the
workload of later experiments. As the most concerning machine
learning method, deep learning in the field of biomedicine
showed the following limitations: first of all, most deep learning
models cannot learn structural information directly from the
original input data, which rely on high-quality, labeled data
sets, and secondly, traditional CNN or other deep models have
difficulties in directly processing unstructured data like molecular
graphs, so the internal structure information of molecules is
usually not fully taken into account. Therefore, GNNs, which
extend deep learning methods to non-Euclidean domains, have
become the latest method to deal with drug-related tasks.

Protein Structure and Function Prediction
Protein function research occupies an important position
in life sciences, and most diseases are closely related to
protein dysfunction. Anfinsen (1973) found that the denatured
ribonuclease that only retained the primary structure could
refold and restore biological activity, which indicated that the
amino acid sequence representing the primary structure of the
protein contains important information about the secondary and
tertiary structure of proteins. At present, significant progress has
been made in protein structure prediction. The most accurate
structure prediction can fully clarify the biological mechanism
of protein action on a molecular scale, and its application in
drug development and other fields is of great significance to
biochemical research.

High computational cost and interpretability are problems in
common methods of molecular structure analysis, such as 3D
CNN and 2D CNN. In recent years, some studies have shown the
powerful capabilities of GNNs in learning the effective structure
of proteins from simplified graphical representations. Zamora-
Resendiz and Crivelli (2019) proposed a protein structure
learning method that was more suitable for large data sets. Unlike
the previous 3D and 2D representations, this model could apply
to the natural spatial representation of molecular structures,
which brought a high transferability to the application direction.
Aiming at the inverse protein folding problem, Ingraham et al.
(2019) proposed a protein design framework based on a similar
graph attention method, which could construct a conditional
generation model for a given target structure protein sequence
directly, and greatly improved the design efficiency. For protein
function prediction, there are two types of methods: based on
protein structure (Ioannidis et al., 2019) and based on PPI
networks (Gligorijevic et al., 2019). Similar to a previous work,
Gligorijevic et al. (2019) modeled the protein structure as a graph
to predict the protein function. Ioannidis et al. (2019) used a
multi-relation diagram method based on PPI network modeling
with semi-supervised learning. The structural characteristics of

a protein determine the breadth and complexity of its function.
However, the large number of invalid fragments contained in the
protein sequence may affect the judgment of its function. Using
GNNs to integrate the feature of protein relationship networks
is one of the ways to solve the problem of differences in protein
sequences and functions.

Protein–Protein Interaction Prediction
Protein–protein interaction information is able to provide
theoretical assistance for drug development indirectly. Fout et al.
(2017) proposed a space-based convolution operator to predict
the interface between protein pairs, which was suitable for graphs
with any size and structure. In the identification of protein
complexes, the high rate of “false positive/negative” in the PPI
network makes the detection of protein complexes arduous.
Therefore, Yao et al. (2020) proposed a denoising method based
on a variational graph autoencoder. They embedded the PPI
network into the vector space through multi-layer GCN and
deleted some interactions with credibility below the threshold
so as to obtain a reliable association network. The experimental
results on multiple datasets showed that the recognition accuracy
of protein complexes increases by 5–200%. Liu X. et al. (2020)
used an unsupervised GNN to predict the changes in protein
binding properties after mutations and recognized abnormal
interactions between atoms without annotations. By improving
on the existing sorting algorithm, Cao and Shen (2020) and
Johansson-Åkhe et al. (2020), respectively, proposed a scoring
mechanism for the evaluation of protein docking models and
doctored peptides. The convolution operation on graph encodes
the structure and features of protein into the graph embedding
representation and aggregates information along the edges of the
network nodes for association scores, which solves the spatial
limitations of conventional convolution methods.

Ligand–Protein (Drug–Target) Interaction Prediction
Drug targets are relevant to the pathological state of diseases or
biomolecules, so the identification of drugs and their targets is
the core problem in the development of new drugs. Drug target
interaction prediction is essentially the interaction prediction
problem between ligands and proteins, and many related studies
have been performed. Nonetheless, there exist some problems
as follows: (1) Traditional machine learning algorithms express
the prediction results in a binary classification, but the real
association relationship is not limited to the binary level. For
some target proteins that do not exist in the test set but appear in
practical applications, the prediction accuracy cannot be grasped;
(2) It is more difficult to deal with the chemical space where
drug molecules can be synthesized; (3) The prediction results lack
biological interpretation. Although the test results of the model
seem good, it is still unconvincing; and (4) The information about
the ligand bound to a specific protein is always easy to obtain,
but there is a lack of data on the real negative ligand–protein
relationship for learning.

In response to these existing problems, Feng et al. (2018)
introduced GCN into drug target identification for the first time,
which learned the molecular structure information of drugs,
and combined protein information as input. This study realized
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the prediction of the real-valued interaction strength between
drugs and targets and solved the cold-target problem. There are
also some studies similar to the general thinking of the above-
mentioned method but differ in data processing (Gao et al.,
2018; Nguyen et al., 2021). Miyazaki et al. (2020) provided
a drug–target interaction prediction model that ligands were
specifically targeting toward proteins without using true negative
interaction information. Torng and Altman (2019) established an
unsupervised graph autoencoder to learn the representation of
protein pockets without relying on the target–ligand complexes,
where features were extracted from the pocket graph and 2D
ligand graph by GCN, respectively. Jiang et al. (2020) proposed
an association prediction method that constructs a molecular
graph and a protein contact graph. These graphs were based on
the structural information of drug molecules and the sequence
information of proteins, which were performed by a three-layer
GCN for providing an accurate prediction.

Unlike the above-cited methods of representing drugs as
graphs, Zhao et al. (2021) proposed a network-based prediction
model that incorporated the drug–protein association network
into existing methods. The feature information of each drug–
protein pair learned by GCN was used as the input of a deep
neural network for predicting the final label. In order to make
up for the ignorance of cellular context-dependent effects in
previous studies, Zhong et al. (2020) used the information
in gene transcriptional profiles to indirectly predict drug-
targeted binding.

Besides this, knowledge graphs are also critical in biomedicine,
which can be processed by GNNs. In these studies, the result of
all graph-based interaction predictions was inseparable from the
quality of the knowledge graph, but the content of the knowledge
graphs extracted in real life is complex and contains interference
information. Therefore, Neil et al. (2018) proposed a model that
could adapt to noise data and reduced the influence of noisy data
on the overall prediction effect of the model by assigning low
weights to unreliable edges.

Prediction of Molecular Properties
The prediction of molecular properties is a basic and important
part of drug development. The first work to introduce graph
convolution into the field of molecular properties learning
(Duvenaud et al., 2015) was based on extended-connectivity
circular fingerprints (ECFP), which created differentiable
fingerprints to replace discrete operations in circular fingerprints
and replaced hash functions with single-layer neural networks.
The experimental results showed that, when the weights were
large and random, this model exhibited a similar performance
to ECFP, and as the weights were adjusted through training,
its performance was better than ECFP. In view of the large
space requirements of fingerprint-based methods and the large
information noise of fingerprint encoding, Kearnes et al. (2016)
proposed a molecular graph convolution method based on deep
neural networks instead of molecular fingerprints. The molecular
structure was represented by molecular graphs, and the distance
between graphs forms the level of molecules. Although this
method is not always superior in performance over molecular
fingerprinting methods, it opens a new path for molecular

property prediction. In addition, the emergence of multi-task
deep neural networks (MT-DNNs) makes neural networks more
powerful in drug discovery. Liu et al. (2019) combined GCN
with MT-DNNs to further improve the prediction accuracy
and realized a completely data-driven deep learning method
that did not rely on domain-specific feature descriptors or
fingerprints for drug property prediction. It is well known that
the electrostatic calculations are useful for the prediction of
the chemical reactivity of molecules and their ability to form
certain types of interactions. Rathi et al. (2019) proposed a
method to generate electrostatic potential surfaces close to
quantum mechanics quality for ligand molecules within the time
frame of interactive drug design, which provided an effective
tool for medicinal chemists and modelers. In the process of
drug discovery, the false positives or false negatives of bioassay
conclusions caused by unstable compounds in storage make
it hard to complete the stability prediction of compounds.
Differently from the traditional rule-based method, Li et al.
(2019b) proposed an end-to-end, attention-based GCN model
to predict the stability of compounds. The model dynamically
learned structural information from molecular graphs instead of
pre-defined structural features, thereby reducing the risk of false
alarms. The graph convolution operation can capture the local
features of molecular sub-structure effects, thereby generating
accurate global descriptors from the composite structure data.

De novo Molecule Design
The ultimate goal of drug design is to discover molecules
with ideal chemical properties. Nonetheless, the hugeness and
complexity of chemical space and the discontinuity of the spatial
structure of compounds make it demanding to explore the
chemical space of new molecules. By reducing the consumption
of labor costs, computer-aided drug design is dedicated to
accelerating the process of de novo molecular design. Although
the generative model in machine learning can effectively generate
molecules based on SMILES strings (Weininger, 1988), it cannot
effectively represent the topological information of molecular
structure. Based on the above-mentioned analysis, GNNs can
be directly used to generate molecular graphs. Therefore,
GNN is a kind of high-precision and low-cost method to
determine molecular properties by analyzing the topological
information of graphs.

The arbitrary connectivity and discrete structures of the graph
make it laborious to generate a graph from the vectors in
continuous code space, but if the maximum number of nodes
in the generated graph is constrained, it is still computationally
controllable. Figure 8 shows a continuous embedding method
of VAE to generate small molecular graphs, which was proposed
by Simonovsky and Komodakis (2018). This early generation
mode avoids the difficulties that may be encountered in
generating graphs; the upper bound of negative log-likelihood
was minimized in the model training, but it only applies
to the generation of small molecules. Another way is based
on the probability description of GCN to generate the graph
gradually (Li et al., 2018a) rather than directly generating the
entire graph. Compared with the routine method, this method
has achieved better results, but there are still challenges in
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FIGURE 8 | Variational graph autoencoder (VGAE) in molecular graph generation. As the encoder of VGAE, the edge condition convolution embedded the original
graph into a continuous vector space, and the decoder generated a probabilistic fully connected graph according to the predefined number of nodes and updated
the parameters through approximate graph matching to improve the reconstruction ability of the autoencoder.

the generation of macromolecular graphs. Li et al. (2018b)
proposed a conditional graph generation model and explored
two types of graph generation architectures. One treated graph
generation as a Markov process, and the other introduced
molecular-level recursive units to increase the scalability of the
model. You et al. (2018) combined the prior knowledge of the
example molecule dataset to generate goal-directed molecules.
This method integrated and expanded three ideas of graph
representation, reinforcement learning, and adversarial training,
where reinforcement learning and confrontation training were
combined to form a unified framework so as to reach the
desired goal by continuously guiding the generation process
and limiting the output space according to basic chemical rules.
The experimental results show that this method achieves the
most superior performance in terms of optimizing chemical
properties and constrained properties under conditions similar
to known molecules. Differently from the node-by-node method
of generating graphs, Jin et al. (2018) proposed a method of
connecting tree self-encoding, which utilized effective sub-graphs
as components to generate molecular graphs in two stages.
The first stage generated a connection tree structure as a sub-
graph component, and then these sub-graphs were combined
into a complete molecular graph in the second stage. This
model avoided the generation of invalid intermediate states of
molecules and improved the work efficiency. Khemchandani
et al. (2020) learned the interactive binding model from the
binding data through GCN and proposed an attribute prediction
module, which utilized a scoring mechanism to determine the
more useful molecules with the specific attribute during the
generation process.

At present, the graph-based method of molecular generation
has more advantages than the grammar-based generation
method. Although the new compound obtained by the molecular
graph method has higher scores on various evaluation indicators,
it has also been drawn into question. Besides this, the method of
generating molecular graphs is still limited to 2D space, and the
3D information of molecules is completely ignored, which may
become the focus in the future.

Drug Response Prediction
The combination of genomics data and drug information
for drug response prediction has promoted the development
of personalized medicine. Huang et al. (2020) combined
GCN with autoencoder to predict the association between
miRNA and drug resistance. In this study, the association
prediction was regarded as a problem of semi-supervised
learning, and a graph convolution model was built by
combining the known miRNA expression profile and the
drug structure fingerprint information. There are some other
studies that focus on the effect of drug treatment on
cell growth. Liu Q. et al. (2020) predicted the therapeutic
effect of drugs on cancer cells by constructing a cancer
cell information sub-network and a drug structure sub-
network. Considering the complexity of cancer factors, Singha
et al. (2020) integrated biological network, genomics, inhibitor
analysis, and disease–gene association data into a large
heterogeneous graph. Multiple graph convolution blocks and
attention propagation were used to aggregate network topology
information, and a graphic readout framework was constructed
for predicting the final result. Hwang et al. (2020) adopted a
similar structure with the study of Liu et al. (Huang et al.,
2020), but introduced a set of information about the dosage
and duration of drug administration for predicting drug-
induced liver injury.

Drug–Drug Interaction Prediction
When a drug is taken with another drug, the expected
efficacy of drugs may be significantly changed. Therefore,
research on drug–drug interaction (DDI) is essential to reduce
the occurrence of adverse drug events and maximize the
synergistic benefits in the treatment of diseases. Obviously,
the most practical way to explore the medicinal properties of
drug combinations is computer-aided DDI detection. Zitnik
et al. (2018) predicted the side effects between drugs from a
multimodal heterogeneous network that was composed of PPI,
drug–protein targets, and drug–drug interactions, where each
side effect was represented by a different edge. Ma et al. (2018)
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proposed a framework of a multi-view drug graph encoder
based on the attention mechanism, which was used to measure
the drug similarity. To make full use of the heterogeneous
correlation between different views, each type of drug feature
had been considered as a view, which was associated with a
learnable attention weight in the similarity integration. This
multi-view method could capture more similar information than
the previous single view.

Medical Imaging
Medical images play an extremely important role in clinical
disease diagnosis, classification, and treatment. In the field
of medical imaging, deep learning methods combined with a
computer-aided diagnosis are used for the early detection and
evaluation of diseases. Similar to other image-related tasks,
segmentation, classification, and recognition are the main tasks
of concern in medical imaging. Meanwhile, image data can
be represented as a graph structure appropriate for the use of
GNNs. Therefore, GNNs have an extensive application space
in the field of medical imaging, such as image segmentation
(Gopinath et al., 2019; Wang et al., 2019b; Tian et al., 2020a,b),
abnormal detection (Wu et al., 2019) of MRI images and
pathological images, classification (Shi et al., 2019; Zhou et al.,
2019; Adnan et al., 2020) and visualization (Levy et al., 2020;
Sureka et al., 2020) of histological images, analysis of surgical
images (Zhang et al., 2018), image enhancement (Hu et al.,
2020), registration (Hansen et al., 2019), retrieval (Zhai et al.,
2019), brain connection (Ktena et al., 2017, 2018; Li X. et al.,
2019a; Mirakhorli and Mirakhorli, 2019; Grigis et al., 2020;
Li et al., 2020; Zhang and Pierre, 2020; Zhang et al., 2021)
and disease prediction (Parisot et al., 2017; Kazi et al., 2018,

2019a,b,c; Anirudh and Thiagarajan, 2019; Yang et al., 2019;
Stankevičiūtė et al., 2020; Zhang and Pierre, 2020; Zhang et al.,
2021), etc.

Image Segmentation
Before GNNs were introduced, CNN-based image segmentation
technology that was widely used in various studies has been
maturing. Ma et al. (2018) proposed a gated graph neural
network for segmenting 3D images and utilized directed graph
learning to predict the movement of points on the basis
of the coarse segmentation, where a second segmentation
was performed to obtain a smooth image. For processing
surface data (such as MRI), Tian et al. (2020a) utilized
spectral convolution for realizing cortical surface parcellation.
The traditional spectral embedding can only be realized
in orthogonal grid space, but this method was able to
directly learn the surface features of the cortex. Gopinath
et al. (2019) proposed an automatic and interactive prostate
contour prediction method based on GCN blocks, which
could consider the multiscale feature, and utilized a contour
matching loss training method to preserve the details of the
prostate boundary. In most cases, the segmentation model
of deep learning adopts the pixel-wise segmentation method
with high computational complexity. In contrast, the GNN
method only uses object contours to segment, reducing the
amount of calculation.

Brain Connectivity Research
Global similarity measurement between graphics represents the
structural or functional connections within the brain by labeled
maps, which is of great significance in the study of brain

FIGURE 9 | Similarity measure learning of graph neural network in functional brain graphs. The information contained in the fMRI image was integrated into the
graph through the graph partition and connection matrix. Two graphs were, respectively, used as the input of the two graph convolutional networks with sharing
parameters, and the output of the network was combined by the inner product layer. Finally, a fully connected layer outputs the estimated similarity between the
graphs.
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connectivity. At present, most models in deep learning use
regular images as the default input data, but the processing
of irregular brain connection images remains a problem. The
pioneering work of depth graph networks in brain connection
research was done by Ktena et al. (2018), and then this
work was further extended about the way of cross-validation
(Mirakhorli and Mirakhorli, 2019). Figure 9 shows the process
for the conversion and analysis of functional magnetic resonance
imaging (fMRI) in the study of Ktena et al. which has been
used in some later research of GNNs for brain connection.
Zhai et al. (2019) constructed a generative model using graph
convolution and VAE to predict the abnormal parts of input
graphs. In order to lift the restrictions of fixed graphic structure
for a model, Zhang and Pierre (2020) proposed a spatial GCN-
based learning model, which could perform the classification
of different brain connections and help predict the association
between brain connection sub-networks and disease. Parisot et al.
(2017) proposed an effective method to annotate human brain
activity and then conducted a study on the transferability of
brain decoding (Stankevičiūtė et al., 2020). Yang et al. (2019)
predicted the state of consciousness of the brain by constructing
a dynamic functional connectivity matrix that describes the state
of the brain, which proved the effectiveness of graph convolution
methods in predicting cortical signals.

Multimodal Fusion
All the studies discussed above are based on the analysis of
a single image. Nevertheless, using only single-modal imaging
data in disease prediction may lead to a lack of precision in
the results. Yang et al. (2019) used the weighted edge-weighted
graph attention network model to combine different modalities
of medical imaging (brain structural magnetic resonance imaging
and fMRI) for identifying bipolar disorder. In addition, more
research tends to combine medical imaging data with non-
imaging data in disease prediction. Based on multimodal fusion,
the lack of some important information in monomodal data can
be optimized and complemented to a certain extent. Parisot et al.
(2017) introduced GCN into group-level medical applications for
the first time. In this work, they proposed a population graph,
which modeled people as nodes in the graph, and the feature
vector of brain image was used as the feature representation of
the node. Phenotypic data were combined for disease prediction
in a semi-supervised way, such as gender, age, etc. In 2018,
Parisot et al. extended this work with further in-depth analysis
methods and modeling options (Stankevičiūtė et al., 2020). Since
then, the use of population graph methods for disease prediction
has become the choice of many researchers. Kazi et al. (2018)
used a multi-level parallel GCN model to optimize the extraction
of correlation information between nodes, which introduced
an automatic learning layer for weight distribution and the
attention mechanism for utilizing the features of each multimodal
data (Kazi et al., 2019c). Aiming at the problem of insufficient
feature extraction caused by fixed neighborhoods in GCN model,
InceptionGCN (Kazi et al., 2019a) was proposed by Kazi et al.,
which considered the receptive field convolution kernels of
different dimensions and utilized two aggregation methods
to process all the features obtained by a convolution kernel.

Nevertheless, the performance of this model on various datasets
is quite different, so the LSTM-based attention mechanism
was introduced in later work to better integrate multi-modal
data (Kazi et al., 2019b). For the research of autism spectrum
disorder classification problem, Anirudh and Thiagarajan (2019)
proposed a more robust method, which was based on the set
of weakly trained G-CNN for reducing the model sensitivity to
the choice of graph construction. Arya et al. (2020) believed
that population phenotypic data is not suitable for defining
the relationship between edges; then, the actual similarities
between the brain’s structures were used to directly extract the
variables from brain MRI so as to establish the relationship
between nodes. Stankevičiūtė et al. (2020) used a population
graph to predict brain age but obtained unsatisfactory results.
The topological characteristics between the various regions of
the brain make GNNs more suitable for identifying related
patterns of brain disease and effectively assisting in exploring the
mechanism of the disease.

SUMMARY ON TYPICAL APPLICATIONS

In general, the applications of GNNs in node level, edge level,
and graph level are not completely independent. According to the
different levels of tasks and biological problems, we give a detailed
summary on the above-mentioned typical applications in Table 1.

DISCUSSION AND FUTURE RESEARCH
DIRECTIONS

The Problem and Trend of Methodology
Current GNNs have room for improvement in the methods
of processing biological tasks. This section proposes the
methodological problems and future development directions of
GNNs for the three application fields of disease prediction, drug
discovery, and biomedical imaging.

For disease prediction, improvements need to be made
in three areas: the similarity evaluation of new nodes, the
introduction of node attribute information, and heterogeneous
information processing. First, most of the research in disease
prediction adopted broad similarity methods. GNN models are
used to extract the in-depth information of a heterogeneous
network composed of disease semantic similarity, RNA
functional similarity, and multiple association data. However, the
construction of various similarity networks would have increased
the complexity of the GNN model to a certain extent, and an
efficient similarity evaluation paradigm needs to be improved
for new diseases or RNA. In addition, more attention should be
paid to the introduction of node attribute information into the
modeling process, such as disease semantic features and RNA
structural features, which can avoid the excessive dependence
on associated information. Finally, for heterogeneous networks
containing multi-source information, GNNs can deeply integrate
their topological information. Nevertheless, current GNNs
mainly focus on the processing of isomorphic graphs and cannot
sufficiently capture the heterogeneity of nodes and edges in

Frontiers in Genetics | www.frontiersin.org 15 July 2021 | Volume 12 | Article 690049

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-690049 July 23, 2021 Time: 17:38 # 16

Zhang et al. Graph Neural Networks in Bioinformatics

TABLE 1 | Summary of typical applications.

Classification Biological problems Publications Task of graph neural networks

Node level Edge level Graph level

Disease
association
prediction

RNA–disease association prediction Wang L. et al., 2020
√

Li C. et al., 2019; Zhang J. et al., 2019; Ding et al., 2020; Li
J. et al., 2020; Wu et al., 2020; Zheng et al., 2020

√

Inter-cell interaction prediction Wang et al., 2021
√

scRNA-Seq clustering Zeng et al., 2020
√

Impute the dropout events in scRNA-Seq data Jiahua et al., 2020
√

Simulate cell differentiation Bica et al., 2020
√

Disease state prediction Ravindra et al., 2020
√

Disease genetic prioritization Rao et al., 2018
√

Li Y. et al., 2019
√

Disease–gene association prediction Singh and Lio, 2019
√ √

Wang et al., 2019a
√

Han et al., 2019
√

Cancer genetic judgment Iglehart and Silver, 2009
√

Synthetic lethality prediction Cai et al., 2020
√

Breast cancer metastasis prediction Chereda et al., 2021
√

Breast cancer subtype classification Rhee et al., 2018
√

Disease protein judgment Eyuboglu and Freeman, 2004
√

Discussion on the relationship between drug
and disease

Bajaj et al., 2017
√

RNA classification Rossi et al., 2019
√

Predict the binding site of RNA protein Uhl et al., 2019
√

Yan et al., 2020
√

RNA interaction prediction Huang et al., 2019
√

Targeted gene prediction of lncRNA Zhao et al., 2020
√

Biomedical data classification Wang T. et al., 2020
√

Drug
development
and discovery

Protein structure prediction Zamora-Resendiz and Crivelli, 2019
√

Protein design Ingraham et al., 2019; Strokach et al., 2020
√

Protein function prediction Gligorijevic et al., 2019
√

Fout et al., 2017
√

Protein functional sites prediction Toomer, 2020
√

Interface prediction between protein pairs Yao et al., 2020
√

Protein–protein interaction network denoising Liu X. et al., 2020
√

Prediction of the influence of protein mutation
on binding

Cao and Shen, 2020
√

Protein docking model evaluation Johansson-Åkhe et al., 2020
√

Assessment of docked peptide conformations Feng et al., 2018
√

Drug–target interaction prediction Gao et al., 2018; Miyazaki et al., 2020; Nguyen et al., 2021
√

Neil et al., 2018; Torng and Altman, 2019; Jiang et al.,
2020; Zhong et al., 2020; Zhao et al., 2021

√

Molecular structure coding Duvenaud et al., 2015; Kearnes et al., 2016
√

Drug properties prediction Liu et al., 2019
√

Esp surface detection of ligands Rathi et al., 2019
√

Compound–protein interaction prediction Li S. et al., 2020
√

Tsubaki et al., 2018
√

Compound stability prediction Li et al., 2019b
√

De novo molecule design Dai et al., 2018; Li et al., 2018a,b; You et al., 2018;
Khemchandani et al., 2020

√

Prediction of the association between miRNA
and drug resistance

Huang et al., 2020
√

Prediction of the effect of drugs on cancer cell
growth

Liu Q. et al., 2020; Singha et al., 2020
√

(Continued)
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TABLE 1 | Continued

Classification Biological problems Publications Task of graph neural networks

Node level Edge level Graph level

Prediction of drug-induced liver damage Hwang et al., 2020
√

Side effects prediction between drugs Zitnik et al., 2018
√

Drug similarity prediction Ma et al., 2018
√

Drug combination design Long et al., 2020
√

Drug recommendation Mao et al., 2019
√

Alkaloid classification Eguchi et al., 2019
√

Product prediction of organic reactions Coley et al., 2019
√

Chemical network prediction Li Q. et al., 2018
√

Medical image
processing

Image segmentation Gopinath et al., 2019; Wang et al., 2019b; Tian et al.,
2020a,b

√

Image classification Shi et al., 2019; Zhou et al., 2019; Adnan et al., 2020
√

abnormal detection Wu et al., 2019
√

Image visualization Levy et al., 2020; Sureka et al., 2020
√

Image enhancement Hu et al., 2020
√

Image registration Hansen et al., 2019
√

Image retrieval Zhai et al., 2019
√

Surgical image analysis Zhang et al., 2018
√

Disease prediction Parisot et al., 2017; Kazi et al., 2018, 2019a,b,c; Anirudh
and Thiagarajan, 2019; Yang et al., 2019; Arya et al., 2020;
Stankevičiūtė et al., 2020

√

Brain connection research Ktena et al., 2017, 2018; Li X. et al., 2019a; Mirakhorli and
Mirakhorli, 2019; Grigis et al., 2020; Zhang and Pierre,
2020; Zhang et al., 2021

√

Li et al., 2020
√ √

heterogeneous networks (Zhang C. et al., 2019). So, a new
architecture needs to be studied, which can consider the feature
of data in heterogeneous biological networks.

In drug discovery, the construction mode of chemical
networks and the definition of molecular model structure need
to be further explored. In the study of compound interactions,
compounds and chemical networks are usually modeled as
graphs. These graph-based methods have been successfully
applied to the related tasks of chemical networks, but there
are few studies that can simultaneously consider these two
different types of graphs in an end-to-end manner. Harada et al.
(2020) used molecular graphs as nodes in chemical networks and
performed internal and outer convolution operations on them.
The dual graph convolutional network can capture the feature
of the individual molecular graph structure and the molecular
relationship network simultaneously, making excellent results in
dense networks. In addition, current molecular modeling is based
heavily on the 2D graph structure, and the 3D structure that
may affect the properties of molecules has rarely been considered.
Therefore, the research of GNNs on the molecular 3D structure
may be a future direction that has been neglected previously.

Multimodal Fusion
Graph neural networks also have limitations in multimodal
data processing in medical imaging. The natural combination of
multimodal deep learning (Ngiam et al., 2011) and multi-source
omics data accelerates the development of bioinformatics. Some
studies of GNNs in the multimodal fusion have been discussed in
Section 4.3.3. It is not uncommon to find that the data is relatively

balanced in these studies, but the involvement of unbalanced
data cannot be avoided in actual tasks. Therefore, the method of
processing unbalanced data in GNNs needs further research.

The Problem and Trend Caused by
Biological Data
Existing research on biomolecular networks has proved that
many biomolecular networks have the properties of sparseness
and scale-free nature. Sparseness is expressed as if the network
size is N, then the number of edges is O(N) instead of N2,
which results from a particular optimization in the long-term
evolution of organisms. The scale-free nature is reflected in the
degree distribution of these networks that obeys the power-
law distribution, where most nodes have a small number of
connections and a few nodes have a large number of connections.
This characteristic demonstrates that a few nodes represented
as biomolecules play a key role in the dynamic changes of
biomolecular networks. For the problems of sparseness and scale-
free nature of biomolecular networks, two methods—dropout
and regularization—can be adopted to alleviate the overfitting
caused by them. With a fixed probability, the dropout method
randomly sets each dimension of the weight to zero during the
training process so that the model only updates part of the
parameters each time. As an example, the GCN model proposed
by Cai et al. (2020) is based on the methods of fine-grained
edge dropout and coarse-grained node dropout to making GCN
learn a more stable representation in the process of continuous
adaptation. Dropout can alleviate the instability when there is
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a fantastic amount of data in the training set; consequently,
the dropout method is better suited to large data sets. The
regularization method adds a regularization term to the loss
function to limit the scale of parameters. In the study of disease–
gene association prediction by Han et al. (2019), there were 3,209
diseases and more than 10,000 genes in the data set. Nevertheless,
only 3,954 known disease–gene associations and a margin control
loss function were defined to reduce sparse impact.

In addition, the collection of negative sample data is often
ignored in the most current research, which leads to the fact
that the biological data only contains positive samples. The lack
of negative samples increases the difficulty of model training.
Therefore, in the study of Eyuboglu and Freeman (2004), a simple
method was proposed to solve the lack of negative labels, which
randomly select k from the set of unlabeled nodes to mark them as
negative. This seemingly unreasonable method causes most tags
to be randomly selected, but in fact, randomly selected proteins
may have a low correlation with disease. Hence, a certain number
of random negative labels can be considered reasonable.

Finally, there is a large amount of noise information in
the biomolecular network, so noise reduction processing is a
very positive step for improving the model’s performance. For
example, GAT can assign low weight to noisy data or directly
eliminate the associations with correlation degrees lower than the
threshold in the network. More methods for reducing noise are
worth further development.

The Lack of Interpretability
In bioinformatics, simply providing the computing results is just
not far enough. The lack of interpretation is a persistent problem
of the black box model like deep learning. As the entities and
relationships in GNNs usually correspond to various types of
objects that exist in the real world, then GNNs have abilities
to support more interpretable analysis and visualization (Selsam
et al., 2018). Take learning molecular fingerprint (Duvenaud
et al., 2015) as an example; the fingerprint encoding method
using neural graphs can take into account the similarity between
molecular fragments to achieve a more meaningful feature
representation, which is also ignored in traditional fingerprint
encoding. In the prediction of metastasis for breast cancer
patients (Chereda et al., 2021), the graph layer-wise relevance
propagation was proposed to explain how GCN generates
predictions based on patient-specific PPI sub-network data
which could be potentially highly useful for the development
of personalized medicine. In histological image analysis, Sureka
et al. (2020) modeled histological tissue as a nuclear graph and
established a graph convolutional network framework based on
attention mechanism and node occlusion for disease diagnosis.
This method visualized the relative contribution of each cell
nucleus by a whole-slide image. In data analysis, GNNs generate
relevant information for each data node, which makes the
model more interpretative to some extent. Overall, the further
exploration of interpretability in modeling biological networks by
GNNs is still an essential direction of future research.

The Exploration of Deep Structure
The deep network structure is more common in deep learning.
For instance, a residual network (ResNet) that excels in image

classification has 152 layers (He et al., 2016), but the layers of
most networks are below three in the field of GNNs (Zhou et al.,
2020). Experiments have shown that, as the number of network
layers increases, the characteristics of all nodes will approach the
same value, which will reduce network performance (Li Q. et al.,
2018). However, deeper networks can provide larger parameter
space and stronger representation capabilities, so the feasibility
of a deep graph neural network deserves to be explored.

CONCLUSION

Graph neural networks, as a branch of deep learning in non-
Euclidean space, perform particularly well in various tasks that
process graph structure data. In this paper, a systematic survey
of GNNs and their advances in bioinformatics is presented from
multiple perspectives. Three representative tasks are especially
proposed based on the three levels of structural information that
can be learned by GNNs: node classification, link prediction,
and graph generation. Meanwhile, according to the specific
applications for various omics data, we categorize and discuss
the related studies in three aspects: disease prediction, drug
discovery, and biomedical imaging. Finally, the limitations and
future possibilities of applying GNNs to bioinformatics studies
are illustrated.

Although GNN has achieved excellent results in many
biological tasks at present, it still faces challenges in terms of
low-quality data processing, methodology, and interpretability
and has a long road ahead. We believe that GNNs are
potentially a wonderful method that solves various biological
problems in bioinformatics research. Furthermore, this paper
can provide a valuable reference for new researchers joining the
studies in this area.
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