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Coronavirus disease-2019, also known as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), was a disaster in 2020. Accurate and early diagnosis

of coronavirus disease-2019 (COVID-19) is still essential for health policymaking.

Reverse transcriptase-polymerase chain reaction (RT-PCR) has been performed as the

operational gold standard for COVID-19 diagnosis. We aimed to design and implement a

reliable COVID-19 diagnosis method to provide the risk of infection using demographics,

symptoms and signs, blood markers, and family history of diseases to have excellent

agreement with the results obtained by the RT-PCR and CT-scan. Our study primarily

used sample data from a 1-year hospital-based prospective COVID-19 open-cohort, the

Khorshid COVID Cohort (KCC) study. A sample of 634 patients with COVID-19 and 118

patients with pneumonia with similar characteristics whose RT-PCR and chest CT scan

were negative (as the control group) (dataset 1) was used to design the system and

for internal validation. Two other online datasets, namely, some symptoms (dataset 2)

and blood tests (dataset 3), were also analyzed. A combination of one-hot encoding,

stability feature selection, over-sampling, and an ensemble classifier was used. Ten-fold

stratified cross-validation was performed. In addition to gender and symptom duration,

signs and symptoms, blood biomarkers, and comorbidities were selected. Performance

indices of the cross-validated confusion matrix for dataset 1 were as follows: sensitivity of

96% [confidence interval, CI, 95%: 94–98], specificity of 95% [90–99], positive predictive
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value (PPV) of 99% [98–100], negative predictive value (NPV) of 82% [76–89], diagnostic

odds ratio (DOR) of 496 [198–1,245], area under the ROC (AUC) of 0.96 [0.94–0.97],

Matthews Correlation Coefficient (MCC) of 0.87 [0.85–0.88], accuracy of 96% [94–98],

and Cohen’s Kappa of 0.86 [0.81–0.91]. The proposed algorithm showed excellent

diagnosis accuracy and class-labeling agreement, and fair discriminant power. The AUC

on the datasets 2 and 3 was 0.97 [0.96–0.98] and 0.92 [0.91–0.94], respectively. The

most important feature was white blood cell count, shortness of breath, and C-reactive

protein for datasets 1, 2, and 3, respectively. The proposed algorithm is, thus, a promising

COVID-19 diagnosis method, which could be an amendment to simple blood tests and

screening of symptoms. However, the RT-PCR and chest CT-scan, performed as the

gold standard, are not 100% accurate.

Keywords: COVID-19, computer-aided diagnosis, screening, validation studies, machine learning

INTRODUCTION

Among all infectious diseases known to humankind that caused
massive pandemics, certainly, COVID-19 has been the most
recognized one. Despite all the efforts and experiences in fighting
these contagious diseases in the past, we are still struggling
to control the situation globally. Almost all epidemics were
resolved in the past, but their damages were long-standing (1).
According to the World Health Organization (WHO), more
than 180 million people have been diagnosed, and nearly 4
million souls have been lost since the outbreak of COVID-19
in December 2019 until June 2021. The spread of the virus
has not been consistent, and it is mutating rapidly, making it
even harder to confront. Fortunately, vaccines came to our aid
to eradicate the virus at once. However, only 2.5 billion doses
have been administered. Therefore, this pandemic is still ravaging
some parts of the world. Also, lockdowns and restrictions have
reviled or created fundamental problems in our daily lives, such
as undiscovered market patterns and transitions in short-term
economic strategies (2). On the whole, an increase in the number
of mental health problems was reported in some countries
during the COVID-19 pandemic (3). In the future, to prevent

Abbreviations: ACC, Accuracy; ALT, Alanine Transaminase; ALP, Alkaline
Phosphatase; AUC, The area under the receiver operating characteristic; AST,
Aspartate Aminotransferase; Ca, Blood Calcium; Cr, Blood Creatinine; BUN,
Blood Urea Nitrogen; CCI, Charlson Comorbidity Index; HRCT, Chest computed
High-resolution CT; CT, Computerized Tomography; CI, Confidence Interval;
CRP, C-Reactive Protein; DOR, diagnosis odds ratio; DP, discriminant power;
F1S, F1-score; FN, False Negative; FP, False Positive; GMDH, Group method
of data handling; K(c), Kappa; KCC, Khorshid COVID Cohort; LDH, Lactate
Dehydrogenase; WBC, Leukocytes; LightGBM, light gradient-boosting machine
learning algorithm based on decision-tree; Lymph, Lymphocytes; LDA, Linear
Discriminant Analysis; Mg, Magnesium; MCC, Mathew Correlation Coefficient;
MLP, Multi-level Perceptron neural network; Neut, Neutrophils; PLT, Platelets;
K or P, Potassium; RT-PCR, reverse-transcription polymerase chain reaction;
RBF, Radial Basis Function; SES, socioeconomic status; Na, Sodium; STARD,
Standards for Reporting Diagnostic Accuracy; XGBOOST, Stochastic Gradient
Descent; SVM, Support Vector Machine; TRIPOD, Transparent Reporting of
a multivariable prediction model for Individual Prognosis or Diagnosis; TN,
True Negative; TP, True Positive; WHO, World Health Organization; α-HBDH,
α-Hydroxybutyrate Dehydrogenase.

the widespread of such contagious airborne diseases, an agile
diagnosis will be crucial.

Coronavirus disease-2019 is a severe type of pneumonia
(4); symptoms of various types of pneumonia infections are
very similar, and it is almost impossible for physicians to
diagnose COVID-19 without proper means of examination.
There are two viral methods to determine whether the virus
infects someone or not; the first is using chest computerized
tomography (CT) images (4), and the second is reverse-
transcription polymerase chain reaction (RT-PCR) test (5), which
is based on respiratory samples of a patient, like nasal mucus.
The CT scan is not mobile, and multiple scans magnify any
risk of getting cancer, although currently, RT-PCR kits are
much more available publicly. Thus, the gold standard for
COVID-19 diagnosis is RT-PCR. However, viral RT-PCR has
limited sensitivity and may need up to 48 h because of technical
dilemmas (6).

Many blood factors, along with body symptoms, can
expose the illness. These factors are significantly differentiable
between healthy and hospitalized individuals, like D-dimer,
alanine transaminase (ALT), C-reactive protein (CRP), bilirubin,
lymphocytes, platelets, albumin, neutrophils, diastolic blood
pressure, heart rate levels, and Charlson Comorbidity Index
(7–14). Furthermore, lactate dehydrogenase (LDH) and α-
hydroxybutyrate dehydrogenase (α-HBDH) levels were two
noticed markers that discriminate COVID-19 from other
kinds of pneumonia. Also, liver functionality was altered
considerably (4).

It is worth mentioning that RT-PCR is not always reliable,
and that it has its limitations. Long et al. demonstrated that the
sensitivity of the RT-PCR test is only 83.3% (15); in addition,
RT-PCR standalone diagnosis showed false positive outcomes
(16, 17). Interpretation of blood test results does not require
dedicated testing kits, and it can be performed in any laboratory.
Therefore, a method that can accurately detect COVID-19 would
be more favorable, especially in countries with a shortage of RT-
PCR reagents and proper laboratories. In this scenario, machine
learning and automatic diagnosis combined with blood test
results play a vital role. Accordingly, routine blood exams, with
symptoms of patients, could diagnose the SARS-CoV-2 infection
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with an accuracy of above 82%; these factors can, in fact, separate
COVID-19 from other kinds of pneumonia (18).

Most computer-aided diagnosis (CAD) studies with blood
examinations only considered COVID-19 cases vs. healthy
ones and ignored other pneumonia types (11, 19–21). Further
studies illustrated that various kinds of pneumonia diseases
had similar characteristics (4); hence, without considering this
fact, automatic COVID-19 detection algorithms may have a
substantial pragmatic bias, and the number of misclassified cases
rises. On the other hand, a few CT and x-ray CAD systems
distinguished COVID-19 from other types of pneumonia (5, 20,
22–27).

Related Studies
Several studies analyzed the possibility of diagnosing COVID-
19 from blood tests by combining blood tests and symptoms.
Goodman-Meza et al. (19) used the UCLA electronic health
record data and developed a CAD system for hospital settings.
They included complete blood counts and an inflammatory
marker (LDH) with the gold standard PCR test. They used
an ensemble learning method with several renowned machine
learning algorithms [e.g., support vector machine (SVM),
logistic regression, multi-level perceptron (MLP) neural network,
stochastic gradient descent, and extreme gradient boosting
(XGBOOST)], along with hold-out validation method (1,455 and
392 samples for training and test sets), and achieved an area
under ROC (AUC) of 0.83.

Zoabi et al. (21) investigated the nationwide public data
reported by the Israeli Ministry of Health, in which eight binary
symptomatic features (the appearance of five initial clinical
symptoms, known contact with an infected individual, sex, and
age≥60) were presented along with the result of the RT-PCR test
(nasopharyngeal swab11) as the ground truth. With the hold-out
evaluation method (51,831 and 47,401 samples for training and
test sets), they achieved an AUC of 0.86 using a light gradient-
boosting machine (LightGBM) learning algorithm based on a
decision tree (28). Their dataset contained healthy control and
patients with COVID-19.

Banerjee et al. (29) obtained the AUC of 0.94 by stratified 10-
fold cross-validation on 598 individuals diagnosed with different
kinds of pneumonia, despite others, without symptoms or history
of the patients. They utterly relied on blood test results and the
gold standard RT-PCR test. Their approach was based on three
classifiers: random forest decision tree, MLP neural network, and
Lasso-elastic-net regularized generalized linear models.

Feng et al. (30) investigated the data of 132 healthy individuals
and patients with COVID-19 containing information like vital
signs, epidemiological history of exposure, comorbidities, blood
routine values, and clinical symptoms. They used Adaboost,
LASSO, logistic regression with ridge regularization decision
Tree, and 10-fold cross-validation, and achieved an AUC of 0.84.

Wu et al. (31) examined 169 patients from multiple sources
(originally from Lanzhou city), from which 27 subjects had
COVID-19. Moreover, these patients were diagnosed with
different kinds of respiratory-related diseases (e.g., tuberculosis
and lung cancer). Based on the hematological and biochemical

parameters of their patients and a random forest decision tree
with 10-fold cross-validation, an AUC of 0.99 was obtained.

While CT scan machines and RT-PCR kits are not available
everywhere, blood tests are widely available and faster. Most
of the previous studies have ignored other types of pneumonia
infections even though not all patients with COVID-19
symptoms are infected; therefore, presumably, patients may
receive wrong medications based on previous methods. Our
goal here is to propose a reliable and practical method with a
suitable dataset.

This study described a clinically reliable CAD system for
distinguishing COVID-19 pneumonia from other types of
pneumonia and healthy individuals using blood tests, symptoms,
and comorbidities. The discrimination between COVID-19 and
distinct types of pneumonia is not a trivial task, as these airborne
diseases show similar symptoms (4). Hence, our research was
based on the Khorshid COVID Cohort (KCC) study (32), which
covered different kinds of pneumonia. Additionally, we used
the dataset from the studies presented by Zoabi et al. (21, 33)
and Banerjee et al. (29) for cross-validation and discrimination
between COVID-19 and healthy controls. Such datasets were also
used to compare our method with the state-of-the-art.

MATERIALS AND METHODS

This study presented a rapid COVID-19 detection system, which
is a clinically reliable model to be used in non-clinical settings,
based on blood test results and symptoms. Our methodology
consisted of feature selection, over-sampling, and ensemble
machine learning techniques. The model was developed and
evaluated on three datasets, described in the following section.

Datasets
We used three different sets of data, one containing a national
dataset including patients with COVID-19 and non-COVID-19
pneumonia [KCC study (32)], and its combinations with two
other public datasets (33, 34).

The first dataset was from the Khorshid COVID-19 Cohort
(KCC) study (32, 35, 36). KCC is a hospital-based surveillance
study to investigate COVID-19 and non-COVID pneumonia
patients since February 2020. Patient recruitment ended in late
August 2020. During this period, Khorshid Hospital in Isfahan
was the hot outbreak zone in central Iran.

Patients were diagnosed according to the WHO provisional
advice (37). Then, those with positive PCR or compatible chest
computed high-resolution CT (HRCT) were enrolled as the
case group, while patients with non-COVID pneumonia were
recruited as the control group. The study was conducted in two
parts: admission until discharge or death and follow-ups after
hospital discharge.

Demographics, medical history, underlying chronic diseases,
socioeconomic status (SES), Charlson Comorbidity Index (CCI),
signs, symptoms, chest computed tomographic (CT) scans,
laboratory findings, and treatments in the hospital were collected
for the control and case groups. On the whole, 55% of all 630
closely observed patients with COVID-19 died (36).
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The ethics committee of the Isfahan University of Medical
Sciences (IUMS) and other national authorities approved
the experimental protocol conforming to the Declaration
of Helsinki: [longitudinal epidemiologic investigation of the
characteristics of patients with coronavirus infection referring to
Isfahan Khorshid Hospital: IR.MUI.MED.REC.1399.029 (https://
ethics.research.ac.ir/EthicsProposalViewEn.php?id=127640),
and modeling of incidence and outcomes of COVID-19:
IR.MUI.RESEARCH.REC.1399.479 (https://ethics.research.ac.
ir/EthicsProposalViewEn.php?id=158927)]. The entire subjects
gave written informed consent to the experimental procedure.
It was given by the first relative family of patients with severe
conditions. No minors participated in our study. The sample

dataset was provided as follows on https://figshare.com/s/
fe311d566d580197cdf1.

The following blood markers were recorded: alanine
aminotransferase (ALT), alkaline phosphatase (ALP), aspartate
aminotransferase (AST), lactic dehydrogenase (LDH), C-
reactive protein (CRP), urea, platelet (PLT), neutrophils
(Neut), lymphocytes (Lymph), and white blood cell (WBC)
counts, Sodium (Na), hemoglobin, blood urea nitrogen (BUN),
potassium (K), blood creatinine (Cr), potassium (P), blood
calcium (Ca), and magnesium (Mg). In dataset 1, baseline blood
tests for patient with COVID-19 (case) and non-COVID-19
pneumonia (control) were used, in addition to demographics,
SES, medical history, and underlying chronic diseases.

FIGURE 1 | Flow of the proposed method for detection of patients with coronavirus disease-2019 (COVID-19). Dataset 1 is the Khorshid COVID-19 Cohort (KCC)

dataset. Dataset 2 is the combination of 600 subjects with COVID-19 subjects from the KCC dataset and 634 healthy subjects from the Israeli Ministry of Health (IHM)

dataset (21, 33). Dataset 3 is the combination of 634 subjects with COVID-19 from the KCC dataset and 598 healthy subjects from the Israelita Albert Einstein

Hospital (29, 34).
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We created the second dataset by mixing the 634 subjects
with COVID-19 to KCC with randomly selected 634 healthy
subjects from the Israeli Ministry of Health dataset (21, 33). The
following similar features were used: gender, age category (above
60 counted as 1 and below 60 as zero), cough details (dry cough
counted as 1 and others as zero), shortness of breath, headache,
sore throat, and body temperature (considered as positive if fever
was above 37.5◦), making it possible to compare our results with
the study presented by Zoabi et al. (21).

We also prepared the third dataset bymixing 634 subjects with
COVID-19 to KCC with 598 healthy subjects from the Israelita
Albert Einstein Hospital (29, 34). The following similar features
were used: WBC, PLT, CRP, LDH, Neut, and Lymph, making
it possible to compare our results with the study presented by
Banerjee et al. (29). Figure 1 illustrates the analyzed datasets and
the proposed algorithm.

Method
The first step toward processing data is either removing samples
withmissing values or imputing themissing values. For datasets 1
and 3, imputation was necessary because dropping samples with
few missing values could dramatically decrease the size of the
sample. The randomness of the missing data was analyzed before
imputation. One of the most common imputation methods is
the k-Nearest Neighbors algorithm (38, 39). The neighboring
samples were set to 3 to restrict copying to the closest similarity
(Figure 1). The mean, median, and mode of the features of
neighboring samples were used to impute missing values in the
interval, ordinal, and nominal features (40).

To make each category more comparable and avoid
prioritization, we replaced each categorical or ordinal column
with its binary encoded feature matrix known as one-hot
encoding (39, 41). The categorical features were then converted
into numerical variables by label encoding to perform standard
pattern recognition techniques.

Taking informative, discriminating, and stable features is
vital for devising a classification model (42). The stability
selection algorithm (42, 43), which we used in this study,
provided bootstrap data batches and used a baseline feature
selection algorithm. Then, the stability score for each feature was
calculated using the results of each bootstrap sample. In each
bootstrap step, we used logistic regression (44) to analyze feature
importance. In the end, features that improved the classification
accuracy in most of the iterations were selected as stable features.

Datasets 1 and 3 had imbalance, and minority classes needed
to be over-sampled only for the training procedure. We used
the ADASYN (45, 46) over-sampling method that uses weighted
distribution base on their learning difficulty. Without over-
sampling, the classifiers tend to ignore the minority class, and
this means that the cost function gets smaller only by fitting to
the majority class.

The ensemble model consisted of three voter classifiers,
XGBOOST, SVM, and gradient boosting classifier (47–49)
(Figure 1). Ensemble learning is a common way of looking at a
problem from different perspectives, predicting an outcome from
different approaches, and combining their predictions. In some
machine learning cases, only onemethodmight have a significant
error in parts of the dataset (50); ensemble learning brings

more generality and robustness to the mechanism of prediction.
XGBOOST (51) is an enhanced version of gradient boosted
decision trees (52), designed to increase speed and performance
by adding multiple regression trees and a stochastic gradient
boosting mechanism. SVM (53) maps data to higher dimensions
to find a hyperplane to classify samples.

We trained each model independently on the training set
during cross-validation. Thus, for every single test input, we
had three outputs from the classifiers. Consequently, the class
with the majority of the votes was the output of the ensemble
model. The hyperparameters of the models were tuned with
the grid search method in Scikit-Learn (39) on the training set.
The training set was split into estimation and validation with
internal 5-fold cross-validation to tune the free parameters. The
number of gradient boosting trees ranged between 200 and 1,200,
and the objective binary logistic function and AUC evaluation
metric were used for XGBOOST. The deviance loss function
and the Friedman Mean Square Error metric were used for the
gradient boost classifier, while the number of gradient boosting
trees ranged between 200 and 1,600. For the non-linear SVM
classifier, the radial basis function (RBF) kernel was used, and
the penalty and kernel parameters were tuned during internal
cross-validation. Noted that the objective or cost functions were
minimized for the XGBOOST or gradient boost classifier, and the
evaluation metric was used as the early stopping criterion.

Evaluation
We evaluated all the models with the 10-fold stratified cross-
validation method using the stratified K-fold (39). We performed
linear discriminant analysis (LDA) as a base classifier and
compared the performance of the proposed method with that
of the LDA classifier on different datasets. We used the cross-
validated confusion matrix instead of the confusion matrix of
each fold to ensure that all the results were without systematic
bias and error with the small dispersion index. In this study, we
reported the following indices to analyze the performance of the
classifiers: true positive (TP), subjects with COVID-19 correctly
identified; true negative (TN), subjects without COVID-19
correctly identified; false positive (FP), subjects without COVID-
19 incorrectly identified; and false negative (FN), COVID-19
incorrectly identified;

The following performance indices were then calculated:
Sensitivity or recall (Se or Rl, Equation 1); specificity (Sp,

Equation 2); precision (Pr, Equation 3); area under the receiver
operating characteristic (AUC, Equation 4) (54); accuracy (ACC,
Equation 5); Mathew Correlation Coefficient (MCC, Equation
6; a.k.a., phi coefficient) (55), the association between the
ground truth and the predicted class labels; F1S (F1 score) as
the harmonic mean of the sensitivity and precision (Equation
7); Kappa [K(c)] (56), agreement rate between the ground
truth and the predicted class labels (Equation 8); diagnosis
odds ratio (DOR; Equation 9); and discriminant power (DP;
Equation 10) (57, 58). The reference intervals of the indices
AUC, Kappa, MCC, and DP were provided by Marateb et al. (59)
(Supplementary Material S3).

Se =
TP

TP + FN
(1)
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Sp =
TN

TN + FP
(2)

Pr =
TP

TP + FP
(3)

AUC =
Se+ Sp

2
(4)

ACC =
TP + TN

TP + TN + FP + FN
(5)

MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

(6)

F1S =
2× Pr × Se

Pr + Se
(7)

K (c) =
2× (TP × TN − FP × FN)

(TP + FP) × (FP + TN) + (TP + FN) × (FN + TN)
(8)

DOR =
TP × TN

FP × FN
(9)

DP =

(

√

3

π

)

× log (DOR) (10)

Following the Standards for Reporting Diagnostic Accuracy
(STARD) (60) and Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis
(TRIPOD) (61) guidelines, the Confidence Interval (CI) 95% of
the performance indices were provided. It showed the precision
of the indices and indicated how the prediction from the analyzed
samples could be generalized to the entire population. Moreover,
a diagnosis system was considered clinically reliable (59, 62) if
the entire following conditions were met: The sensitivity higher
than 80%, the specificity, and precision higher than 95% (63, 64),
and DOR higher than 100 (65).

Statistical Analysis
Results were reported as frequencies (for categorical variables)
and mean ± standard deviation (for interval variables). For
interval features, those normally distributed in analyzed two
classes, Independent Samples t-test was performed. Otherwise,
and in ordinal features, the Mann–Whitney U-test was utilized.
The pairwise χ2 analysis was performed for nominal features,
and when the Cochran conditions were not met, the Fisher
exact test was performed. The McNemar’s test (66, 67) was
performed to compare the performance of the proposed and
the LDA classifiers on different datasets. P-values <0.05 were
considered significant. The statistical analysis was performed
using the IBM SPSS R© Statistics for Windows, version 22.0,
which was released in 2013 (IBM Corp., Armonk, NY,
United States). The classification was performed offline using
Python version 3.8.8 (Python Software Foundation, 501(c) (3)
non-profit organization).

RESULTS

The descriptive statistics of dataset 1 are provided in Table 1 for
the patients with COVID and non-COVID pneumonia. Overall,
41% of the patients were female, and the average age of the
patients was 57 ± 17 (years). Fourteen percent of the patients
were smoker, 36% were hypertensive, and 27% had diabetes.
Based on the univariate analysis (Table 1), significant differences

TABLE 1 | Descriptive statistics of dataset 1.

Non-COVID

pneumonia

(N = 118)

COVID-19

pneumonia

(N = 634)

P-value OR

(CI 95%)

Age (years)

Mean (SD) 61.7 (18.3) 57.0 (15.4) 0.009 –

Gender

Male 56 (47.5%) 389 (61.4%) 0.007 1.76

1.18–2.61

Female 62 (52.5%) 245 (38.6%)

Occupation

Yes 41 (34.7%) 326 (51.4%) 0.001 1.99

1.32–2.99

No 77 (65.3%) 308 (48.6%)

Marriage status

Single 10 (8.5%) 21 (3.3%) 0.035 –

Married 107 (90.7%) 608 (95.9%) –

Divorced or widowed 1 (0.8%) 5 (0.8%) –

Symptom’s duration (day)

Mean (SD) 6.11 (6.04) 7.97 (5.71) 0.002 –

Smoking status

Yes 23 (19.5%) 82 (12.9%) 0.081 0.61

0.37–1.02

No 95 (80.5%) 552 (87.1%)

Contact with confirmed

COVID-19 cases

Yes 4 (3.4%) 95 (15.0%) 0.001 5.02

1.81–13.94

No 114 (96.6%) 539 (85.0%)

Quarantine before

admission

Yes 110 (93.2%) 589 (92.9%) 1 0.95

0.44–2.07

No 8 (6.8%) 45 (7.1%)

Comorbidities

Ischemic heart disease

Yes 27 (22.9%) 91 (14.4%) 0.028 0.56

0.35–0.92

No 91 (77.1%) 543 (85.6%)

Hypertension

Yes 53 (44.9%) 221 (34.9%) 0.048 0.66

0.44–0.98

No 65 (55.1%) 413 (65.1%)

Chronic kidney disease

Yes 5 (4.2%) 18 (2.8%) 0.604 0.66

0.24–1.81

No 113 (95.8%) 616 (97.2%)

COPD

Yes 10 (8.5%) 13 (2.1%) <0.001 0.23

0.10–0.53

No 108 (91.5%) 621 (97.9%)

Cancer

Yes 3 (2.5%) 15 (2.4%) 1 0.93

0.26–3.26

No 115 (97.5%) 619 (97.6%)

(Continued)
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TABLE 1 | Continued

Non-COVID

pneumonia

(N = 118)

COVID-19

pneumonia

(N = 634)

P-value OR

(CI 95%)

Chronic respiratory disease

Yes 27 (22.9%) 56 (8.8%) <0.001 0.33

0.20–0.54

No 91 (77.1%) 578 (91.2%)

Other comorbidities

Yes 47 (39.8%) 143 (22.6%) <0.001 0.44

0.29–0.66

No 71 (60.2%) 491 (77.4%)

CCI

Mean (SD) – 2.25 (2.10) – –

Signs and symptoms

Sneeze

Yes 4 (3.4%) 56 (8.8%) 0.069 2.76

0.98–7.77

No 114 (96.6%) 578 (91.2%)

Runny nose

Yes 10 (8.5%) 73 (11.5%) 0.419 1.41

0.70–2.81

No 108 (91.5%) 561 (88.5%)

Body temperature (◦C)

Mean (SD) 37.1 (1.10) 37.5 (1.10) <0.001 –

Fatigue

Yes 73 (61.9%) 482 (76.0%) 0.002 1.95

1.29–2.96

No 45 (38.1%) 152 (24.0%)

Cough details

Other 41 (34.7%) 117 (18.5%) <0.001 0.43

0.28–0.65

Dry 77 (65.3%) 517 (81.5%)

Nausea

Yes 43 (36.4%) 269 (42.4%) 0.267 1.29

0.86–1.93

No 75 (63.6%) 365 (57.6%)

Decreased appetite

Yes 70 (59.3%) 508 (80.1%) <0.001 2.76

1.82–4.19

No 48 (40.7%) 126 (19.9%)

Weight loss

Yes 27 (22.9%) 268 (42.3%) <0.001 2.47

1.56–3.90

No 91 (77.1%) 366 (57.7%)

Chills

Yes 64 (54.2%) 457 (72.1%) <0.001 2.18

1.46–3.26

No 54 (45.8%) 177 (27.9%)

Headache

Yes 39 (33.1%) 306 (48.3%) 0.003 1.89

1.25–2.86

No 79 (66.9%) 328 (51.7%)

Shortness of breath

Yes 83 (70.3%) 440 (69.4%) 0.925 0.96

0.62–1.47

(Continued)

TABLE 1 | Continued

Non-COVID

pneumonia

(N = 118)

COVID-19

pneumonia

(N = 634)

P-value OR

(CI 95%)

No 35 (29.7%) 194 (30.6%)

Influenza vaccine

Yes 8 (6.8%) 22 (3.5%) 0.153 0.49

0.21–1.14

No 110 (93.2%) 612 (96.5%)

Diabetes

Yes 32 (27.1%) 172 (27.1%) 1 1.00

0.64–1.56

No 86 (72.9%) 462 (72.9%)

Diarrhea

Yes 21 (17.8%) 200 (31.5%) 0.004 2.13

1.29–3.51

No 97 (82.2%) 434 (68.5%)

Sore throat

Yes 21 (17.8%) 134 (21.1%) 0.484 1.24

0.74–2.06

No 97 (82.2%) 500 (78.9%)

Vomiting

Yes 27 (22.9%) 178 (28.1%) 0.293 1.32

0.83–2.09

No 91 (77.1%) 456 (71.9%)

Abdominal pain

Yes 19 (16.1%) 123 (19.4%) 0.476 1.25

0.74–2.13

No 99 (83.9%) 511 (80.6%)

Body pain

Yes 59 (50.0%) 446 (70.3%) <0.001 2.37

1.59–3.54

No 59 (50.0%) 188 (29.7%)

Vital symptoms

Pulse rate (per min)

Mean (SD) 98.1 (20.3) 96.0 (16.4) 0.294 –

Respiratory rate (per min)

Mean (SD) 23.2 (5.48) 21.9 (5.19) 0.019 –

Oxygen saturation (%)

Mean (SD) 86.8 (8.39) 89.3 (7.19) 0.003 –

Systolic blood pressure (mmHg)

Mean (SD) 139 (24.4) 133 (19.5) 0.016 –

Diastolic blood pressure

(mmHg)

Mean (SD) 83.1 (15.3) 82.0 (28.5) 0.559 –

Laboratory findings

White blood cell count

(×10e9/L)

Mean (SD) 9.71 (8.16) 6.13 (3.01) <0.001 –

Neutrophil count (×10e9/L)

Mean (SD) 7.51 (14.5) 7.35 (11.2) 0.247 –

Lymphocyte count (×10e9/L)

Mean (SD) 1.76 (11.10) 2.07 (9.65) 0.006 –

Platelet count (×10e9/L)

Mean (SD) 203 (91.7) 191 (70.9) 0.186 –

(Continued)
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TABLE 1 | Continued

Non-COVID

pneumonia

(N = 118)

COVID-19

pneumonia

(N = 634)

P-value OR

(CI 95%)

Hemoglobin (g/dL)

Mean (SD) 12.7 (2.48) 13.3 (1.75) 0.018 –

CRP (mg/L)

Mean (SD) 35.2 (21.9) 35.3 (17.4) 0.978 –

LDH (U/L)

Mean (SD) 1,100

(1,050)

886 (592) 0.035 –

AST (U/L)

Mean (SD) 60.4 (171) 46.6 (46.3) 0.386 –

ALT (U/L)

Mean (SD) 60.1 (290) 33.9 (44.5) 0.328 –

ALP (U/L)

Mean (SD) 192 (88.7) 177 (96.0) 0.101 –

Na (meq/L)

Mean (SD) 136 (4.13) 135 (3.38) 0.011 –

K (mmol/L)

Mean (SD) 3.92 (0.59) 3.78 (0.42) 0.019 –

Ca (mg/dL)

Mean (SD) 8.72 (0.88) 8.53 (0.70) 0.030 –

P (mg/dL)

Mean (SD) 3.35 (1.21) 2.94 (0.73) <0.001 –

Mg (mg/dL)

Mean (SD) 1.94 (0.22) 1.95 (0.24) 0.914 –

BUN (mg/dL)

Mean (SD) 23.80

(18.00)

19.50

(13.60)

0.016 –

Cr (mg/dL)

Mean (SD) 1.43 (1.43) 1.20 (0.99) 0.093 –

PH

Mean (SD) 7.33 (0.09) 7.36 (0.06) <0.001 –

PCO2 (mmHg)

Mean (SD) 50.6 (15.8) 44.4 (9.38) <0.001 –

ESR (mm/h)

Mean (SD) 42.3 (28.1) 48.0 (26.4) 0.045 –

OR, odds ratio; CI, confidence interval.

were found in the variables age, gender, occupation, marriage
status, symptom duration, contact with confirmed COVID-19
cases, history of ischemic heart disease, hypertension, chronic
obstructive pulmonary disease (COPD), chronic respiratory
disease, other comorbidities, body temperature, nausea,
decreased appetite, weight loss, chills, headache, diarrhea, body
pain, respiratory rate, oxygen saturation, systolic blood pressure,
white blood cell count, lymphocyte count, hemoglobin, LDH,
Na, K, Ca, P, BUN, PH, PCO2, and ESR among the patients
with COVID and non-COVID pneumonia. Other comorbidities
were defined as having comorbidities except for hypertension,
diabetes, heart failure, percutaneous coronary intervention
(PCI), coronary artery bypass graft (CABG), ischemic heart

TABLE 2 | Descriptive statistics of the dataset 2.

Non-COVID

(N = 634)

COVID-19

(N = 634)

P-value OR (CI 95%)

Age category (years)

>60 89 (14.0%) 276 (43.5%) <0.001 4.72

3.59–6.21

≤60 545 (86.0%) 358 (56.5%)

Gender

Male 291 (45.9%) 389 (61.4%) <0.001 1.87

1.50–2.34

Female 343 (54.1%) 245 (38.6%)

Cough category

Other 600 (94.6%) 117 (18.5%) <0.001 0.01

0.01–0.02

Dry 34 (5.4%) 517 (81.5%)

Shortness of breath

Yes 1 (0.2%) 440 (69.4%) <0.001 –

No 633 (99.8%) 194 (30.6%)

Headache

Yes 1 (0.2%) 306 (48.3%) <0.001 –

No 633 (99.8%) 328 (51.7%)

Sore throat

Yes 3 (0.5%) 134 (21.1%) <0.001 56.37

17.84–178.06

No 631 (99.5%) 500 (78.9%)

Fever (body temperature

> 37.5◦C)

Yes 14 (2.2%) 308 (48.6%) <0.001 41.84

24.09–72.68

No 620 (97.8%) 326 (51.4%)

disease (IHD), cardiovascular disease (CVD), chronic respiratory
diseases (CRDs), COPD, being immunocompromised, cancer,
chronic kidney disease (CKD), having organ transplantation,
hyperkeratosis lenticularis perstans (HLP), end-stage renal
disease (ESRD), and hypothyroidism.

The descriptive statistics of dataset 2 are provided in Table 2

for the patients with COVID-19 and control subjects. All the
variables had significant differences between the patients with
COVID-19 and control subjects. Since the variables of the control
group of dataset 3 were normalized (29, 34) and the original
values were not available, a descriptive table was not provided for
dataset 3.

The selected features of datasets 1, 2, and 3, and their
importance (weights between zero and 1) by the proposed
algorithm are listed in Table 3. The most important features
were WBC, shortness of breath, and CRP in datasets 1, 2, and
3, respectively.

The performance of the proposed algorithm and the LDA
classifier on datasets 1, 2, and 3 is shown in Table 4. Such
indices were provided in the cross-validated confusion matrix.
The system is clinically reliable on datasets 1 and 2, while it
is not reliable on dataset 3 because of a Type I error of 0.1,
false discovery rate (FDR) of 0.09, and DOR of 67.8. It showed
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excellent balanced diagnosis accuracy (AUC ≥ 0.9), excellent
class labeling agreement rate with the PCR test [K(c) ≥ 0.75],
high/very high correlation between predicted and observed class

TABLE 3 | Selected features of datasets 1, 2, and 3, along with their importance

(shown as weights between zero and 1) using the proposed algorithm.

Dataset 1 Dataset 2 Dataset 3

Feature Weight Feature Weight Feature Weight

WBC 1.000 Shortness of

breath

1.000 CRP 1.000

PCO2 0.995 Cough details 0.539 WBC 0.322

Decreased

appetite

0.957 Headache 0.111 LDH 0.215

Contact with

conformed

COVID-19 patients

0.947 Body

temperature

0.034 Neutrophils 0.158

Cough details 0.914 Age 0.026 PLT 0.157

Other

comorbidities

0.901 Sore throat 0.025 Lymphocytes 0.127

P 0.882 Gender 0.004

Myalgia 0.862

Body temperature 0.846

Chronic respiratory

disease

0.825

Symptom duration 0.819

COPD 0.782

Occupation 0.780

Gender 0.777

Na 0.775

LDH 0.772

HB 0.748

Weight loss 0.747

Chills 0.709

Diarrhea 0.674

ESR 0.625

SatO2 0.5928

labels (MCC ≥ 0.7), and fair discriminant power (3> DP ≥ 2)
for datasets 1 and 2. Note that the performance of the proposed
algorithm was significantly better than that of the LDA classifier
on datasets 1 (P < 0.001), 2 (P < 0.01), and 3 (P < 0.001).
Moreover, the average performance of the proposed algorithm
and the LDA classifier on the test folds is provided in Table 5,
showing the reproducibility of the results.

Also, the random accuracy of the datasets was estimated by
random assignment of classes, considering the prevalence of
the minority class. Ten thousand simulations were performed.
The range (mean) of the obtained random accuracies was 68–
79 (74%), 43–56 (50%), and 44–56% (50%) for datasets 1, 2,
and 3, respectively. The obtained accuracy of the proposed
method and the LDA classifier was 96, 78 (dataset 1), 97, 96
(dataset 2), and 93, 56% (dataset 3) on the cross-validated
confusion matrix. Except for the results of the LDA classifier on
datasets 1 and 3, the other results were higher than the random
classification thresholds.

DISCUSSION

During the pandemic, morbidity andmortality can be reduced by
early prediction of population infection risks, ensuring efficient
treatment planning and resource allocation. A high patient load
is prevented by rapid disease diagnosis. Highermortality rates are
an essential consequence of an overloaded medical system due to
inefficient management of limited medical resources.

This study constructed a prediction model trained using
the cohort in KCC. It accurately forecasted infection cases
in comparison with both pneumonia (dataset 1) and healthy
subjects (datasets 2 and 3) (Table 4). There are some studies
in the literature for COVID-19 diagnosis (68). However, to
the best of our knowledge, no similar study was performed
to classify COVID-19 and non-COVID pneumonia, without
using image processing methods on CT-scan results. Moreover,
the cross-validation method used in our study guarded

TABLE 4 | Performance of the proposed algorithm and linear discriminant analysis (LDA) classifier on datasets 1, 2, and 3, based on the results of cross-validated

confusion matrix.

Dataset Classifier Indices Se Sp PPV NPV AUC MCC F1S DOR DP K(c)

Dataset 1 Proposed Value 0.96 0.95 0.99 0.82 0.96 0.87 0.98 495.88 2.63 0.86

CI 95% 0.94–0.98 0.90–0.99 0.98–1 0.76–0.89 0.94–0.97 0.85–0.88 0.95–1 197.46–1245.30 2.24–3.02 0.81–0.91

LDA Value 0.81 0.61 0.92 0.37 0.71 0.35 0.86 6.57 0.80 0.33

CI 95% 0.78–0.84 0.52–0.70 0.89–0.94 0.30–0.44 0.66–0.75 0.28–0.41 0.83–0.89 4.32–9.99 0.62–0.98 0.24–0.42

Dataset 2 Proposed Value 0.96 0.97 0.97 0.97 0.97 0.94 0.97 952.00 2.91 0.94

CI 95% 0.95–0.98 0.96–0.98 0.96–0.98 0.95–0.98 0.96–0.98 0.93–0.94 0.96–0.98 505.57–1792.64 2.64–3.18 0.91–0.96

LDA Value 0.94 0.97 0.97 0.94 0.95 0.90 0.95 422.20 2.57 0.90

CI 95% 0.92–0.96 0.95–0.98 0.95–0.98 0.92–0.95 0.94–0.96 0.90–0.91 0.94–0.97 246.54–722.99 2.34–2.80 0.88–0.93

Dataset 3 Proposed Value 0.94 0.91 0.90 0.94 0.92 0.85 0.92 156.35 2.14 0.85

95% CI 0.92–0.96 0.89–0.93 0.88–0.93 0.93–0.96 0.91–0.94 0.83–0.86 0.90–0.94 101.03–241.33 1.96–2.33 0.82–0.88

LDA Value 0.56 0.55 0.39 0.71 0.56 0.11 0.46 1.60 0.20 0.10

CI 95% 0.51–0.61 0.52–0.59 0.35–0.43 0.68–0.75 0.52–60 0.01–0.17 0.42–0.50 1.26–2.02 0.10–0.30 0.05–0.16

CI, confidence interval; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the ROC; MCC, Matthews Correlation Coefficient;

F1S, F1 score; DOR, diagnostic odds ratio; DP, discriminant power; K(c), Cohen’s Kappa.
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TABLE 5 | Performance of the proposed algorithm and LDA classifier on datasets 1, 2, and 3 over the test folds during cross-validation in mean ± standard deviation (SD).

Dataset Indices

classifier

Se Sp PPV NPV AUC MCC F1S DOR DP K(c)

Dataset 1 Proposed 0.96 ± 0.02 0.95 ± 0.04 0.99 ± 0.01 0.83 ± 0.06 0.96 ± 0.02 0.87 ± 0.05 0.98 ± 0.01 423.18 ± 279.76 2.51 ± 0.30 0.86 ± 0.05

LDA 0.79 ± 0.02 0.62 ± 0.03 0.92 ± 0.01 0.35 ± 0.03 0.70 ± 0.02 0.33 ± 0.04 0.85 ± 0.01 6.17 ± 1.35 0.77 ± 0.09 0.31 ± 0.04

Dataset 2 Proposed 0.96 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.96 ± 0.02 0.97 ± 0.01 0.94 ± 0.02 0.97 ± 0.01 1050.30 2.95 ± 0.07 0.94 ± 0.02

LDA 0.97 ± 0.02 0.94 ± 0.03 0.94 ± 0.02 0.97 ± 0.02 0.95 ± 0.01 0.90 ± 0.03 0.95 ± 0.01 440.60 ± 29.35 2.58 ± 0.03 0.90 ± 0.03

Dataset 3 Proposed 0.90 ± 0.04 0.94 ± 0.02 0.94 ± 0.02 0.91 ± 0.03 0.92 ± 0.02 0.85 ± 0.04 0.92 ± 0.2 258.38 ± 328.30 2.20 ± 0.31 0.85 ± 0.04

LDA 0.39 ± 0.06 0.71 ± 0.08 0.57 ± 0.07 0.55 ± 0.03 0.55 ± 0.04 0.11 ± 0.09 0.46 ± 0.6 1.78 ± 0.82 0.20 ± 0.18 0.11 ± 0.09

CI, confidence interval; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the ROC; MCC, Matthews Correlation Coefficient;

F1S, F1 score; DOR, diagnostic odds ratio; DP, discriminant power; K(c), Cohen’s Kappa.

against testing hypotheses suggested by the data [type III
errors (69)].

The combination of the PCR and CT-scan results was used
as the ground truth in our study. It was shown that the PCR
test is not 100% correct to be considered as gold standard (70).
Mainly, it was shown to have a false negative rate (FNR) ranging
from 0.018 to 0.58, with a median of 0.11 (71), in addition to a
sensitivity of 83.3% (15). It was recommended to combine the
results of PCR and CT-scan with improving the ground truth for
COVID-19, mainly to improve the FNR of the PCR test (72, 73).

Notably, three different datasets related to control individuals
in comparison with our COVID-19 dataset were observed in
this analysis.

In the first round, COVID-19 diagnosis compared with
pneumonia model performance showed very good results using
22 pre-admission and hospital-based characteristics (Table 4).
The analyses of this study highlighted three non-invasive
features: WBC (weight of 1), PCO2 (0.99), and contact with
confirmed COVID-19 cases (0.95).

However, CT scan has become the primary gold standard
for screening COVID-19 cases; however, it cannot be used to
identify specific viral infections (74). Furthermore, some patients
with COVID-19 can also present with standard CT imaging
in the early stage (74). Thus, clinical symptoms, pre-admission
variables, and laboratory tests can be more specific for early
COVID-19 infection. According to studies, the most common
early symptoms of COVID-19 were cough, fever, myalgia, and
diarrhea (75). The results of weighted features in our study
presented that cough (w= 0.91) and myalgia (w= 0.86) were the
two most essential symptom predictors after decreased appetite.

There are some studies in the literature that used similar
features for COVID-19 diagnosis. Long et al. (6) reported that
WBC and body temperature were good factors in uncovering the
COVID-19 infection. Another study by Brinati et al. (18) also
showed that LDH and WBC were essential features. Moreover,
Gongj and Qiu (76) illustrated that LDH was one of the good
features for predicting severe COVID-19. Likewise, Goodman-
Meza et al. (19) reported gender, HB, and LDH as essential
features related to COVID-19 infection.

In the second round, we developed our predictive models for
diagnosing patients with COVID-19 and healthy control subjects
with the eight standard non-invasive features used in Zoabi et al.

(21). Our joint model provides rapid and accurate predictions
using seven features. While shortness of breath (w = 1) and
cough details (w = 0.54), were the most critical features in our
analysis for dataset 2 (Table 3), cough details and fever were the
essential features in Zoabi et al. (21). In fact, the performance of
the proposed method was higher in dataset two compared with
dataset 1 in almost all the indices (Table 4), knowing that only
eight demographic and symptom features were used in dataset 2
compared with the 22 selected features in dataset 1 (Table 3). It
primarily showed that the classification of COVID-19 was more
difficult with non-COVID pneumonia (dataset 1) compared
with healthy control subjects (dataset 2). In fact, when we used
reduced feature sets for dataset 1, the performance significantly
dropped. Also, comparing datasets 1 and 2, shortness of breath
and sore throat were not statistically significant between COVID-
19 and non-COVID-19 pneumonia (Table 1), while they were
statistically significant between COVID-19 and healthy control
subjects (Table 2). It showed the similarity of the characteristics
of dataset 1 compared with dataset 2 for standard features.

In the last round, using another dataset related to six invasive
laboratory variables (29, 34), our results revealed that invasive
features showed an overall good prediction capacity between
COVID-19 patients and healthy people (Table 4). However,
the results were not as good as those obtained on datasets 1
and 2, showing that symptoms added valuable information to
blood tests for screening. Moreover, among the six variables,
neutrophil, platelet counts, and CRP were not statistically
significant in dataset 1 (Table 1), showing that patients with
COVID-19 and non-COVID-19 pneumonia showed similar
features based on 50% of the laboratory variables used in
dataset 3. This difference in prediction criteria reached lower
sensitivity, specificity, and AUC using invasive characteristics
compared with the model using non-invasive variables. It might
be because invasive biomarkers have a distinct temporal dynamic
behavior (13).

Both CT-scan and laboratory-based methods share the main
limitation when applied to the population. For cases such as
COVID-19 infection, where the prevalence of the disease (i.e.,
the minority class) is low in the population, the performance
of the diagnosis methods drops. It happens especially when the
analyzed imbalanced test datasets are balanced. For example,
Sun et al. designed a diagnosis method based on CT-scan image
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processing and reached 93 and 90% sensitivity and specificity,
respectively, to discriminate between COVID and non-COVID
pneumonia (25). Considering the prevalence of 14% of COVID-
19 (77), it is possible to use Bayes’ theorem to predict the true PPV
andNPV of the diagnosis method when applied to the population
(Equations 11, 12) (78):

PPV =
Se× P

Se× P +
(

1− Sp
)

× (1− P)
(11)

NPV =
Sp× (1− P)

Sp× (1− P)+ (1− Se) × P
(12)

where P is the prevalence of COVID-19. The parameter PPV
is also the probability of having COVID-19 when the proposed
diagnosis test is positive. Similarly, NPV is the probability of not
having COVID-19 when the proposed diagnosis test is negative.
For this example, the estimated PPV and NPV were 60 and 99%.
When examining our proposed method, the true PPV and NPV
were 75 and 99%. Thus, the performance of the proposedmethod
must be improved to be used in clinical practice. Noted that such
a problem is similar to many other areas in which the prevalence
of the minority class is very low (79).

Indeed, key laboratory features, such as LDH, CRP, WBC,
and PLT, have high temporal dynamicity, and in a relatively
short time, they rise and return to their normal range
(80). Additionally, laboratory variable abnormalities only show
disruptions in body systems linked to many infectious diseases.
In contrast, many non-invasive features, such as symptoms and
age, contain a substantial amount of less dynamic data.

We proposed that a prediction model can be used for
risk assessment to notify high-risk subjects for receiving the
complementary RT-PCR test. A promising area for future
research is to analyze the combined performance of the new
rapid clinical application diagnosis system, machine learning
algorithms, and new biomarkers (81).

Nevertheless, this study still had several limitations. First, the
major participants were from Isfahan province. Furthermore,
nationwide studies are needed to access the best generality of
the suggested model. Moreover, because of the inaccessibility of
the data of healthy control subjects, control subjects from other
studies (21, 29) were also used in datasets 2 and 3. The KCC
dataset was mainly limited to alpha variants of COVID-19 (32),
and it is necessary to perform extra validation on other mutants
to assess its performance (82). Also, preparing the COVID-19
diagnosis risk chart, which is a valuable tool, is the focus of our
feature study. Finally, the RT-PCR and chest CT-scan used as
gold standard are not 100% accurate, and the agreement rate
(Cohen’s Kappa) reported in the study is, thus, a better index than
traditional predictive indices (83).

CONCLUSION

In conclusion, we designed a reliable computer-aided diagnosis
system to classify patients with COVID-19 from non-COVID

pneumonia. Demographics, symptoms, and blood tests were used
in the proposed system. The proposed system is a promising
screening tool for COVID-19.
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