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1  |  INTRODUC TION

Currently, breast cancer ranks first in the incidence of female cancer, 
accounting for 30% of the new female cancer population around the 
world, and its incidence is increasing year by year.1 Human epidermal 
growth factor receptor 2 (HER2)-positive breast cancer, one type of 
breast cancer that overexpresses HER2, accounts for approximately 

20% of breast cancers and tends to be more aggressive.2 Previous 
report have shown that breast cancer with overexpression of the 
HER2 gene has higher malignancy, earlier recurrence, metastasis 
and a poor prognosis, which significantly affects the disease-free 
survival rate.2 Although trastuzumab plus adjuvant chemotherapy 
treatment has markedly enhanced the efficacy of therapy for this 
type of breast cancer, the high rate of trastuzumab resistance limits 
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Abstract
Human epidermal growth factor receptor 2 (HER2)-positive is a particularly aggres-
sive type of the breast cancer. Trastuzumab-based therapy is a standard treatment 
for HER2-positive breast cancer, but some patients are resistance to the therapy. 
There are no known diagnostic biomarkers to improve the early diagnosis of HER2-
positive breast cancer and the clinical utility of trastuzumab therapy. Using ultrahigh-
performance liquid time of flight mass spectrometry (UPLC-TOF-MS)-based serum 
metabolomics and multivariate statistical analysis, we investigated and identified the 
circulating metabolites L-arginine and arachidonic acid were elevated in trastuzumab-
responsive and trastuzumab-resistant HER2-positive breast cancer patients, and 
increased until reaching their peaks in trastuzumab-resistant HER2-positive breast 
cancer patients. Moreover, an equation for assessing the risk scores based on lin-
ear logistic regression models involving L-arginine and arachidonic acid was created, 
which was beneficial for revealing metabolic changes in HER2-positive breast cancer 
and enhancing current trastuzumab-based therapy. In summary, we develop serum-
based metabolic biomarkers for diagnosis of HER2-positive breast cancers and pre-
dicts the therapeutic effects of trastuzumab therapy.
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its application.3,4 However, there are no known diagnostic biomark-
ers to improve the early diagnosis of HER2-positive breast cancer 
and the clinical utility of trastuzumab therapy.

Cancer-related liquid biopsy biomarkers can demonstrate the 
occurrence, progression and prognosis of cancers and are of great 
value for the early diagnosis of cancers, prediction of treatment re-
sponse, and prognostic monitoring.5 Metabolomics has emerged as 
a powerful analytical tool to provide new discoveries, and modern 
analysis methods are being used to study metabolic biomarkers re-
lated to diseases for clinical applications and to detect their abnor-
mal changes in the living body.6 As active modulators of gene and 
protein activity, metabolites have been widely adopted to investi-
gate metabolic mechanisms underlying cancer occurrence, to eval-
uate treatment efficacy and monitor the prognosis to provide new 
diagnostic ideas and guide the development of better therapeutic 
strategies.7 However, to the authors’ knowledge, untargeted metab-
olomic investigation of serum metabolites has not been thoroughly 
conducted.

In our work, we used ultrahigh-performance liquid time of flight 
mass spectrometry (UPLC-TOF-MS)-based serum metabolomics 
and multivariate statistical analysis to investigate the circulating 
metabolite profiling of HER2-positive breast cancer. L-arginine 
and arachidonic acid were elevated in trastuzumab-responsive and 
trastuzumab-resistant HER2-positive breast cancer patients, and 
increased until reaching their peaks in trastuzumab-resistant HER2-
positive breast cancer patients. Moreover, an equation for assessing 
the risk scores based on linear logistic regression models involving 
L-arginine and arachidonic acid was created, which was beneficial 
for revealing metabolic changes in HER2-positive breast cancer and 
enhancing current trastuzumab-based therapy. These unique circu-
lating metabolites in serum not only uncover the molecular char-
acteristics of HER2-positive breast cancer patients but also enable 
personalized therapy.

2  |  MATERIAL S AND METHODS

2.1  |  Serum samples

Before surgery or drug therapy, blood specimens were collected at 
Jiangsu Cancer Hospital (Nanjing, China) between June 2019 and 
February 2021 after written consent was obtained from all HER2-
positive breast patients and healthy donors who were regarded as 
normal control subjects. The status of HER2 in all patients was as-
sessed according to standard HER2 testing. All procedures were re-
viewed and approved by the ethics committee of the hospital and 
were conducted in accordance with the Declaration of Helsinki. 
Trastuzumab primary resistance and sensitivity subgroups were de-
fined according to our previous work.8 Blood samples were drawn 
from the elbow vein in the fasting state in the morning and stored 
in ethylenediaminetetraacetic acid vacuum tubes (BD Vacutainer, 
Franklin Lakes, NJ, USA) and then centrifuged at 1300 g for 10 min 

at 4°C. The serum was immediately separated and stored at −80°C 
until analysis.

2.2  |  Sample extraction and handling

One hundred microliters of serum samples stored at −80°C were 
taken after slow dissolution at 4°C. Then, 400 μL precooled meth-
anol was added and vortexed for 60  s. After precipitating the 
protein for 1 h at −20°C, the samples were subjected to centrifu-
gation for 20 min at 16,000 rpm at 4°C. Supernatants were taken 
and freeze-dried followed by storage at −80°C until metabolomics 
analysis.

2.3  |  Metabolite profile analysis and metabolite 
identification

The supernatants were separated by a 1290 Infinity LC System with 
a C18 chromatographic column and then analyzed by an AB SCIEX 
TripleTOF 5600 mass spectrometer by Clinical Mass Company 
(Nanjing, China). General conditions were set as follows: column 
temperature, 40°C; flow rate, 0.4  ml/min; mobile phase A, 0.1% 
formic acid in water, B: 0.1% formic acid in acetonitrile. The gradi-
ent elution procedure was as follows: 0–1 min, B linearly changed 
from 90% to 70%; 1–19 min, B linearly changed from 70% to 5%; 
19–20 min, B was maintained at 5%; 20–25 min, B was maintained at 
95%; and the sample was placed in a 4°C autosampler during the en-
tire analysis. Quality control (QC) samples, which were prepared by 
mixtures of aliquots of samples, were inserted into the sample queue 
to monitor and evaluate the stability of the system and the reliability 
of the experimental data. Information-dependent acquisition (IDA) 
for both positive and negative ion modes was applied. The collision 
energy, declustering potential, and ion spray voltage were set to 30, 
80, +5200 V for positive mode, while −30, −50 and −5200 V were set 
for negative mode with the same mass range from 50 to 1700 m/z. 
The other source parameters, including ion source gas 1, ion source 
gas 2, curtain gas and drying temperature, were set at 40, 45, 30 psi, 
and 550°C, respectively.

2.4  |  Data analysis

The original data were converted into mzML format, and then the 
MSdial program was applied for peak alignment, retention time 
correction and peak area extraction. Accurate mass matching and 
secondary spectrum matching methods to search public databases 
were performed for metabolite structure identification. After data 
preprocessing, unsupervised principal component analysis (PCA) 
analysis and orthogonal partial least squares discriminant analysis 
(OPLS-DA) were applied with the MSdial program for multidimen-
sional statistical analysis.
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2.5  |  Metabolic network analysis and metabolic 
pathway analysis

Through logarithmic conversion and automatic scaling, metabolites 
with significantly altered MS signal intensities were introduced to 
the calculation of the Pearson correlation coefficient. Metabolic 
network analysis based on the correlation was performed using 
Cytoscape 3.7. In addition, metabolic pathways influenced by me-
tabolites were analyzed using MetaboAnalyst software (http://
www.metab​oanal​yst.ca).

2.6  |  Statistical processing

Data are expressed as the mean ±standard deviation and were an-
alyzed using SPSS 22.0 (SPSS, Chicago, IL, USA). Continuous data 
were compared by Student's t test or the Mann–Whitney U test. 
An equation for assessing the risk scores based on linear logistic re-
gression models was created, and its sensitivity and specificity were 
assessed by constructing receiver operating characteristic (ROC) 
curves. p < 0.05 was considered statistically significant.

3  |  RESULTS

3.1  |  Demographic and clinical characteristics of 
enrolled samples

A total of 20 HER2-positive breast cancer patients and 30 normal 
controls were recruited. The 30 people in the normal control group 
were all in the normal range under the available detection meth-
ods. Age and sex were not comparable between the HER2-positive 
breast cancer patients and normal controls. According to the 
National Comprehensive Cancer Network (NCCN) guidelines, the 
pathological grading status of HER2-positive breast cancer ranges 
from I to III. In the HER2-positive breast cancer group, eight patients 
with disease progression were regarded as trastuzumab resistant, 
while 12 patients with a pathologically complete response were de-
fined as trastuzumab responsive. Detailed demographic and clinical 
characteristics of the participants are shown in Table 1.

3.2  |  Metabolomics workflow

Figure 1 briefly represents the entire workflow of the metabolomics 
research. We collected serum from HER2-positive breast cancer 
patients and normal controls. The metabolomics products were 
extracted from the serum and analyzed by UPLC-TOF-MS. In gen-
eral, characteristic features were consistently measured in all serum 
samples, including ESI+ and ESI− modes. The interpretation of these 
data was carried out through a set of bioinformatics tools. First, 
PCA and OPLS-DA were applied to analyze the metabolomics and 
abundance of each sample of MS-related results. The difference in 

metabolic features between HER2-positive breast cancer and nor-
mal controls was carried out to provide a total view. Volcano maps 
and heat maps were generated from statistically significant ex-
tracted metabolic features and dysregulated metabolites, which met 
the criteria of downregulation to fold change <0.67 or fold change 
>1.5, VIP > 1.0 and p value < 0.05. Then, we conducted metabolic 
network analysis through correlation and pathway enrichment to 
investigate the biological significance. L-Arginine and arachidonic 
acid were upregulated in trastuzumab-responsive and trastuzumab-
resistant HER2-positive breast cancer patients, and increased until 
reaching their peaks in trastuzumab-resistant HER2-positive breast 
cancer patients. A diagnostic risk equation was then created based 
on their linear regression models, and their correlation with the oc-
currence of HER2-positive breast cancer and clinical trastuzumab 
therapy outcome data were assessed.

TA B L E  1 Detailed demographics of enrolled participants

Characteristics
Normal control 
(n = 30)

Breast cancer 
(n = 20)

Age-years

Median (range) 51 (42–67) 52 (47–65)

HER2 status-no. (%)

IHC(3+) 14

IHC(2+) and FISH(+) 6

Estrogen receptor status (%)

Positive 8

Negative 12

No. of metastatic sites

1 12

2 4

3 1

≥4 0

Clinical stage

I 1

II 9

III 10

Site of metastasis (%)

Lymph node 20

Lung 3

Pleura 1

Bone 2

Liver 0

Brain 0

Others 0

Treatment regimens

Paclitaxel + trastuzumab 9

Docetaxel + trastuzumab 11

Trastuzumab resistant 8

Trastuzumab responsive 12

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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3.3  |  Global overview of serum metabolites in 
HER2-positive breast cancer

First, we performed PCA on all 50 serum samples and found a sig-
nificant difference between HER2-positive breast cancer and the 
control cases. QC analysis was performed during the PCA process 
to ensure stability and reliability. As shown in Figure 2A,B, the PCA 
score chart clearly proves the reliability of the metabolomics plat-
form used. Subsequently, through OPLS-DA (a high-performance 
tool for multivariate statistical analysis that can be monitored in 
real-time), we found differences in the metabolic features between 
HER2-positive and normal samples. As shown in Figure 2C,D, there 
was a clear separation between HER2-positive and normal tissues 
through the ESI+ and ESI− modes, respectively. The quality of these 
OPLS-DA models was counted through internal cross-validation, 
and the applicability of the parameters (R2Y) and the predictive abil-
ity of the model (Q2) were calculated. R2Y with 0.988 and Q2 with 
0.957 in ESI+ mode and R2Y with 0.987 and Q2 with 0.959 in ESI+ 
mode were determined, and the difference between the two was 
<0.2, suggesting that the calculation model was not overfit. All of 
these results showed that there was indeed a significant difference 

in metabolomics between HER2-positive breast cancer and normal 
controls.

3.4  |  Discovery of metabolites in the serum of 
HER2-positive breast cancer

To reveal the serum metabolites in HER2-positive patients, high-
confidence metabolites that contribute to HER2-positive breast 
cancer were identified and confirmed. Among these metabolic char-
acteristics, we distinguished the differences in metabolic features 
under the criteria of fold change >1.5 and p < 0.05. In addition, a 
VIP value >1.0, which was calculated by OPLS-DA scoring, was 
selected as a significantly different metabolic feature for analysis. 
Subsequently, metabolic features with significant differences were 
identified (Figure  3A,B). Using a public metabolite library, the re-
fined significant metabolic features were then searched to confirm 
the identity of 24 metabolites (Table 2), including 2 upregulated and 
22 downregulated metabolites in the HER2-positive breast cancer 
group. Hierarchical clustering analysis also revealed a different met-
abolic pattern between HER2-positive breast cancer patients and 
normal controls (Figure 3C).

F I G U R E  1 Workflow of metabolomics for metabolomic profiling and data interpretation of serum samples from HER2-positive breast 
cancer and normal control
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3.5  |  Metabolic network mapping and pathway 
enrichment analysis

To further identify and discover the biological significance behind 
these aberrant metabolites, we conducted a correlation-based 
metabolic network analysis, which means that metabolites are 
analyzed in pairs to discover the relationship between their abun-
dances, thereby inferring potential biological explanations. We 
used Cytoscape and MetScape to visualize the potential biological 
relationships between potentially active metabolites. In this ring 
network (Figure 3D), each node represents the significant changes 
in metabolites; the connecting line between every two nodes rep-
resents the correlation index, where a red line indicates a positive 
correlation and a blue line indicates a negative correlation. The 
wider the line, the higher the correlation index. From the results 
of the molecular network, we concluded that there is a strong 
internal correlation between the metabolites of metabolic disor-
ders, which reveals that these metabolites have special potential 
biological significance in HER2-positive breast cancer. In addition, 
we used the KEGG library to reveal special potential biological 
significance. Assuming there were 11  metabolic pathways, their 
significant P values were all less than 0.05. The most important 

metabolic pathways are phenylalanine, tyrosine, tryptophan bio-
synthesis, biosynthesis of unsaturated fatty acids, arachidonic 
acid metabolism, and others (Figure 3E).

3.6  |  Risk scores for HER2-positive breast cancers 
based on linear logistic regression models

We further analyzed the differential expression of metabolites 
in trastuzumab-responsive and trastuzumab-resistant groups. L-
arginine and arachidonic acid were significantly different between 
the trastuzumab-responsive and trastuzumab-resistant groups, 
while no significant differences in other metabolites were found 
(Figure  4A). To reveal the diagnostic performance of these two 
circulating metabolites, ROC analysis was carried out, and the 
results (Figure  4B) showed that the ROC curve for L-arginine 
had an AUC of 1, and the ROC curve for arachidonic acid had an 
AUC of 0.95. According to the intensity of these two metabo-
lites, the following formula was calculated for each patient: Ln 
(risk score) = 0.2234 × Ln (L-arginine) + 0.0475 × Ln (arachidonic 
acid) − 1.0025, obtained using logistic regression models. The risk 
score of the HER2-positive group was significantly higher than 

F I G U R E  2 Multivariate statistical analysis results. PCA score plot of the analysis in ESI (−) mode (A) and ESI (+) mode (B). OPLS-DA score 
plot of the analysis in ESI (−) mode (C) and ESI (+) mode (D)
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that of the normal control group (Figure 4C). The AUC of the risk 
score for HER2-positive patient occurrence was determined to 
be 1 (Figure  4D). Then, all participants were discriminated into 
low- and high-risk score groups according to the threshold point 
cutoff value (1.1492). Based on the exploration of the association 
between risk score distribution and patient prevalence, the rate of 
patients in the high-risk subtype was obviously higher than that in 
the low-risk group (Figure 4E,F).

3.7  |  An advanced diagnosis panel for 
trastuzumab resistance

Given that L-arginine and arachidonic acid were upregulated in 
the trastuzumab resistance group, ROC analysis was performed, 
and the results (Figure  5A) showed that the AUC for L-arginine 
was 0.896 and that for arachidonic acid was 0.823 for trastu-
zumab resistance. According to the logistic regression formula, 
the risk score of trastuzumab resistance was significantly higher 
than that of the normal control group (Figure 5B). The sensitivity 
and specificity of the risk score for trastuzumab resistance were 
84.9% and 89.7%, respectively, with an AUC of 0.896 (Figure 5C). 
Then, the HER2-positive breast cancer patients were divided 
into low- and high-risk score groups according to the threshold 
point cutoff value (1.9159). Based on the investigation of the re-
lationship between the risk score distribution and trastuzumab 
response status, the rate of patients in the high-risk subtype 
was obviously higher than that in the low-risk group (Figure 5D). 
Notably, HER2-positive patients with higher risk scores were all in 

the trastuzumab-resistant group (Figure 5E). Further investigation 
revealed that the low-risk group had a better objective response 
rate (ORR) (66.67%, 52/78) than the high-risk group (27.78%, 
10/36) (Figure 5F).

4  |  DISCUSSION

The overall goal of this study was to delineate the unique serum met-
abolic biomarkers of HER2-positive breast cancer patients. By using 
the UPLC-TOF-MS method platform to analyze the serum samples of 
20 women with HER2-positive breast cancer and 30 normal women 
in the control group, we detected a series of significantly changed 
metabolites that were associated with HER2-positive breast cancer, 
covering a wide range of metabolic classes. Finally, from archived 
trastuzumab response data from HER2-positive breast cancer pa-
tients, we discovered 2 metabolites and developed a risk score that 
can predict trastuzumab resistance status. Through comprehen-
sive data interpretation, we acquired a better understanding of the 
metabolic features in HER2-positive breast cancer and trastuzumab 
therapy status.

The emergence of omics methods is effectively accelerating 
predictive, treating and personalized therapeutics.9 Metabolites 
more directly reflect and are linked closer to the phenotype of 
the pathology than genes and proteins.10 Focusing on metabolite 
differences and the discovery of characteristic metabolites can 
be a shortcut and supplement the gene and protein level omics 
methods, and could also efficiently explain the mechanisms under-
lying various phenotypic variations. Thus, metabolomics screening 

F I G U R E  3 Representative Volcano plot (fold change >1.5 and p value < 0.05) in ESI (+) mode (A) and ESI (+) mode (B) metabolomics 
data. (C) Representative heat map of significant different metabolites (fold change >1.5, VIP > 1 and p value < 0.05). (D) Metabolic network 
analysis. (E) Metabolic pathway analysis
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is considered to be an effective, money-saving, and noninvasive 
option.

Each breast cancer subtype has inherent molecular features and 
metastatic potential, and its natural heterogeneity results in a high 
degree of difference in prognosis and the clinical response to avail-
able drugs, even for patients with a similar diagnosis, histology, and 
disease stages.11 Therefore, accurate determination of the molecular 
subtype of breast cancer is very important for personalized treat-
ment. In fact, there is evidence that compared with patients with 
mismatched therapies, patients who receive the correct molecularly 
matched therapy have a higher overall response rate, less treatment 
failure, and higher survival rates.12 Clinically, liquid biopsy proce-
dures and subsequent histopathological analysis are usually used to 
study the molecular and genetic information of cancer cells to diag-
nose and differentiate breast cancer and classify it into subtypes.13 
This analysis technique is invasive and time-consuming. Therefore, 
there is an urgent need for a noninvasive, fast, and accurate analysis 
method for distinguishing different breast cancer subtypes.

A number of studies have explored the possibility of using 
metabolite profiling as a biomarker for early diagnosis, cancer 

characterization and clinical outcome prediction. Body fluids such 
as human saliva, urine, serum and plasma have been re-emphasized. 
These are important sources for the discovery of potential bio-
markers. Therefore, we analyzed and summarized the metabolic 
profile that may represent systemic metabolic abnormalities in 
HER2-positive breast cancer patients.14 However, so far, due to the 
high degree of heterogeneity shown by breast cancer, from histol-
ogy to clinical prognosis, early recurrence, high risk of metastasis 
progression or low response rate to treatment and relatively low 
survival rates, personalized treatment methods based on highly ac-
curate markers or proven targets have been unable to achieve the 
desired results.

After collecting, processing, and analyzing their samples, we 
found that the metabolites in the serum of HER2-positive breast 
cancer patients were significantly different from those in normal 
volunteers. Subsequently, from the perspective of confirmation, we 
found that there were 24 significantly different metabolites to fur-
ther understand the characteristics and treatment of HER2-positive 
breast cancer patients. It is worth noting that our research samples 
were collected from patients who had just been diagnosed, and they 

Metabolite name HER2 NC FC VIP Mode

Dihydrotestosterone 1601 680 2.35 1.12 POS

Hypoxanthine 2008 532 3.78 1.40 POS

Pregnenolone 1849 697 2.65 1.24 POS

Monoolein 1775 268 6.61 1.19 POS

N1-Acetylspermine 1621 337 4.81 1.09 POS

L-Arginine 1516 29 51.58 1.44 POS

Citrazinc acid 648 1850 0.35 1.34 POS

8,15-DiHETE 1919 631 3.04 1.69 NEG

9-KODE 1770 669 2.65 1.34 NEG

Arachidonic acid 2232 573 3.89 1.69 NEG

dehydroxynocardamine 1430 849 1.68 1.03 NEG

FA 18:4+2O 1738 670 2.59 1.30 NEG

gamma-Linolenic acid 1822 635 2.87 1.39 NEG

Hexose 1501 698 2.15 1.33 NEG

L-Phenylalanine 1285 782 1.64 1.03 NEG

LPC 16:0; PlaSMA ID-1486 1369 827 1.66 1.01 NEG

LPC 18:1; PlaSMA ID-1563 1458 838 1.74 1.07 NEG

LPC 18:3; PlaSMA ID-1545 1853 689 2.69 1.28 NEG

LPE 18:1; PlaSMA ID-1334 1645 870 1.89 1.03 NEG

Myristic acid 1681 748 2.25 1.08 NEG

Phosphatidylethanolamine lyso 
16

1802 810 2.22 1.22 NEG

Phosphatidylethanolamine lyso 
17

1553 867 1.79 1.01 NEG

Phosphatidylethanolamine lyso 
18

1486 674 2.20 1.30 NEG

PFAP-diPAP 276 1583 0.17 1.83 NEG

Abbreviations: FC, Fold change; NC, Normal control; NEG, Negative; POS, Positive; VIP, Variable 
important in projection.

TA B L E  2 Differential metabolites 
identified from metabolomics profiling
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had no interference from any drugs or surgery. Our data were in 
accordance with previous studies showing that a series of altered 
metabolites play a role in the development of HER2-positive breast 
cancer.15 We discovered the following new metabolites for the first 
time: lipids and amino acids.

Our results also showed that the levels of L-arginine were 
increased in the HER2-positive breast cancer and trastuzumab-
resistant groups. L-arginine, an amino acid naturally found in red 
meat, poultry, and others, is necessary for making proteins and 
is commonly found in serum. It has generally been acknowledged 
that L-arginine, a fundamental metabolite, plays a role in nutrition 
and the urea cycle, followed by an explosion of research after the 
discovery of the biological function of nitric oxide synthesis.16 L-
arginine is also associated with the occurrence and development of 
hypertension and atherothrombosis because L-arginine improves 
nitric oxide bioactivity.17,18 L-arginine and its metabolites have 
also been shown to be novel diagnostic metabolic markers of the 
pathological progression of kidney disease.19 Moreover, L-arginine 
synthesis is not sufficient for the high nutritional needs of cancer 
cells, forcing them to rely on an extracellular supply of arginine.20 
L-arginine has been shown to be correlated with the regulation 
of immune responses, both innate and adaptive immunity, which 
have been found to be associated with trastuzumab resistance in 

our previous work, suggesting a close relationship between the 
level of L-arginine and trastuzumab resistance.21 Arachidonic 
acid, a polyunsaturated fatty acid present in the phospholipids of 
membranes of the body's cell, is necessary for the function of the 
immune system.22 Other research revealed the arachidonic acid 
metabolic pathway in breast cancer metastasis with an emphasis 
on arachidonic acid as a novel therapeutic target.23 The effect of 
arachidonic acid signaling pathways on the promotion of drug-
resistant breast cancer has been disclosed, demonstrating the role 
of arachidonic acid signaling pathways in the development of drug 
resistance.24

Notably, the small sample size in the present study limited the 
robustness of the equation we established for assessing the risk 
scores, and thus, further validation in a larger sample size is required. 
In brief, we successfully identified the nontargeted metabolite pro-
file of HER2-positive breast cancers and found that L-arginine and 
arachidonic acid were enhanced in the trastuzumab-resistant group. 
Using these biomarkers, we created an equation for assessing the 
risk scores, which effectively distinguished the normal control, 
trastuzumab-responsive and trastuzumab-resistant groups. In con-
clusion, the serum metabolites we identified were beneficial to the 
diagnosis of HER2-positive breast cancers and trastuzumab therapy 
outcomes.

F I G U R E  4 Development of risk score for HER2-positive breast cancer using linear logistic regression models. (A) Statistical analysis of L-
arginine and arachidonic acid between normal control, trastuzumab responsive and resistant group. (B) ROC curves were created to evaluate 
the diagnostic power of L-arginine and arachidonic acid. (C) Statistical analysis of risk score between HER2-positive breast cancer and normal 
control. (D) ROC analysis of risk score for HER2-positive breast cancer. (E) The distribution of risk score. (F) The prevalence of HER-positive 
breast cancer in high-risk group and low-risk group. (*, p < 0.05; **, p < 0.01; ***, p < 0.001)
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