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1  |  INTRODUC TION

Currently, breast cancer ranks first in the incidence of female cancer, 
accounting for 30% of the new female cancer population around the 
world, and its incidence is increasing year by year.1 Human epidermal 
growth factor receptor 2 (HER2)- positive breast cancer, one type of 
breast cancer that overexpresses HER2, accounts for approximately 

20% of breast cancers and tends to be more aggressive.2 Previous 
report have shown that breast cancer with overexpression of the 
HER2 gene has higher malignancy, earlier recurrence, metastasis 
and a poor prognosis, which significantly affects the disease- free 
survival rate.2 Although trastuzumab plus adjuvant chemotherapy 
treatment has markedly enhanced the efficacy of therapy for this 
type of breast cancer, the high rate of trastuzumab resistance limits 
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Abstract
Human epidermal growth factor receptor 2 (HER2)- positive is a particularly aggres-
sive type of the breast cancer. Trastuzumab- based therapy is a standard treatment 
for HER2- positive breast cancer, but some patients are resistance to the therapy. 
There are no known diagnostic biomarkers to improve the early diagnosis of HER2- 
positive breast cancer and the clinical utility of trastuzumab therapy. Using ultrahigh- 
performance	 liquid	 time	 of	 flight	mass	 spectrometry	 (UPLC-	TOF-	MS)-	based	 serum	
metabolomics and multivariate statistical analysis, we investigated and identified the 
circulating	metabolites	L-	arginine	and	arachidonic	acid	were	elevated	in	trastuzumab-	
responsive and trastuzumab- resistant HER2- positive breast cancer patients, and 
increased until reaching their peaks in trastuzumab- resistant HER2- positive breast 
cancer patients. Moreover, an equation for assessing the risk scores based on lin-
ear	logistic	regression	models	involving	L-	arginine	and	arachidonic	acid	was	created,	
which was beneficial for revealing metabolic changes in HER2- positive breast cancer 
and	enhancing	current	trastuzumab-	based	therapy.	In	summary,	we	develop	serum-	
based metabolic biomarkers for diagnosis of HER2- positive breast cancers and pre-
dicts the therapeutic effects of trastuzumab therapy.
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its application.3,4 However, there are no known diagnostic biomark-
ers to improve the early diagnosis of HER2- positive breast cancer 
and the clinical utility of trastuzumab therapy.

Cancer- related liquid biopsy biomarkers can demonstrate the 
occurrence, progression and prognosis of cancers and are of great 
value for the early diagnosis of cancers, prediction of treatment re-
sponse, and prognostic monitoring.5 Metabolomics has emerged as 
a powerful analytical tool to provide new discoveries, and modern 
analysis methods are being used to study metabolic biomarkers re-
lated to diseases for clinical applications and to detect their abnor-
mal changes in the living body.6 As active modulators of gene and 
protein activity, metabolites have been widely adopted to investi-
gate metabolic mechanisms underlying cancer occurrence, to eval-
uate treatment efficacy and monitor the prognosis to provide new 
diagnostic ideas and guide the development of better therapeutic 
strategies.7 However, to the authors’ knowledge, untargeted metab-
olomic investigation of serum metabolites has not been thoroughly 
conducted.

In	our	work,	we	used	ultrahigh-	performance	liquid	time	of	flight	
mass	 spectrometry	 (UPLC-	TOF-	MS)-	based	 serum	 metabolomics	
and multivariate statistical analysis to investigate the circulating 
metabolite	 profiling	 of	 HER2-	positive	 breast	 cancer.	 L-	arginine	
and arachidonic acid were elevated in trastuzumab- responsive and 
trastuzumab- resistant HER2- positive breast cancer patients, and 
increased until reaching their peaks in trastuzumab- resistant HER2- 
positive breast cancer patients. Moreover, an equation for assessing 
the risk scores based on linear logistic regression models involving 
L-	arginine	 and	 arachidonic	 acid	was	 created,	which	was	 beneficial	
for revealing metabolic changes in HER2- positive breast cancer and 
enhancing current trastuzumab- based therapy. These unique circu-
lating metabolites in serum not only uncover the molecular char-
acteristics of HER2- positive breast cancer patients but also enable 
personalized therapy.

2  |  MATERIAL S AND METHODS

2.1  |  Serum samples

Before surgery or drug therapy, blood specimens were collected at 
Jiangsu Cancer Hospital (Nanjing, China) between June 2019 and 
February	2021	after	written	consent	was	obtained	from	all	HER2-	
positive breast patients and healthy donors who were regarded as 
normal control subjects. The status of HER2 in all patients was as-
sessed according to standard HER2 testing. All procedures were re-
viewed and approved by the ethics committee of the hospital and 
were	 conducted	 in	 accordance	 with	 the	 Declaration	 of	 Helsinki.	
Trastuzumab primary resistance and sensitivity subgroups were de-
fined according to our previous work.8 Blood samples were drawn 
from the elbow vein in the fasting state in the morning and stored 
in	 ethylenediaminetetraacetic	 acid	 vacuum	 tubes	 (BD	 Vacutainer,	
Franklin	Lakes,	NJ,	USA)	and	then	centrifuged	at	1300	g	for	10	min	

at	4°C.	The	serum	was	immediately	separated	and	stored	at	−80°C	
until analysis.

2.2  |  Sample extraction and handling

One	 hundred	microliters	 of	 serum	 samples	 stored	 at	 −80°C	were	
taken after slow dissolution at 4°C. Then, 400 μL	precooled	meth-
anol was added and vortexed for 60 s. After precipitating the 
protein	 for	1	h	at	−20°C,	 the	 samples	were	 subjected	 to	centrifu-
gation	for	20	min	at	16,000	rpm	at	4°C.	Supernatants	were	taken	
and	freeze-	dried	followed	by	storage	at	−80°C	until	metabolomics	
analysis.

2.3  |  Metabolite profile analysis and metabolite 
identification

The	supernatants	were	separated	by	a	1290	Infinity	LC	System	with	
a	C18	chromatographic	column	and	then	analyzed	by	an	AB	SCIEX	
TripleTOF	 5600	 mass	 spectrometer	 by	 Clinical	 Mass	 Company	
(Nanjing,	 China).	 General	 conditions	 were	 set	 as	 follows:	 column	
temperature, 40°C; flow rate, 0.4 ml/min; mobile phase A, 0.1% 
formic acid in water, B: 0.1% formic acid in acetonitrile. The gradi-
ent elution procedure was as follows: 0– 1 min, B linearly changed 
from	90%	 to	70%;	1–	19	min,	B	 linearly	 changed	 from	70%	 to	5%;	
19–	20	min,	B	was	maintained	at	5%;	20–	25	min,	B	was	maintained	at	
95%;	and	the	sample	was	placed	in	a	4°C	autosampler	during	the	en-
tire analysis. Quality control (QC) samples, which were prepared by 
mixtures of aliquots of samples, were inserted into the sample queue 
to monitor and evaluate the stability of the system and the reliability 
of	the	experimental	data.	 Information-	dependent	acquisition	 (IDA)	
for both positive and negative ion modes was applied. The collision 
energy, declustering potential, and ion spray voltage were set to 30, 
80, +5200	V	for	positive	mode,	while	−30,	−50	and	−5200	V	were	set	
for	negative	mode	with	the	same	mass	range	from	50	to	1700	m/z. 
The other source parameters, including ion source gas 1, ion source 
gas	2,	curtain	gas	and	drying	temperature,	were	set	at	40,	45,	30	psi,	
and	550°C,	respectively.

2.4  |  Data analysis

The	original	data	were	converted	 into	mzML	format,	and	then	the	
MSdial	 program	 was	 applied	 for	 peak	 alignment,	 retention	 time	
correction and peak area extraction. Accurate mass matching and 
secondary spectrum matching methods to search public databases 
were performed for metabolite structure identification. After data 
preprocessing, unsupervised principal component analysis (PCA) 
analysis and orthogonal partial least squares discriminant analysis 
(OPLS-	DA)	were	applied	with	the	MSdial	program	for	multidimen-
sional statistical analysis.
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2.5  |  Metabolic network analysis and metabolic 
pathway analysis

Through logarithmic conversion and automatic scaling, metabolites 
with	 significantly	 altered	MS	 signal	 intensities	were	 introduced	 to	
the calculation of the Pearson correlation coefficient. Metabolic 
network analysis based on the correlation was performed using 
Cytoscape	3.7.	 In	addition,	metabolic	pathways	 influenced	by	me-
tabolites were analyzed using MetaboAnalyst software (http://
www.metab oanal yst.ca).

2.6  |  Statistical processing

Data	are	expressed	as	the	mean	±standard deviation and were an-
alyzed	using	SPSS	22.0	 (SPSS,	Chicago,	 IL,	USA).	Continuous	data	
were	 compared	 by	 Student's	 t test or the Mann– Whitney U test. 
An equation for assessing the risk scores based on linear logistic re-
gression models was created, and its sensitivity and specificity were 
assessed	 by	 constructing	 receiver	 operating	 characteristic	 (ROC)	
curves. p <	0.05	was	considered	statistically	significant.

3  |  RESULTS

3.1  |  Demographic and clinical characteristics of 
enrolled samples

A total of 20 HER2- positive breast cancer patients and 30 normal 
controls were recruited. The 30 people in the normal control group 
were all in the normal range under the available detection meth-
ods. Age and sex were not comparable between the HER2- positive 
breast cancer patients and normal controls. According to the 
National Comprehensive Cancer Network (NCCN) guidelines, the 
pathological grading status of HER2- positive breast cancer ranges 
from	I	to	III.	In	the	HER2-	positive	breast	cancer	group,	eight	patients	
with disease progression were regarded as trastuzumab resistant, 
while 12 patients with a pathologically complete response were de-
fined	as	trastuzumab	responsive.	Detailed	demographic	and	clinical	
characteristics of the participants are shown in Table 1.

3.2  |  Metabolomics workflow

Figure	1	briefly	represents	the	entire	workflow	of	the	metabolomics	
research. We collected serum from HER2- positive breast cancer 
patients and normal controls. The metabolomics products were 
extracted	from	the	serum	and	analyzed	by	UPLC-	TOF-	MS.	 In	gen-
eral, characteristic features were consistently measured in all serum 
samples,	including	ESI+	and	ESI−	modes.	The	interpretation	of	these	
data	 was	 carried	 out	 through	 a	 set	 of	 bioinformatics	 tools.	 First,	
PCA	and	OPLS-	DA	were	applied	to	analyze	the	metabolomics	and	
abundance	of	each	sample	of	MS-	related	results.	The	difference	in	

metabolic features between HER2- positive breast cancer and nor-
mal	controls	was	carried	out	to	provide	a	total	view.	Volcano	maps	
and heat maps were generated from statistically significant ex-
tracted metabolic features and dysregulated metabolites, which met 
the criteria of downregulation to fold change <0.67 or fold change 
>1.5,	VIP	> 1.0 and p value <	0.05.	Then,	we	conducted	metabolic	
network analysis through correlation and pathway enrichment to 
investigate	 the	 biological	 significance.	 L-	Arginine	 and	 arachidonic	
acid were upregulated in trastuzumab- responsive and trastuzumab- 
resistant HER2- positive breast cancer patients, and increased until 
reaching their peaks in trastuzumab- resistant HER2- positive breast 
cancer patients. A diagnostic risk equation was then created based 
on their linear regression models, and their correlation with the oc-
currence of HER2- positive breast cancer and clinical trastuzumab 
therapy outcome data were assessed.

TA B L E  1 Detailed	demographics	of	enrolled	participants

Characteristics
Normal control 
(n = 30)

Breast cancer 
(n = 20)

Age- years

Median (range) 51	(42–	67) 52	(47–	65)

HER2 status- no. (%)

IHC(3+) 14

IHC(2+)	and	FISH(+) 6

Estrogen receptor status (%)

Positive 8

Negative 12

No. of metastatic sites

1 12

2 4

3 1

≥4 0

Clinical stage

I 1

II 9

III 10

Site	of	metastasis	(%)

Lymph	node 20

Lung 3

Pleura 1

Bone 2

Liver 0

Brain 0

Others 0

Treatment regimens

Paclitaxel + trastuzumab 9

Docetaxel	+ trastuzumab 11

Trastuzumab resistant 8

Trastuzumab responsive 12

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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3.3  |  Global overview of serum metabolites in 
HER2- positive breast cancer

First,	we	performed	PCA	on	all	50	serum	samples	and	found	a	sig-
nificant difference between HER2- positive breast cancer and the 
control cases. QC analysis was performed during the PCA process 
to	ensure	stability	and	reliability.	As	shown	in	Figure	2A,B,	the	PCA	
score chart clearly proves the reliability of the metabolomics plat-
form	 used.	 Subsequently,	 through	 OPLS-	DA	 (a	 high-	performance	
tool for multivariate statistical analysis that can be monitored in 
real- time), we found differences in the metabolic features between 
HER2-	positive	and	normal	samples.	As	shown	in	Figure	2C,D,	there	
was a clear separation between HER2- positive and normal tissues 
through	the	ESI+	and	ESI−	modes,	respectively.	The	quality	of	these	
OPLS-	DA	 models	 was	 counted	 through	 internal	 cross-	validation,	
and the applicability of the parameters (R2Y) and the predictive abil-
ity of the model (Q2) were calculated. R2Y with 0.988 and Q2 with 
0.957	in	ESI+	mode	and	R2Y	with	0.987	and	Q2	with	0.959	in	ESI+ 
mode were determined, and the difference between the two was 
<0.2, suggesting that the calculation model was not overfit. All of 
these results showed that there was indeed a significant difference 

in metabolomics between HER2- positive breast cancer and normal 
controls.

3.4  |  Discovery of metabolites in the serum of 
HER2- positive breast cancer

To reveal the serum metabolites in HER2- positive patients, high- 
confidence metabolites that contribute to HER2- positive breast 
cancer were identified and confirmed. Among these metabolic char-
acteristics, we distinguished the differences in metabolic features 
under the criteria of fold change >1.5	and	p <	0.05.	 In	addition,	a	
VIP	 value	 >1.0,	 which	 was	 calculated	 by	 OPLS-	DA	 scoring,	 was	
selected as a significantly different metabolic feature for analysis. 
Subsequently,	metabolic	features	with	significant	differences	were	
identified	 (Figure	 3A,B).	 Using	 a	 public	metabolite	 library,	 the	 re-
fined significant metabolic features were then searched to confirm 
the identity of 24 metabolites (Table 2), including 2 upregulated and 
22 downregulated metabolites in the HER2- positive breast cancer 
group. Hierarchical clustering analysis also revealed a different met-
abolic pattern between HER2- positive breast cancer patients and 
normal	controls	(Figure	3C).

F I G U R E  1 Workflow	of	metabolomics	for	metabolomic	profiling	and	data	interpretation	of	serum	samples	from	HER2-	positive	breast	
cancer and normal control
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3.5  |  Metabolic network mapping and pathway 
enrichment analysis

To further identify and discover the biological significance behind 
these aberrant metabolites, we conducted a correlation- based 
metabolic network analysis, which means that metabolites are 
analyzed in pairs to discover the relationship between their abun-
dances, thereby inferring potential biological explanations. We 
used	Cytoscape	and	MetScape	to	visualize	the	potential	biological	
relationships	between	potentially	active	metabolites.	 In	 this	 ring	
network	(Figure	3D),	each	node	represents	the	significant	changes	
in metabolites; the connecting line between every two nodes rep-
resents the correlation index, where a red line indicates a positive 
correlation and a blue line indicates a negative correlation. The 
wider	the	line,	the	higher	the	correlation	index.	From	the	results	
of the molecular network, we concluded that there is a strong 
internal correlation between the metabolites of metabolic disor-
ders, which reveals that these metabolites have special potential 
biological	significance	in	HER2-	positive	breast	cancer.	In	addition,	
we	 used	 the	 KEGG	 library	 to	 reveal	 special	 potential	 biological	
significance. Assuming there were 11 metabolic pathways, their 
significant	P	 values	were	 all	 less	 than	0.05.	The	most	 important	

metabolic pathways are phenylalanine, tyrosine, tryptophan bio-
synthesis, biosynthesis of unsaturated fatty acids, arachidonic 
acid	metabolism,	and	others	(Figure	3E).

3.6  |  Risk scores for HER2- positive breast cancers 
based on linear logistic regression models

We further analyzed the differential expression of metabolites 
in	 trastuzumab-	responsive	 and	 trastuzumab-	resistant	 groups.	 L-	
arginine and arachidonic acid were significantly different between 
the trastuzumab- responsive and trastuzumab- resistant groups, 
while no significant differences in other metabolites were found 
(Figure	 4A).	 To	 reveal	 the	 diagnostic	 performance	 of	 these	 two	
circulating	 metabolites,	 ROC	 analysis	 was	 carried	 out,	 and	 the	
results	 (Figure	 4B)	 showed	 that	 the	 ROC	 curve	 for	 L-	arginine	
had	an	AUC	of	1,	and	the	ROC	curve	for	arachidonic	acid	had	an	
AUC	 of	 0.95.	 According	 to	 the	 intensity	 of	 these	 two	 metabo-
lites,	 the	 following	 formula	 was	 calculated	 for	 each	 patient:	 Ln	
(risk score) = 0.2234 ×	Ln	(L-	arginine)	+	0.0475	×	Ln	(arachidonic	
acid)	−	1.0025,	obtained	using	logistic	regression	models.	The	risk	
score of the HER2- positive group was significantly higher than 

F I G U R E  2 Multivariate	statistical	analysis	results.	PCA	score	plot	of	the	analysis	in	ESI	(−)	mode	(A)	and	ESI	(+)	mode	(B).	OPLS-	DA	score	
plot	of	the	analysis	in	ESI	(−)	mode	(C)	and	ESI	(+)	mode	(D)
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that	of	the	normal	control	group	(Figure	4C).	The	AUC	of	the	risk	
score for HER2- positive patient occurrence was determined to 
be	 1	 (Figure	 4D).	 Then,	 all	 participants	 were	 discriminated	 into	
low-  and high- risk score groups according to the threshold point 
cutoff value (1.1492). Based on the exploration of the association 
between risk score distribution and patient prevalence, the rate of 
patients in the high- risk subtype was obviously higher than that in 
the	low-	risk	group	(Figure	4E,F).

3.7  |  An advanced diagnosis panel for 
trastuzumab resistance

Given	 that	 L-	arginine	 and	 arachidonic	 acid	 were	 upregulated	 in	
the	trastuzumab	resistance	group,	ROC	analysis	was	performed,	
and	 the	 results	 (Figure	 5A)	 showed	 that	 the	AUC	 for	 L-	arginine	
was 0.896 and that for arachidonic acid was 0.823 for trastu-
zumab resistance. According to the logistic regression formula, 
the risk score of trastuzumab resistance was significantly higher 
than	that	of	the	normal	control	group	(Figure	5B).	The	sensitivity	
and specificity of the risk score for trastuzumab resistance were 
84.9%	and	89.7%,	respectively,	with	an	AUC	of	0.896	(Figure	5C).	
Then, the HER2- positive breast cancer patients were divided 
into low-  and high- risk score groups according to the threshold 
point	cutoff	value	(1.9159).	Based	on	the	investigation	of	the	re-
lationship between the risk score distribution and trastuzumab 
response status, the rate of patients in the high- risk subtype 
was	obviously	higher	than	that	in	the	low-	risk	group	(Figure	5D).	
Notably, HER2- positive patients with higher risk scores were all in 

the	trastuzumab-	resistant	group	(Figure	5E).	Further	investigation	
revealed that the low- risk group had a better objective response 
rate	 (ORR)	 (66.67%,	 52/78)	 than	 the	 high-	risk	 group	 (27.78%,	
10/36)	(Figure	5F).

4  |  DISCUSSION

The overall goal of this study was to delineate the unique serum met-
abolic biomarkers of HER2- positive breast cancer patients. By using 
the	UPLC-	TOF-	MS	method	platform	to	analyze	the	serum	samples	of	
20 women with HER2- positive breast cancer and 30 normal women 
in the control group, we detected a series of significantly changed 
metabolites that were associated with HER2- positive breast cancer, 
covering	 a	wide	 range	of	metabolic	 classes.	 Finally,	 from	archived	
trastuzumab response data from HER2- positive breast cancer pa-
tients, we discovered 2 metabolites and developed a risk score that 
can predict trastuzumab resistance status. Through comprehen-
sive data interpretation, we acquired a better understanding of the 
metabolic features in HER2- positive breast cancer and trastuzumab 
therapy status.

The emergence of omics methods is effectively accelerating 
predictive, treating and personalized therapeutics.9 Metabolites 
more directly reflect and are linked closer to the phenotype of 
the pathology than genes and proteins.10	Focusing	on	metabolite	
differences and the discovery of characteristic metabolites can 
be a shortcut and supplement the gene and protein level omics 
methods, and could also efficiently explain the mechanisms under-
lying various phenotypic variations. Thus, metabolomics screening 

F I G U R E  3 Representative	Volcano	plot	(fold	change	>1.5	and	p value <	0.05)	in	ESI	(+)	mode	(A)	and	ESI	(+) mode (B) metabolomics 
data. (C) Representative heat map of significant different metabolites (fold change >1.5,	VIP	> 1 and p value <	0.05).	(D)	Metabolic	network	
analysis. (E) Metabolic pathway analysis
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is considered to be an effective, money- saving, and noninvasive 
option.

Each breast cancer subtype has inherent molecular features and 
metastatic potential, and its natural heterogeneity results in a high 
degree of difference in prognosis and the clinical response to avail-
able drugs, even for patients with a similar diagnosis, histology, and 
disease stages.11 Therefore, accurate determination of the molecular 
subtype of breast cancer is very important for personalized treat-
ment.	 In	 fact,	 there	 is	 evidence	 that	 compared	with	patients	with	
mismatched therapies, patients who receive the correct molecularly 
matched therapy have a higher overall response rate, less treatment 
failure, and higher survival rates.12 Clinically, liquid biopsy proce-
dures and subsequent histopathological analysis are usually used to 
study the molecular and genetic information of cancer cells to diag-
nose and differentiate breast cancer and classify it into subtypes.13 
This analysis technique is invasive and time- consuming. Therefore, 
there is an urgent need for a noninvasive, fast, and accurate analysis 
method for distinguishing different breast cancer subtypes.

A number of studies have explored the possibility of using 
metabolite profiling as a biomarker for early diagnosis, cancer 

characterization and clinical outcome prediction. Body fluids such 
as human saliva, urine, serum and plasma have been re- emphasized. 
These are important sources for the discovery of potential bio-
markers. Therefore, we analyzed and summarized the metabolic 
profile that may represent systemic metabolic abnormalities in 
HER2- positive breast cancer patients.14 However, so far, due to the 
high degree of heterogeneity shown by breast cancer, from histol-
ogy to clinical prognosis, early recurrence, high risk of metastasis 
progression or low response rate to treatment and relatively low 
survival rates, personalized treatment methods based on highly ac-
curate markers or proven targets have been unable to achieve the 
desired results.

After collecting, processing, and analyzing their samples, we 
found that the metabolites in the serum of HER2- positive breast 
cancer patients were significantly different from those in normal 
volunteers.	Subsequently,	from	the	perspective	of	confirmation,	we	
found that there were 24 significantly different metabolites to fur-
ther understand the characteristics and treatment of HER2- positive 
breast	cancer	patients.	It	is	worth	noting	that	our	research	samples	
were collected from patients who had just been diagnosed, and they 

Metabolite name HER2 NC FC VIP Mode

Dihydrotestosterone 1601 680 2.35 1.12 POS

Hypoxanthine 2008 532 3.78 1.40 POS

Pregnenolone 1849 697 2.65 1.24 POS

Monoolein 1775 268 6.61 1.19 POS

N1- Acetylspermine 1621 337 4.81 1.09 POS

L-	Arginine 1516 29 51.58 1.44 POS

Citrazinc acid 648 1850 0.35 1.34 POS

8,15-	DiHETE 1919 631 3.04 1.69 NEG

9-	KODE 1770 669 2.65 1.34 NEG

Arachidonic acid 2232 573 3.89 1.69 NEG

dehydroxynocardamine 1430 849 1.68 1.03 NEG

FA	18:4+2O 1738 670 2.59 1.30 NEG

gamma-	Linolenic	acid 1822 635 2.87 1.39 NEG

Hexose 1501 698 2.15 1.33 NEG

L-	Phenylalanine 1285 782 1.64 1.03 NEG

LPC	16:0;	PlaSMA	ID-	1486 1369 827 1.66 1.01 NEG

LPC	18:1;	PlaSMA	ID-	1563 1458 838 1.74 1.07 NEG

LPC	18:3;	PlaSMA	ID-	1545 1853 689 2.69 1.28 NEG

LPE	18:1;	PlaSMA	ID-	1334 1645 870 1.89 1.03 NEG

Myristic acid 1681 748 2.25 1.08 NEG

Phosphatidylethanolamine lyso 
16

1802 810 2.22 1.22 NEG

Phosphatidylethanolamine lyso 
17

1553 867 1.79 1.01 NEG

Phosphatidylethanolamine lyso 
18

1486 674 2.20 1.30 NEG

PFAP-	diPAP 276 1583 0.17 1.83 NEG

Abbreviations:	FC,	Fold	change;	NC,	Normal	control;	NEG,	Negative;	POS,	Positive;	VIP,	Variable	
important in projection.

TA B L E  2 Differential	metabolites	
identified from metabolomics profiling
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had	 no	 interference	 from	 any	 drugs	 or	 surgery.	Our	 data	were	 in	
accordance with previous studies showing that a series of altered 
metabolites play a role in the development of HER2- positive breast 
cancer.15 We discovered the following new metabolites for the first 
time: lipids and amino acids.

Our	 results	 also	 showed	 that	 the	 levels	 of	 L-	arginine	 were	
increased in the HER2- positive breast cancer and trastuzumab- 
resistant	groups.	L-	arginine,	an	amino	acid	naturally	found	in	red	
meat, poultry, and others, is necessary for making proteins and 
is	commonly	found	in	serum.	It	has	generally	been	acknowledged	
that	L-	arginine,	a	fundamental	metabolite,	plays	a	role	in	nutrition	
and the urea cycle, followed by an explosion of research after the 
discovery of the biological function of nitric oxide synthesis.16	L-	
arginine is also associated with the occurrence and development of 
hypertension	and	atherothrombosis	because	L-	arginine	 improves	
nitric oxide bioactivity.17,18	 L-	arginine	 and	 its	 metabolites	 have	
also been shown to be novel diagnostic metabolic markers of the 
pathological progression of kidney disease.19	Moreover,	L-	arginine	
synthesis is not sufficient for the high nutritional needs of cancer 
cells, forcing them to rely on an extracellular supply of arginine.20 
L-	arginine	 has	 been	 shown	 to	 be	 correlated	with	 the	 regulation	
of immune responses, both innate and adaptive immunity, which 
have been found to be associated with trastuzumab resistance in 

our previous work, suggesting a close relationship between the 
level	 of	 L-	arginine	 and	 trastuzumab	 resistance.21 Arachidonic 
acid, a polyunsaturated fatty acid present in the phospholipids of 
membranes	of	the	body's	cell,	is	necessary	for	the	function	of	the	
immune system.22	Other	 research	 revealed	 the	 arachidonic	 acid	
metabolic pathway in breast cancer metastasis with an emphasis 
on arachidonic acid as a novel therapeutic target.23 The effect of 
arachidonic acid signaling pathways on the promotion of drug- 
resistant breast cancer has been disclosed, demonstrating the role 
of arachidonic acid signaling pathways in the development of drug 
resistance.24

Notably, the small sample size in the present study limited the 
robustness of the equation we established for assessing the risk 
scores, and thus, further validation in a larger sample size is required. 
In	brief,	we	successfully	identified	the	nontargeted	metabolite	pro-
file	of	HER2-	positive	breast	cancers	and	found	that	L-	arginine	and	
arachidonic acid were enhanced in the trastuzumab- resistant group. 
Using these biomarkers, we created an equation for assessing the 
risk scores, which effectively distinguished the normal control, 
trastuzumab-	responsive	and	trastuzumab-	resistant	groups.	 In	con-
clusion, the serum metabolites we identified were beneficial to the 
diagnosis of HER2- positive breast cancers and trastuzumab therapy 
outcomes.

F I G U R E  4 Development	of	risk	score	for	HER2-	positive	breast	cancer	using	linear	logistic	regression	models.	(A)	Statistical	analysis	of	L-	
arginine	and	arachidonic	acid	between	normal	control,	trastuzumab	responsive	and	resistant	group.	(B)	ROC	curves	were	created	to	evaluate	
the	diagnostic	power	of	L-	arginine	and	arachidonic	acid.	(C)	Statistical	analysis	of	risk	score	between	HER2-	positive	breast	cancer	and	normal	
control.	(D)	ROC	analysis	of	risk	score	for	HER2-	positive	breast	cancer.	(E)	The	distribution	of	risk	score.	(F)	The	prevalence	of	HER-	positive	
breast cancer in high- risk group and low- risk group. (*, p <	0.05;	**, p < 0.01; ***, p < 0.001)
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