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The effect of drought onmaize yield is of particular concern in the context of climate change and human population growth.

However, the complexity of drought-response mechanisms makes the design of new drought-tolerant varieties a difficult

task that would greatly benefit from a better understanding of the genotype–phenotype relationship. To provide novel

insight into this relationship, we applied a systems genetics approach integrating high-throughput phenotypic, proteomic,

and genomic data acquired from 254 maize hybrids grown under two watering conditions. Using association genetics and

protein coexpression analysis, we detectedmore than 22,000 pQTLs across the two conditions and confidently identified 15

loci with potential pleiotropic effects on the proteome. We showed that even mild water deficit induced a profound remod-

eling of the proteome, which affected the structure of the protein coexpression network, and a reprogramming of the ge-

netic control of the abundance of many proteins, including those involved in stress response. Colocalizations between

pQTLs andQTLs for ecophysiological traits, foundmostly in the water deficit condition, indicated that this reprogramming

may also affect the phenotypic level. Finally, we identified several candidate genes that are potentially responsible for both

the coexpression of stress response proteins and the variations of ecophysiological traits under water deficit. Taken togeth-

er, our findings provide novel insights into the molecular mechanisms of drought tolerance and suggest some pathways for

further research and breeding.

[Supplemental material is available for this article.]

Maize is the world’s leading crop (Shiferaw et al. 2011) in terms of
production. Having a C4metabolism, it shows high water use effi-
ciency (WUE). However, it is also highly susceptible to water defi-
cit. For example, maize is more affected by drought than either its
close relative sorghum (aboveground dry biomass reduced by
47%–51% and 37%–38%, respectively) (Zegada-Lizarazu et al.
2012; Schittenhelm and Schroetter 2014) or wheat, which is a
C3 plant (yield reduction associated with a 40% water reduction
of 40% and 20.6%, respectively) (Daryanto et al. 2016).
Improving maize yield under drought has been an important
aim of breeding programs for decades (Campos et al. 2004, 2006;
Cooper et al. 2014). However, despite the overall genetic improve-
ment of maize, increases in drought sensitivity have been reported
in several regions (Lobell et al. 2014; Meng et al. 2016; Zipper et al.
2016). In addition, severe episodes of drought are projected to be-
come more frequent in the near future because of climate change
(Harrison et al. 2014). Therefore, maize productivity under water
deficit is of particular concern, and large efforts are still required
to design varieties that are able to maintain high yields in drought
conditions.

One lever to accelerate crop improvement is to better under-
stand the genetic and molecular bases of drought tolerance. This
highly complex trait is associated with a series of mechanisms oc-

curring at different spatial and temporal scales to (1) stabilize the
plant’s water and carbon status; (2) control the side effects of water
deficit including oxidative stress, mineral deficiencies, and re-
duced photosynthesis; and (3) maintain plant yield (Chaves
et al. 2003). At the physiological level, short-term responses in-
clude stomata closure, adjustment of osmotic and hydraulic con-
ductance, leaf growth inhibition, and root growth promotion
(Tardieu et al. 2018). At the molecular level, complex signaling
and regulatory events occur, involving several hormones, of which
abscisic acid (ABA) is a key player, and a broad range of transcrip-
tion factors (Golldack et al. 2014; Osakabe et al. 2014; Tripathi
et al. 2014). Molecular responses also include the accumulation
of metabolites involved in osmotic adjustment, membrane and
protein protection, as well as scavenging of reactive oxygen spe-
cies, and the expression of drought-responsive proteins such as
dehydrins, late embryogenesis abundant (LEA), and heat shock
proteins (HSP) (Valliyodan and Nguyen 2006; Seki et al. 2007).
All these responses will depend on the drought scenario, the phe-
nological stage, the genetic makeup, and the general environmen-
tal conditions (Tardieu et al. 2018). Taken together, the
multiplicity and versatility of the mechanisms involved explain
the difficulty in selecting for drought tolerance.
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A better understanding of the genotype–phenotype relation-
ship will help guide the development of new drought-tolerant va-
rieties. Systems genetics is a recent approach providing improved
insight into this relationship by deciphering the biological net-
works and molecular pathways underlying complex traits and by
investigating how these traits are regulated at the genetic and epi-
genetic levels (Nadeau and Dudley 2011; Civelek and Lusis 2014;
Feltus 2014; van der Sijde et al. 2014; Markowetz and Boutros
2015). This approach compares the position of quantitative trait
loci (QTLs) underlying phenotypic traits variation to that of
QTLs underlying the variation of upstream molecular traits such
as transcript expression (eQTLs) or protein abundance (pQTLs).
Until recently, this approach had been mostly applied in human
andmice (Moreno-Moral and Petretto 2016). In plants, systems ge-
netics studies have been carried out in a few species including
wheat (Munkvold et al. 2013), rapeseed (Basnet et al. 2016), euca-
lyptus (Mizrachi et al. 2017), and maize (Christie et al. 2017; Jiang
et al. 2019).

The first studies comparing QTLs and pQTLs used 2D gel pro-
teomics to quantify proteins (de Vienne et al. 1999; Bourgeois et al.
2011). Since then, proteome coverage and data reliability have
been widely improved by the use of mass spectrometry (MS)-based
proteomics (Wasinger et al. 2013). Despite these technical ad-
vancements, the systems genetics studies published so far have
preferentially used transcripts rather than proteins as the interme-
diate level between the genome and phenotypic traits. One reason
is that large-scale proteomics experiments remain challenging
(Blein-Nicolas et al. 2015) owing to technical constraints (Balliau
et al. 2018) and the trade-off between depth of coverage and sam-
ple throughput (Keshishian et al. 2017). However, proteins are par-
ticularly relevant molecular components for linking genotype to
phenotype. Indeed, protein abundance is expected to be more
highly related to phenotype than transcript expression because
of the buffering of transcriptional variations and the role of post-
translational regulations in phenotype construction (Foss et al.
2011; Vogel and Marcotte 2012; Albertin et al. 2013; Battle et al.
2015; Chick et al. 2016).

Here, we aimed to better understand the molecular mecha-
nisms associated with the genetic polymorphisms underlying
the variations of ecophysiological traits related to drought toler-
ance. To this end, we performed a novel systems genetics study
in which MS-based proteomics data acquired from 254 maize ge-
notypes grown in two watering conditions were integrated with
high-throughput genomic and phenotypic data. First, protein
abundance was analyzed using a genome-wide association study
(GWAS) and coexpression networks. Then, these data were inte-
grated with ecophysiological phenotypic data from the same ex-
periment (Prado et al. 2018) using a correlation analysis and by
searching for QTL/pQTL colocalizations.

Results

Mild water deficit extensively remodels the proteome

Using MS-based proteomics, we analyzed more than 1000 leaf
samples taken from 254 genotypes representing the genetic diver-
sity within dentmaize and grown inwell-watered (WW) andwater
deficit (WD) conditions. After data filtering, the peptide intensity
data set included 977 samples corresponding to 251 genotypes
from which we quantified 2055 proteins described in
Supplemental Table S1. Among these, 973were quantified by inte-
gration of peptide intensities (XIC-based quantification). The re-

maining 1082, whose peptides had >10% of missing intensity
values, were quantified by spectral counting (SC-based quantifica-
tion). The latter proteins were less abundant (Supplemental Fig.
S1A) and less precisely quantified (Supplemental Fig. S1B) than
those that could be quantified by XIC.

Heatmap representations of protein abundance showed that
two large separate protein clusters were associatedwith the twowa-
tering conditions (Fig. 1A). This indicates that, althoughmoderate,
water deficit had extensively remodeled the proteome of most ge-
notypes. Accordingly, 82.4% and 74.5% of proteins from the
XIC-based and SC-based sets, respectively, responded significantly
to water deficit (Supplemental Table S1; Supplemental Fig. S2A).
These included several proteins known to be involved in responses
to drought or stress (Shinozaki and Yamaguchi-Shinozaki 2007;
Wang et al. 2016) such as the dehydrins DHN1 (also known as
RAB17, GRMZM2G079440) and DHN3 (GRMZM2G373522), an
ABA-responsive protein (GRMZM2G106622), the LEA protein
MAGI2594 (GRMZM2G352415), the HSPs HSP101 (GRMZM2G3
60681), HSP8 (GRMZM2G080724) and PZA03529 (GRMZM2G1
12165), the phospholipase D PLD2 (GRMZM2G061969), the
glyoxalase I GLX1 (GRMZM2G181192), and the glutathione-S-
transferase PCO124824 (GRMZM2G043291). Induced and re-
pressed proteins constituted two highly differentiated populations
in terms of function (Fig. 1B). In particular, transcription, transla-
tion, energymetabolismandmetabolismof cofactors andvitamins
were better represented within repressed proteins, whereas carbo-
hydrate and amino acid metabolism and environmental adapta-
tion were better represented within induced proteins.

The global impact of genotypic change on the proteome was
less extensive than that of water deficit, because the proteomes of
two different genotypes grown in the same watering condition
were more similar than the proteomes of a same genotype grown
in different conditions (Fig. 1A). However, the maximum ampli-
tudes of abundance variations were similar (Supplemental Fig.
S2B). In addition, 94.9% of proteins from the XIC-based set
showed significant variation in abundance attributable to genetic
variation (Supplemental Table S1). This was confirmed by broad
sense heritability, the median of which was 0.47 and 0.46 for
WW and WD conditions, respectively (Supplemental Fig. S3A).
In contrast, in the SC-based set, only 34.4%of the proteins showed
significant variation in abundance attributable to genetic variation
with a median broad sense heritability of 0.08 and 0.10 for WW
and WD conditions, respectively (Supplemental Fig. S3B).

Significant gene–environment (G × E) interactions were
detected for only four and 12 proteins from the SC-based and
XIC-based set, respectively, probably because of a lack of statistical
power. These proteins included the LEA protein MAGI 2594
(GRMZM2G352415), HSP18f (GRMZM2G083810), and a
COR410 dehydrin (GRMZM2G14 7014). Although the G × E inter-
action was not statistically significant for the dehydrin DHN1
(GRMZM2G079440), this protein was undetectable in the WW
condition and more or less expressed, depending on genotype,
in the WD condition (Fig. 1C; Supplemental Table S2).

The strength of the genetic control of protein abundance

is related to protein function

We performed GWAS for 2501 combinations of protein abun-
dance×watering condition showing a heritability >0.2. In total,
we detected 514,270 significant associations for 2466 (98.6%)
combinations of protein abundance×watering condition involv-
ing 1367 proteins. When summarizing associated SNPs into
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pQTLs using classical methods based on genetic distance or link-
age disequilibrium (LD), we observed a positive relationship be-
tween the number of pQTLs per chromosome and the P-value of
the most strongly associated pQTL from the corresponding chro-
mosome (Supplemental Fig. S4A,B). To get rid of this artifactual re-
lationship, which could lead to the detection of more than 250
pQTLs on one chromosome, we developed a geometric method
based on the P-value signal of SNPs (Supplemental Fig. S4C).
This method produced the lowest number of pQTLs per combina-
tion of protein abundance×watering condition (median=8 vs. 13
for the two other methods) and the lowest maximum number of
pQTLs per chromosome (18 vs. 272 and 209 for themethods based

on genetic distance and LD, respectively). Using this geometric
method and considering only pQTLs accounting for >3%of the to-
tal variance, we thus detected 22,664 pQTLs accounting for 3%–

77.1% of the variance (Supplemental Table S3). Of these, 1113
were local, that is, located <106 bp from the protein encoding
gene, of which 339 were located within the genes. Among distant
pQTLs, 80.9% were located on a different chromosome from that
of the protein encoding gene. Local pQTLs had stronger effects
than distant pQTLs (average R2 = 15.3% and 5.2%, respectively)
(Supplemental Fig. S5). For 485 proteins, no local pQTLwas detect-
ed in either condition. This set of proteins was significantly en-
riched in proteins involved in translation (15.3% vs. 3.8%,

B

A

C

Figure 1. Effect of mild water deficit on the proteome. (A) Heatmap representations of protein abundances estimated for the XIC-based protein set (left)
and the SC-based protein set (right). Each line corresponds to a protein and each column to a genotype ×watering condition combination. For each pro-
tein, abundance values were scaled and represented by a color code as indicated by the color key bar. Hierarchical clustering of the genotype×watering
condition combinations (top) and of the proteins (left) was built using the 1− Pearson correlation coefficient as the distance and the unweighted pair group
method with arithmetic mean (UPGMA) as the aggregation method. (B) Functions of the induced and repressed proteins under water deficit.
(C) Abundance profiles of the DHN1 dehydrin (GRMZM2G079440 quantified based on the number of spectra) and of the MAGI2594 protein
(GRMZM2G352415, a LEA protein quantified based on peptide intensity) in the twowatering conditions. Genotypes on the x-axis were ordered according
to the WD/WW abundance ratio. The lists of genotypes in this order are available in Supplemental Table S2.
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adjusted P-value=2.3 ×10−10) and ener-
gymetabolism (17.3% vs. 8.5%, adjusted
P-value=8.2 ×10−5) and depleted in pro-
teins involved in carbohydrate metabo-
lism (9.9% vs. 19.5%, adjusted P-value =
8.2 ×10−5) compared to the 662 proteins
showing a local pQTL in at least one con-
dition. They also showed fewer distant
pQTLs and were much less heritable
(Supplemental Fig. S6A,B). These results
indicate that the strength of the genetic
control over protein abundance depends
on protein function. This observation is
supported by the positive correlation be-
tween the mean number of pQTLs and
themeanheritability per functional cate-
gory (Fig. 2).

Identification of loci with potential

pleiotropic effects on the proteome

pQTLs were not uniformly distributed in
the genome (Fig. 3A,B). Instead, there
were genomic regions enriched with
pQTLs. We detected 26 and 31 such hot-
spots that contained at least 19 pQTLs
in the WW and WD conditions, respec-
tively (Supplemental Table S4). These
hotspots may represent loci with pleiotropic effects on the prote-
ome, that is, loci associated with the abundance variation of sever-
al proteins. To refine the detection of such loci, we used a second
independent approach based on the search for coexpression QTLs
(coQTLs), that is, QTLs associated to the abundance variations of
several coexpressed proteins. To do so, we first performed aweight-
ed gene coexpression network analysis (WGCNA) of protein coex-
pression across the 251 genotypes in the two watering conditions
separately (Supplemental Table S5). The two resulting networks
differed in the presence of condition-specific modules indicating
that water deficit has altered the structure of the protein coexpres-
sion network (Fig. 4; Supplemental Fig. S7A–C; Supplemental File
S1). For each coexpression module, we then submitted the repre-
sentative variable, called eigengene according to the WGCNA ter-
minology, to GWAS to identify coQTLs. In total, we detected 176
coQTLs (96 for the 8 WWmodules and 80 for the 8 WDmodules)
(Supplemental Table S3). Fifteen of them colocalized with pQTL
hotspots (Supplemental Table S4). Thus, by crossing these results,
we confidently identified four loci in the WW condition and 11
loci in the WD condition as having potential pleiotropic effects
on the proteome. Of note, the proteins that were associated with
hotspots Hs22d and Hs21d and that were also in themodules hav-
ing coQTLs colocalizingwith these hotspots weremainly ribosom-
al proteins (Supplemental Table S6). This suggests that Hs22d and
Hs21d may contain loci involved in ribosome biogenesis.

The genetic architecture of protein abundance depends

on the environment

Of the 11,034 pQTLs detected in the WW condition, only 1124
(10.2%) had a colocalizing pQTL in the WD condition. These
pQTLs were generally of strong effect (Supplemental Fig. S8A)
and were enriched in local pQTLs (32.6% vs. 4.9% over the entire
data set). Although most of the pQTLs that were common to the
two conditions had similar effects in both conditions, 75 (6.7%)

showed contrasted effects (Supplemental Fig. S8B). Half of these
pQTLswere local, suggesting that gene promotersmay be involved
in the G × E interaction or that the pQTLs that were detected in
each condition corresponded to different polymorphic sequences
with different effects on protein abundance. These pQTLs were as-
sociated with 70 proteins, several of which were stress-responsive
like the LEA protein PCO134925a (GRMZM2G045664) or HSPs
GRMZM5G813217 and GRMZM2G536644 (Supplemental Table
S7). Altogether, these results show that water deficit has altered
the genetic architecture of protein abundance.

Identification of loci associated with trait variation

at multiple scales

To gain insight into the molecular mechanisms associated with
drought tolerance, we searched for colocalizations between the
pQTLs, coQTLs, and hotspots detected in our study and the 160
QTLs identified by Prado et al. (2018) on the same plant material.
TheseQTLswere associatedwith eight ecophysiological traits relat-
ed to growth and transpiration rate: early leaf area (i.e., before wa-
ter deficit; LAe), late leaf area (LAl), early biomass (Be), late biomass
(Bl), water use (WU), water use efficiency (WUE), stomatal conduc-
tance (gs), and transpiration rate (Trate). Robust colocalizations
were determined by taking into account the correlation between
each trait and protein values.

In total, we identified 68 pairs of SNPs corresponding to QTL/
pQTL colocalizations (Fig. 5; Supplemental Table S8). Only one in-
volved a local pQTL. The QTL/pQTL distance was generally <100
kb, with, in 25.7% of cases, the same SNP representing the QTL
and the pQTL (Fig. 6A). Most QTL/pQTL colocalizations (98%)
were detected in the WD condition, where they corresponded to
39 of the 91 QTLs reported in this condition (Prado et al. 2018).
They involved six ecophysiological phenotypic traits (Bl, LAl,
WU, WUE, Trate, and gs) and 47 proteins, many of which were

7.14 × 10–3

Figure 2. Relationship between the mean number of pQTLs per KEGG category and the mean herita-
bility per KEGG category.
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stress-responsive (Supplemental Table S9). Twenty-three pro-
teins showed multiple QTL/pQTL colocalizations (Supplemental
Table S9).

We further identified 11 pairs of SNPs corresponding to QTL/
coQTL colocalizations, all in the WD condition (Supplemental
Table S10). They involved three phenotypic traits (WU, Bl, LAl)
and two coexpression modules including theWD-specific module
(Fig. 5). These twomoduleswere significantly enriched in stress-re-
sponse proteins and in proteins involved in hormone metabolism
and in reactive oxygen species detoxification (Supplemental Table
S11). Ten of the 11QTLs colocalizing with coQTLs also colocalized
with pQTLs. The remaining QTL actually also colocalized with
pQTLs, but with a low correlation between the phenotypic trait
values and the protein abundance levels (|rcorrected| < 0.23)
(Supplemental Table S10). In contrast, the correlation between
trait values and eigengene was much higher (|rcorrected| = 0.51),
which indicates that proteins were more strongly related to eco-
physiological traits when taken collectively through a coexpres-
sion module rather than taken individually.

Taken together, these results highlight the presence of loci as-
sociated with traits at different biological scales. In the WD condi-
tion, several of these loci showedmultiple associations both at the
proteome and the phenotype level (Fig. 5). On Chromosome 1, a
locus spanning 33 kbp contained a QTL for LAl determined by

SNP S1_5382845 as well as a coQTL for
the green module and seven pQTLs, all
determined by SNP AX-91427638. On
Chromosome 5, a locus spanning 1.8
Mb between SNPs AX-91657926 and
AX-91658235, contained three QTLs for
LAl, Bl, and WU, one coQTLs for the
WD-specific module, and six pQTLs.
This region also contained hotspot
Hs52d. On Chromosome 7, a single
SNP (S7_162671160) determined the
positions of two QTLs for LAl and WU,
two coQTLs, and seven pQTLs. On
Chromosome 10, a locus spanning 1.3
Mb between SNPs S10_122802154 and
S10_124095144, contained one QTL for
LAl, one coQTL, and eight pQTLs. This
region also contained hotspot Hs103d.
In the WD condition, leaf area (LAl) was
repeatedly associated with the green
module (on Chromosomes 1, 7, 9, 10)
and to proteins belonging to this mod-
ule. Several of them were detoxification
enzymes (that is, a putative polyphenol
oxidase, PPO1 GRMZM5G851266; two
peroxidases, PRX39 GRMZM2G085967
and GRMZM2G108153; a superoxide
dismutase GRMZM2G025992; a glyoxa-
lase GRMZM2G704005).

Identification of candidate genes

potentially involved in drought

tolerance

Assuming that the genetic polymor-
phisms associated with protein abun-
dance variations are within genes, we
retrieved a list of 1–49 candidate genes

for each of the 69 pairs of SNPs corresponding to a QTL/pQTL or
QTL/coQTL colocalization (Supplemental Table S12). Based on
gene annotation and the literature, we identified two particularly
interesting cases.

First, on Chromosome 7, the SNP S7_162671160 was located
in aas8 (also known as gh3.8, GRMZM2G053338), which was the
onlycandidate gene.aas8 is involved in indole-3-acetyl-amidecon-
jugate biosynthesis. In agreement with the role of this gene in
drought response (Feng et al. 2015), S7_162671160 was associated
with theWD-specificmodule,WUandLal, and five stress-response
proteins: endochitinase CTA1 (GRMZM2G051943), beta-D-gluca-
nase ENG1 (GRMZM2G073079), peroxidase PRX39 (GRMZM
2G085967), polyphenol oxidase PPO1 (GRMZM5G851266), and
phospholipase D PLD2 (GRMZM2G061969).

Second, 14 candidate genes were identified in the region of
Chromosome 5 covered by hotspot Hs52d, of which two could
be associated with the expression variation of a high number of
genes. One is a squamosa promoter-binding gene (sbp1,
GRMZM2G111136) that is inducible by various abiotic stresses in-
cluding drought (Mao et al. 2016). The other, a C2C2-CO-like tran-
scription factor (col18, GRMZM2G148772), was found to be
significantly induced by drought and salinity stress in B73 leaves
(Forestan et al. 2016). Hotspot Hs52d covered a region of ∼4 Mb
in which we detected 26 pQTLs (many of which were located

B

A

Figure 3. Distribution of pQTLs across the genome. (A) In the well-watered condition. (B) In the water
deficit condition. Each point indicates the number of proteins associated with a pQTL located within a
given genomic region defined by the linkage disequilibrium interval around an SNP. Dashed horizontal
lines indicate the threshold used to detect pQTL hotspots. Names and positions of the pQTL hotspots are
indicated above each graph. Asterisks indicate the pQTL hotspots confidently detected as loci with po-
tential pleiotropic effects (for details, see Supplemental Table S4).
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between sbp1 and col18), two coQTLs, and four QTLs (Fig. 6B). A
single SNP, AX-91658235, located only 1 kbp from col18, deter-
mined the position of two QTLs, two pQTLs, and one coQTL.
Furthermore, SNP S5_88793314, located within the coding se-
quence of sbp1, determined the position of a QTL and a pQTL.
Based on these results, we can hypothesize that hotspot Hs52d
may correspond to two trans-acting factors for which sbp1 and
col18 represent good candidates.

Discussion

To better understand the molecular mechanisms associated with
the genetic polymorphisms underlying the variations in ecophys-
iological traits related to drought tolerance, we used a proteomics-
based systems genetics approach that allowed us to map 22,664
pQTLs at high-resolution. By relating pQTLs to protein functions
and heritability, we showed that the level of genetic control over
protein abundances depends on protein function. For instance,
proteins involved in translation and energy metabolism showed
fewpQTLs, with a lack of local pQTLs and lowheritability. As these
two functional categories mainly contain ancient and evolution-
arily conserved proteins (Goldman et al. 2010; Nelson and Junge
2015), our results suggest that evolutionarily ancient proteins
have more constrained expressions and fewer associated pQTLs
(Popadin et al. 2014; Zhang and Yang 2015; Mähler et al. 2017).
They also support the recent hypothesis of Mähler et al. (2017)
that, for genes experiencing reduced rates of molecular evolution,
purifying selection on individual SNPs is associated with stabiliz-
ing selection on gene expression.

pQTLs were found throughout the genome but some of them
clustered into hotspots, suggesting the presence of loci with pleio-
tropic effects on the proteome. The detection of QTL hotspots is

highly dependent on the number of traits studied, the mapping
resolution, and themethod used to cluster QTLs. Thismay explain
why previous studies have reported hotspots ranging from hun-
dreds of eQTLs (Orozco et al. 2012; Munkvold et al. 2013;
Christie et al. 2017), to only a few tens of eQTL or pQTLs (Foss
et al. 2011; Ghazalpour et al. 2011; Albert et al. 2014), or even
no hotspot at all (Mähler et al. 2017). In our study, false hotspot
detection was limited by having a high mapping resolution and
by using a pQTL clusteringmethod that takes into account LD var-
iations across the genome (Negro et al. 2019). Based on colocaliza-
tion with coQTLs, we ultimately cross-validated 15 condition-
specific hotspots, suggesting that loci with pleiotropic effects on
the proteome can interact with the environment.

By analyzing a diversity panel of 254 genotypes, we showed
that many small changes in protein abundance, detected as signif-
icant because they occurred in a high number of genotypes, con-
tributed to extensively remodel the proteome in water deficit
conditions. In total,∼75%of quantified proteins responded signif-
icantly to environmental change. Up- and down-regulated pro-
teins were well differentiated in terms of function and indicated
that the photosynthetic, transcriptional, and translational ma-
chineries were slowed down while stress responses and signaliza-
tion mechanisms were activated. All these changes showed that
plants clearly perceived a lack of water and presented a coordinated
proteome response to water deficit.

Changes in abundance occurring in response to water deficit
were associated with changes in the structure of the coexpression
network. Indeed, we identified condition-specific modules, one of
which, in the WD condition, was significantly enriched for stress-
response proteins. Similarly, Munkvold et al. (2013) observed con-
dition-specific modules related to biological processes in response
to particular environmental conditions. Such modules suggest

Figure 4. Graphical representation of the coexpression networks resulting from theWGCNA analysis. Only proteins with an adjacency >0.02 are shown.
The two viewswere created by Cytoscape v3.5.1 using an unweighted, spring-embedded layout (cytoscape files are available in Supplemental File S1). The
colors displayed on each network represent the different modules identified by WGCNA. Functional enrichments of modules are indicated with corre-
sponding colors. Condition-specific modules are circled. Each module contains 35–471 proteins.
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that, under environmental perturbation, sets of genes or proteins
are collectively mobilized by condition-specific factors allowing
plant cells to adapt. The WD-specific module was associated with
several QTL/coQTL colocalizations, and its eigengene was highly
correlated with biomass, water use, and leaf area. Although the ap-
proach used here is correlative, these results suggest that, under
water deficit, stress-response proteins contribute to phenotypic re-
sponses, which is consistent with the fact that many QTL/pQTL
colocalizations involved these types of proteins. One coQTL for
the WD-specific module was located in a region of Chromosome
5 that also cumulated several QTLs, pQTLs, and the hotspot
Hs52d. This indicates that the coexpression observed for stress re-
sponse proteins may be driven by condition-specific factors, the
pleiotropic effects of which resonate across all layers of biological
complexity up to phenotype. Altogether, these results suggest
that an eigengene may be considered a more integrated molecular
trait than protein abundance and can help decipher the genotype–
phenotype relationship by bridging the gap between the proteo-
mic and phenotypic level.

Linking phenotypic variation to proteome variation revealed
many QTL/pQTL colocalizations for which, using high mapping
resolution, we identified a limited number of candidate genes.

Only two of the 69 QTLs detected in the WW condition, ver-
sus 39 of the 91 in theWDcondition, colocalizedwith pQTLs. This
difference could be explained by the hypothesis that under non-
stress conditions, phenotypic variations are driven by many low
contribution proteins, whose abundance is probably controlled
by low effect genetic polymorphisms, whereas under water stress,
phenotypic variations are mainly driven by stress response pro-
teins under the genetic control of condition-specific factors. In
agreement with this hypothesis, we robustly identified two geno-

mic regions that could correspond to such factors. The first is locat-
ed on Chromosome 7, where we identified aas8 as the sole
candidate gene underlying two QTLs (for leaf area and water
use), seven pQTLs, of which five were associated with proteins in-
volved in stress responses, and two coQTLs, one of which was as-
sociated with the WD-specific module. In maize shoots, Feng
et al. (2015) showed that the expression of aas8 was induced by
auxin and reduced under polyethylene glycol treatment. The sec-
ond region is located on Chromosome 5, in the region of the
Hs52d hotspot, where we identified sbp1 (GRMZM2G111136)
and col18 (GRMZM2G148772) as candidate genes underlying
four QTLs, six pQTLs, and one coQTLs. These two transcription
factors have been previously shown to be induced by drought in
maize (Forestan et al. 2016;Mao et al. 2016). In addition, SBP genes
constitute a functionally diverse family of transcription factors in-
volved in plant growth and development (Preston and Hileman
2013). Because of their potential implication in G × E interactions
and because of their roles both in plant growth and development
and in drought response, aas8, sbp1, and col18 represent promising
candidates for drought tolerance breeding.

To conclude, our systems genetics approach, which incorpo-
rates MS-based proteomics data, has yielded several new results re-
garding the drought response inmaize. First, we point out that the
strength of the genetic control over protein abundance is related to
protein function and also probably to the evolutionary constraints
on protein expression. Then, we show that evenmild water deficit
strongly remodels the proteome and induces a reprogramming of
the genetic control of the abundance of many proteins including
those involved in stress responses. QTL/pQTL colocalizations are
mostly found in theWD condition indicating that this reprogram-
ming also affects the phenotypic level. Finally, we identify

Figure 5. Genomic position of the colocalizing pQTLs, coQTLs, and QTLs. The positions of the 15 pQTL hotspots confidently identified as loci with po-
tential pleiotropic effects are indicated, as well as the positions of themost promising candidate genes. Chromosomes are segmented into 10-Mbbins. Gray
dots represent the centromeres and blue dots indicate the position of genomic regions showing evidences for pleiotropy at both the proteome and phe-
notype level. Blue lines indicate colocalizations with QTLs that are determined by a same SNP. (°) WD-specific module; (∗) colocalization found in the WW
condition.
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candidate genes that are potentially responsible for both the coex-
pression of stress-response proteins and the variation of ecophysi-
ological traits under water deficit. Taken together, our findings
provide novel insights into the molecular mechanisms of drought
tolerance and suggest some pathways for further research and
breeding. Our study also shows that proteomics has now reached
enoughmaturity to be fully exploited in systems studies necessitat-
ing large-scale experiments.

Methods

Plant material and experiment

Plant material and growth conditions are described in full details
in Prado et al. (2018) and in the Supplemental Methods. In brief,
a diversity panel of maize hybrids was obtained by crossing a com-

mon flint parent (UH007, paternal parent) with 254 dent lines.
Two levels of soil water content were applied: well-watered (soil
water potential of −0.05 MPa) and water deficit (soil water poten-
tial of −0.45 MPa). Hybrids were replicated three times in each wa-
tering condition. Leaf sampling was performed at the preflowering
stage in two replicates per hybrid and water condition.

Protein extraction and digestion

Protein extraction and digestion procedures are described in full
detail in the Supplemental Methods. In brief, proteins were ex-
tracted from frozen ground leaf samples using a standard protocol
for protein precipitation with trichloroacetic acid and acetone sol-
ution. Tryptic digestion was performed after solubilization, reduc-
tion, and alkylation of the proteins. The resulting peptides were
desalted by solid phase extraction using polymeric C18 columns.

LC-MS/MS analyses

Samples were analyzed by LC-MS/MS in batches of 96. Analyses
were performed using a NanoLC-Ultra System (nano2DUltra,
Eksigent) connected to a Q-Exactive mass spectrometer (Thermo
Electron). A 400-ng protein digest was loaded at 7.5 μL.min−1 on
a Biosphere C18 pre-column (0.3×5 mm, 100 Å, 5 μm; Nanosepa-
ration) and desalted with 0.1% formic acid and 2% ACN. After 3
min, the pre-column was connected to a Biosphere C18 nanocol-
umn (0.075×150 mm, 100 Å, 3 μm, Nanoseparation). Buffers
were 0.1% formic acid in water (A) and 0.1% formic acid and
100% ACN (B). Peptides were separated using a linear gradient
from 5% to 35% buffer B for 40 min at 300 nL.min−1. One run
took 60 min, including the regeneration step at 95% buffer B
and the equilibration step at 95% buffer A. Ionization was per-
formed with a 1.4-kV spray voltage applied to an uncoated capil-
lary probe (10 μm tip inner diameter; New Objective). Peptide
ions were analyzed using Xcalibur 2.2 (Thermo Electron) in a
data-dependent acquisition mode as described in the Supplemen-
tal Methods.

Peptide and protein identification

Peptide identificationwas performed using theMaizeSequence ge-
nome database (Release 5a, 136,770 entries, https://ftp.maizegdb
.org/MaizeGDB/FTP/) supplemented with 1821 French maize in-
bred line F2 sequences with present/absent variants (PAVs)
(Darracq et al. 2018) and a custom database containing standard
contaminants. Database searches were performed using X!
Tandem (Craig and Beavis 2004) (version 2015.04.01.1), and pro-
tein inferencewas performed using a homemadeC++ version of X!
TandemPipeline (Langella et al. 2017) specifically designed to han-
dle hundreds of MS run files (Supplemental Code). Parameters for
peptide identification and protein inference are described in the
SupplementalMethods. The false discovery rate (FDR)was estimat-
ed at 0.06% for peptides and 0.04% for proteins.

Functional annotation of proteins was based on MapMan
mapping (Thimm et al. 2004; Usadel et al. 2009) (Zm_B73_
5b_FGS_cds_2012, available at https://mapman.gabipd.org/) and
on a custom KEGG classification built by manually attributing
the MapMan bins to KEGG pathways (C Dillmann, pers. comm.).

Peptide and protein quantification

Peptide quantification was performed using MassChroQ version
2.1.0 (Valot et al. 2011) based on extracted ion chromatograms
(XIC) with the parameters described in the Supplemental
Methods. Peptide quantification data were filtered to remove ge-
notypes represented by only one or two samples instead of the

B

A

Figure 6. Identification of genomic regions associated with trait varia-
tions at multiple scales. (A) Distribution of the distances between colocal-
izing QTLs and pQTLs. (B) Detailed view of the QTL, pQTL, and coQTL
detected in the region covered by the Hs52d hotspot on Chromosome
5. Dots represent the SNPs determining the position of the QTLs, and hor-
izontal bars represent the linkage disequilibrium-based window around
each SNP. Black circles indicate the pQTLs that colocalize with QTLs or
coQTLs with a high correlation between protein abundance and the phe-
notypic trait value or themodule eigengene. The position of two transcrip-
tion factors, sbp1 (GRMZM2G111136) and col18 (GRMZM2G148772)
that represent promising candidate genes, are indicated.
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expected four, as well as outlier samples for which we suspected
technical problems during sample preparation or MS analysis. In
the end, the MS data set included 977 samples.

Proteins were quantified from peptides using two comple-
mentary methods. First, for XIC-based quantification, proteins
were quantified based on peptide intensity data filtered and nor-
malized as described in the Supplemental Methods. R script for fil-
tering and normalizing peptide intensity data is available as
Supplemental Code. We excluded proteins that were quantified
by only one peptide. As samples were analyzed by LC-MS/MS in
batches over a period of several months, we observed a strong
batch effect on normalized peptide intensities. To correct this
batch effect, we fitted a linear model to log-transformed intensity
data and subtracted the component attributable to batch effects.
Then, for each protein, we modeled the peptide data using a
mixed-effects model derived from Blein-Nicolas et al. (2012) and
described in the Supplemental Methods. Protein abundance was
subsequently computed as adjusted means from the model’s esti-
mates. Second, for spectral counting (SC)-based quantification,
proteins that could not be quantified with XIC because their pep-
tides had toomanymissing intensity values were quantified based
on their number of assigned spectra. Proteins with a spectral count
less than 2 in any of the samples were discarded. Normalization
was then performed as described in the Supplemental Methods.
As inXIC-based quantification,we corrected the batch effect by fit-
ting a linear model to square-root-transformed and normalized
protein abundances. Analysis of variance (ANOVA) was subse-
quently performed using the mixed-effects model described in
the Supplemental Methods.

Genome-wide association study

GWAS was performed on protein abundances estimated in each
watering condition using the single locus mixed model described
in Yu et al. (2006). The variance–covariance matrix was deter-
mined as described in Rincent et al. (2014) by a kinship matrix de-
rived from all SNPs except those on the chromosome containing
the SNP being tested. SNP effects were estimated by generalized
least squares and their significance was tested with an F-statistic.
An SNPwas considered significantly associatedwhen−log10(P-val-
ue) > 5. A set of 961,971 SNPs obtained from line genotyping using
a 50,000 InfiniumHD Illumina array (Ganal et al. 2011), a 600,000
Axiom Affymetrix array (Unterseer et al. 2014), and a set of
500,000 SNPs obtained by genotyping-by-sequencing (Negro
et al. 2019) were tested. Analyses were performed with FaST-
LMM (Lippert et al. 2011) v2.07. Only SNPs with minor allele fre-
quencies >5% were considered.

Inflation factors were computed as the slopes of the linear re-
gressions on the QQplots between observed −log10(P-value) and
expected −log10(P-value). Inflation factors were close to 1 (median
of 1.08 and 1.06 in the XIC-based and SC-based sets, respectively),
indicating low inflation of P-values.

Detection of QTLs from significantly associated SNPs

Three different methods implemented in R (R Core Team 2013)
version 3.3.3 were used to summarize significantly associated
SNPs into pQTLs. First, in the genetic method, two contiguous
SNPs were considered to belong to a same QTL when the genetic
distance separating them was <0.1 cM. Second, in the LD-based
method, two contiguous SNPs were considered to belong to a
same QTL when their LD-based windows (Negro et al. 2019) over-
lapped. Third, in the geometricmethod, for each chromosome, we
ordered the SNPs according to their physical position. Then, we
smoothed the −log10(P-value) signal by computing the maximum

of the −log10(P-values) in a sliding window containingN consecu-
tive SNPs. An association peak was detected when the smoothed
−log10(P-value) signal exceeded a max thresholdM. Two consecu-
tive peaks were considered to be two different QTLs when the
−log10(P-value) signal separating themdropped below aminimum
thresholdm. The parameters for QTL detection were fixed empiri-
cally at N=500, M=5, and m=4. For the three methods described
above, the position of a QTL was determined by the SNP showing
the highest −log10(P-value). A pQTL was considered local if it was
within 1Mbupstreamor downstream from the coding sequence of
the gene encoding the corresponding protein.

Complementary data analyses

The following complementary data analyses were performed with
R (R Core Team 2013) version 3.3.3:

1. Broad sense heritability of protein abundance: For each protein,
the broad sense heritability of abundance was computed for
each of the twowatering conditions fromamixed-effectsmodel
as described in the Supplemental Methods.

2. Detection of pQTL hotspots: for each SNP position, we counted
the number of pQTLs (N) located within its LD-based window
(Negro et al. 2019). The threshold used to detect a hotspot
was set at the 97% quantile of the distribution of N.

3. Protein coexpression analysis: Protein coexpression analysis
was performed using the WGCNA R package (Langfelder and
Horvath 2008) with the parameters described in the
SupplementalMethods. Using a procedure developed to correct
the bias owing to population structure and/or relatedness in the
LD measure and implemented in the LDcorSV R package
(Mangin et al. 2012), we computed pairwise Pearson’s correla-
tions corrected by structure and kinship (|rcorrected|) and used
them as the input similarity matrix. Graphical representations
of the resulting networks were performed with Cytoscape
(Shannon et al. 2003) v3.5.1 using an unweighted spring-em-
bedded layout.

4. QTL colocalization: We considered QTLs to colocalize when
they meet the following two criteria. First, the LD-based win-
dows around the QTLs (Negro et al. 2019) should overlap.
Second, the absolute value of the Pearson’s correlation of coef-
ficient corrected by structure and kinship (the |rcorrected| men-
tioned above) between the values of the ecophysiological
traits associated with the QTLs should be greater than 0.3. We
determined this value empirically in the absence of a statistical
test to test the significance of the corrected correlation.

5. Candidate gene identification: For each QTL/pQTL colocaliza-
tion, gene accessions found within the interval defined by the
intersection between the LD-based windows around the QTL
and the pQTL were retrieved from the MaizeSequence genome
database (Release 5a). Low confidence gene models and trans-
posable elements were not considered.

Data access

The raw MS output files were submitted to PROTICdb (http://
moulon.inra.fr/protic/amaizing) (Ferry-Dumazet et al. 2005;
Langella et al. 2007, 2013), the MassIVE database (https://
massive.ucsd.edu/ProteoSAFe/static/massive.jsp) under accession
number MSV000085594, and the ProteomeXchange database
(http://www.proteomexchange.org) under accession number
PXD019804. Detailed information on all peptides and proteins
identified in the LC-MS/MS runs, as well as peptide intensities
and protein abundances obtained for each sample, are also freely
available on PROTICdb at the same URL.
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Phenotypic data are available online using the PHIS informa-
tion system (Neveu et al. 2019) at http://www.phis.inra.fr/
openphis/web/index.php?r=site%2Flogin-as-guest. Fromthisweb-
page, data are accessible by clicking on Experimental organization
>Project > Systems genetics formaize drought tolerance (Amaizing
project). Early leaf area (LAe) was defined at the seven leaves stage,
representing 24 d (thermal time in equivalent days at 20°C). Late
leaf area (LAl) was defined at the 12 leaves stage, representing 45
d (thermal time in equivalent days at 20°C).

The genotyping data generated in this study were submitted
to the European Variation Archive (EVA; https://www.ebi.ac.uk/
eva/) under accession number PRJEB40124 and are also available
at Data INRAE (https://doi.org/10.15454/GAHEU0).
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