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Abstract

The lung is inhabited by resident alveolar and interstitial macrophages as well as monocytic cells 

that survey lung tissues. Each cell type plays distinct functional roles under homeostatic and 

inflammatory conditions, but mechanisms establishing their molecular identities and functional 

potential remain poorly understood. Here, systematic evaluation of transcriptomes and open 

chromatin of alveolar macrophages (AMs), interstitial macrophages (IMs) and lung monocytes 

from two mouse strains enabled inference of common and cell-specific transcriptional regulators. 

We provide evidence that these factors drive selection of regulatory landscapes that specify distinct 

phenotypes of AMs and IMs and entrain qualitatively different responses to Toll-like receptor 4 

(TLR4) signaling in vivo. These studies reveal a striking divergence in a fundamental innate 

immune response pathway in AMs and establish a framework for further understanding 

macrophage diversity in the lung.
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Introduction

Innate immune cells, including macrophages, monocytes and dendritic cells, collectively 

called mononuclear phagocytes (MPs), provide the first line of cellular defense against 

pathogens. In addition, macrophages play essential roles in diverse developmental and 

homeostatic processes1. Within the lung, MPs are situated at and between the epithelial and 

endothelial surfaces, and their bulk gene expression profiles change during development2. 

Alveolar macrophages (AMs) are derived from embryonic erythromyeloid progenitor 

cells3, 4 and from fetal liver monocytes5. AMs play key roles in surfactant turnover and in 

maintaining an anti-inflammatory state that benefits efficient gas exchange6, 7, 8. However, 

the lung is populated by several subsets of MPs in addition to AMs9, 10. Interstitial 

macrophages (IMs) proposed to be derived from yolk sac macrophages and later to be 

replaced by circulating monocytes11 are situated in the lung interstitium around airways, 

blood vessels and nerves12, 13. In addition, the extensive capillary bed of the lung harbors a 

marginated pool of monocytes that is retained even after extensive perfusion of the lung14. 

When the lung is injured or infected, additional monocytes are recruited and can amplify the 

inflammatory response15, 16, 17.

The tissue environment plays a crucial role in determining the expression and function of 

transcription factors (TFs) that specify tissue-resident macrophage phenotypes18. Following 

entry into the developing fetal lung, embryonic macrophages destined to become AMs 

upregulate Pparg, Klf4, Atf5 and Cebpb19. Consistent with the upregulation of these TFs at 

the mRNA level, their corresponding DNA recognition motifs are highly enriched in AM 

enhancers20 and loss of Pparg expression results in defective AM differentiation21, 22. 

Conversely, rapid changes in enhancer activity states and gene expression are observed 

following the transfer of resident macrophages to a tissue culture environment23, 24. These 

findings imply that tissue-derived signals are constantly sensed and integrated at the level of 

enhancers, which function to maintain tissue-specific programs of macrophage gene 

expression.

Cell-specific enhancers also function as important sites of action of broadly expressed 

signal-dependent TFs, exemplified by NF-κB and nuclear hormone receptors25. In principle, 

the distinct enhancer landscapes of each cell type enable cell-specific transcriptional 

responses to a common signal, such as lipopolysaccharide (LPS). These context-dependent 

responses to common signals are likely to be essential to the specific functions of distinct 

macrophage and monocyte subsets. Here, we use genetic and genomic approaches to 

investigate mechanisms that regulate gene expression in distinct tissue-resident macrophages 

in the lung and demonstrate divergent functional responses of these cell subsets to the Gram-

negative bacterial endotoxin LPS.

Results

Cell-specific transcriptomes of lung macrophages and monocytes

To measure cellular heterogeneity of the lung myeloid compartment with an unbiased 

approach, we performed single-cell RNA-seq (scRNA-seq). Following extensive perfusion 
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of the lung vasculature to remove circulating blood cells, we isolated resident lung myeloid 

cells (CD45+ cells depleted of T and B lymphocytes) by fluorescence-activated cell sorting 

(FACS) from 4 mice and generated single-cell transcriptional profiles for 1,048 cells that 

passed rigorous quality control. Dimensionality reduction analysis (t-SNE) separated cells 

into 7 clusters based on their gene expression pattern (Fig.1a and Extended Data Fig.1a). 

These clusters included AMs with high Ltc4, Plet1, Mt1 expression and IMs with high Il1b 
and S100a expression. In addition, two populations were related to the major subsets of 

circulating blood monocytes26, 27; inflammatory monocytes (iMos) with high Ly6c2 
expression, and patrolling monocytes (pMos) with Nr4a1 expression.

To investigate developmental relationships between lung monocytes and macrophages we 

performed RNA velocity analysis, which distinguishes between spliced and un-spliced 

mRNA to predict the ‘future’ state of individual cells28. The directionality vectors associated 

with each cell suggest that a substantial proportion of iMos are predicted to become more 

similar to pMos with time (Fig. 1a, Extended Data Fig. 1b). In addition, a smaller sub-

cluster of iMos is predicted to differentiate into IMs.

Based on the population structure defined by scRNA-seq, we isolated four subsets (AM, IM, 

iMo, pMo) using FACS (gating strategy shown in Extended Data Fig. 1c)29. The sorted cells 

were processed for bulk RNA sequencing (RNA-seq) and for chromatin accessibility by 

Assay for Transposase-Accessible Chromatin (ATAC-seq)30. Contamination by other cell 

types was negligible for all MP subsets and Spearman correlation values were high for 

RNA-seq replicates in any given MP subset (Extended Data Fig. 1d, e). To investigate the 

impact of genetic variation on lung MP gene signatures during homeostasis we performed 

these experiments using two strains of mice C57BL/6J (B6) and DBA/2J (DBA) . These 

strains of mice exhibit 4.4 million single nucleotide polymorphisms (SNPs) and 540,000 

insertions and deletions (InDels)31. Phenotypically, they differ in their susceptibility to a 

spectrum of inflammatory lung diseases32, 33.

Gene expression profiles of lung MP subsets were markedly different at baseline (Fig. 1b). 

Clustering of RNA-seq data segregated samples by cell type, with strain as a secondary 

determinant. Comparing lung MP subsets, AMs were most different from all other cell types 

in both strains. For example, in B6 mice we found 1,769 differentially expressed genes 

between AMs and IMs (FC > 2, FDR < 0.05) (Extended Data Fig. 1f). Diversity between 

transcriptional programs for the remaining three cell subsets was less pronounced but still 

substantial with 1,076 genes differentially expressed between IMs and iMos and 584 genes 

between iMos and pMos (FC > 2, FDR < 0.05) in B6 mice (Extended Data Fig. 1f). Notably, 

while lung iMos were very similar to circulating iMos, pMos retained in the lung following 

extensive perfusion exhibited 266 genes that were differentially expressed (FC > 2, FDR < 

0.05) compared to pMos in circulating blood (Extended Data Fig. 1g). Ingenuity pathway 

analysis (IPA) showed that genes involved in migration and adhesion were more highly 

expressed in pMos isolated from the lung (Extended Data Fig. 1h).

To infer potential biological meaning of the differentially expressed genes between lung MP 

subsets, we merged the differentially expressed genes in both C57 or DBA datasets. Using 

the obtained gene list, we performed IPA (Fig. 1d). AMs were enriched for genes associated 
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with cell cycle progression, supporting previous studies indicating that these cells are self-

renewing. For example, Myc, a transcription factor known to play a central role in 

stimulating cell cycle progression, and Id1 known to play a role in cell growth were 

expressed highest in AMs (Fig. 1d). Under baseline conditions, IMs were the only lung MP 

subset enriched in genes positively associated with inflammatory response, exemplified by 

high expression of Il1b (Fig. 1d). In addition, IMs were enriched in genes related to cell 

movement (Cxcl13, Ccl24) and angiogenesis (Mmp9) (Fig. 1d). Apoptosis related genes, 

including Bbc3 and Eif3f, were most enriched in iMos and pMos. Collectively, these cell-

specific transcriptomes define the distinct molecular phenotypes of the corresponding lung 

MPs.

Strain-specific transcriptomes of lung MPs

Analysis of gene expression between B6 and DBA mice showed hundreds of mRNA 

transcripts expressed with at least a two-fold difference between the strains in each lung MP 

subset (Fig. 2a). Of note, most of the inter-strain differences in gene expression were cell-

subset-specific (Fig. 2b, c). For example, Spp1 , the gene encoding osteopontin, a molecule 

known to recruit cells to inflammatory sites and promote cell survival by regulating 

apoptosis34 was several fold enriched in AMs from DBA mice (Fig. 2c). Increased 

expression of Spp1 in response to cigarette smoke is linked to emphysema35. Thus, higher 

levels in AMs may contribute to the greater sensitivity of DBA mice to cigarette-smoke 

induced emphysema than B6 mice33. Contrarily, Spint1 a gene encoding a serine protease 

inhibitor, was much higher expressed in AMs from B6 mice. An example of a gene 

selectively expressed in DBA IMs is Alox15, encoding for a lipoxygenase implicated in anti-

inflammation36. Strain- and cell type-specificity could also be observed for Cd4, which was 

only expressed in B6 IMs. Ligation of CD4 on monocytes/macrophages modulates gene and 

cytokine protein expression as well as T cell responses37. Stab2 a transmembrane receptor 

involved in bacterial scavenging, cell adhesion and angiogenesis38 was only expressed in 

lung MPs from DBA mice. Conversely, Trim30d, was expressed by lung MPs isolated from 

B6 mice but absent in DBA mice. These results thereby identify genes that may play 

important roles in determining the phenotypic diversity of B6 and DBA mice.

Inference of transcriptional regulators from open chromatin landscapes

To investigate mechanisms responsible for the cell-subset-specific gene programs, we 

identified accessible regions of chromatin in lung MPs by performing ATAC-seq (Fig. 3a)30. 

We found the biological replicates to be highly correlated (Extended Data Fig. 2a). Essential 

myeloid genes, such as Spi1, encoding for the master TF PU.1, showed a highly overlapping 

open chromatin pattern in all lung MP subsets (Fig. 3a). In contrast, chromatin regions 

neighboring the AM-specific Fabp1 gene exhibited accessibility only in AMs. Open 

chromatin near Il1b, a pro-inflammatory cytokine, showed partial overlap among lung MPs, 

with a clear IM-specific peak, the cell subset showing the most inflammatory transcriptional 

pattern at baseline (Fig. 3a). In these examples, gene expression tracked closely with 

chromatin accessibility.

Genome-wide comparison of ATAC-seq peak tag counts revealed several thousand genomic 

sites with differentially opened chromatin between lung MP subsets. For example, pairwise 
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comparison of AMs vs IMs revealed 16,402 peaks that displayed at least a 4-fold increase in 

ATAC-seq peak tag counts in IMs and 7,920 peaks in AMs (Fig. 3b). Comparison of the two 

lung monocyte subsets identified 3,087 peaks enriched in pMos and 2,788 peaks enriched in 

iMos (Extended Data Fig. 2b) implying that these cells indeed use distinct gene regulatory 

networks and a cell-subset-specific TF repertoire.

Clustering of lung MPs based on chromatin accessibility resulted in similar segregation as 

observed with clustering based on gene expression. AMs were most distant from the other 3 

cell subsets and pMos and iMos grouped most closely together (Fig. 3c). To identify 

candidate TFs that could bind to distant open chromatin regions that would include 

enhancers, we performed de novo motif enrichment analysis of distal ATAC-seq peaks (> 3 

kb from a transcription start site (TSS)). Using GC-matched genomic background in the 

HOMER39 motif analysis we identified motifs for common myeloid cell lineage factors such 

as PU.1, C/EBP, AP-1, KLF and RUNX (Fig. 3d). This core set of motifs was highly 

enriched in all lung MP in both strains (Extended Data Fig. 2c,d), consistent with general 

roles of TFs recognizing these motifs in establishing macrophage identity.

To increase the power to detect cell-subset-specific TFs, we performed HOMER de novo 
motif analysis comparing cell-specific ATAC peaks to all ATAC peaks present in any of the 

four lung MPs (Fig. 3e). This method normalizes out motifs for TFs that are common to the 

four lung MP subsets and enriches for subset-specific motifs. Using this approach, we 

identified both known and previously unknown cell-subset-specific TFs. For example, PPAR 

is one of the top motifs in AMs and NUR77 one of the top motifs in pMos. These findings 

are in line with previously published data showing that PPARγ is essential for AM 

development and that NUR77 is a master regulator of patrolling monocytes21, 40. Notably, 

the RELA motif, recognized by NF-κB, showed highest enrichment in IM enhancers, 

consistent with the enhanced inflammatory signature of these cells. IRF and SMAD motifs 

were selectively enriched in iMos, which are recognized by TFs with established roles in 

regulating pro- and anti-inflammatory programs of gene expression, respectively.

Other enriched motifs in unique lung MP subsets are associated with TFs for which 

functions in MP subsets have not been described. For example, AMs were enriched in the 

binding motif for MITF. IM enhancer regions were selectively enriched in HINFP, EGR and 

ZEB motifs. The MAFF motif was selectively enriched in pMos and is recognized by MAF 

TFs that form heterodimers with many other TFs, notably the NFE2 family41.

Since TFs of the same family can bind to the same or similar motifs, motif enrichment 

analysis cannot differentiate between TF family members. To infer likely candidates, we 

associated enriched motifs with mRNA expression of highly expressed TF family members 

that could bind these motifs. This approach revealed further similarities and differences 

among lung MPs. For example, PU.1, encoded by Spi1, was the ETS-domain transcription 

factor family member with the highest expression in all lung MPs (Fig. 3d). Compared to 

Spi1, other ETS members showed a more moderate expression level and higher degree of 

variation between cell subsets. Elf4, a TF previously shown to be important for interferon 

production and innate immune response against viruses42, showed cell-subset-specificity 

with highest expression in monocytes (Fig. 3d). Members of the C/EBP, AP-1 and KLF 

Sajti et al. Page 5

Nat Immunol. Author manuscript; available in PMC 2020 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



families were highly expressed in general, with some family members showing cell-subset-

specificity. Of the five NF-κB proteins that could bind the RELA motif, Rela (also known as 

p65) and Nfkb2 (encoding for the p52 precursor protein also known as p100) were the most 

prominent (Fig. 3e). Overall, these findings suggest the identities of TF combinations 

required for establishing the regulatory landscapes of each lung MP subset.

Transcriptional regulators inferred from effects of genetic variation

The functional relevance of TF motifs can be assessed by analyzing the impact of motif 

mutations43, 44. To investigate the functional importance of specific motifs in establishing 

open chromatin, we analyzed the effects of the natural genetic variation distinguishing B6 

and DBA mice31. Comparing open chromatin regions between B6 and DBA mice (Fig. 4a), 

we found 2,000–8,000 genomic regions that showed at least a 2-fold difference in ATAC-seq 

signal in lung MP subsets.

Effects of SNPs and InDels on open chromatin were assessed using MMARGE (Motif 

Mutation Analysis for Regulatory Genomic Elements)45. This method evaluates the 

significance of the relationship of mutations within TF motifs with strain-specific gain or 

loss of specific chromatin features, such as ATAC-seq signal. For example, if SNPs or 

InDels within PU.1 recognition motifs in B6 mice are statistically associated with a 

reduction in local ATAC-seq peaks compared to peaks in DBA mice, the PU.1 motif is 

scored as contributing to the formation of open chromatin. MMARGE analysis is thus 

qualitatively different from motif enrichment analysis in that it examines the functional 

consequence of a mutation within a binding motif on chromatin accessibility.

Application of this method to an annotated library of 287 distinct TF motifs yielded 51 

significant motifs across the four lung MP subsets (Fig. 4b). As expected, motifs recognized 

by key regulators of the macrophage lineage such as PU.1, CEBP, AP-1, and KLF were 

highly significant in most or all lung MPs. MMARGE analysis also identified motifs in 

which mutations exerted subset-specific effects. For example, although a generic IRF motif 

was significant across all subsets, mutations in the motif for T1ISRE selectively affected 

ATAC peaks specific for AMs, and motifs for IRF-7,8,9 specifically affected pMos. ALX, 

MEF2C and ZNF423 were motifs specific for IMs. NFY and NFYB mutations were 

significantly associated with reduced open chromatin in iMos, but not other lung MP subsets 

(Fig. 4b,c). We also confirmed that mutations in the motif recognized by ZEB led to higher 

chromatin accessibility, consistent with its reported function as a transcriptional repressor43. 

When applying MMARGE specifically to open promoter regions in the two mouse strains, a 

much lower number of motifs were found to be significantly associated with chromatin 

accessibility. EGR was specific for AMs and MSC for IMs. Mutations in RBP-J and STAT 

motifs in promoter regions led to significant changes in chromatin accessibility in both 

monocyte subsets (Fig. 4b).

To integrate the findings of HOMER motif analyses using genomic background and lung 

MP common background with the functional results of MMARGE, we constructed networks 

of the most relevant TFs for each cell subset (Fig. 4c). In these networks the node size is 

proportional to the fraction of open chromatin regions containing the motif and the edge 

thickness represents the significance (p-value) of this motif within each analysis. Edges are 

Sajti et al. Page 6

Nat Immunol. Author manuscript; available in PMC 2020 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



colored according to the motif analysis method; HOMER using random GC background is 

brown, HOMER using lung MP common background is turquoise and MMARGE is purple.

These networks showed a high overlap of HOMER and MMARGE results for the critical 

macrophage regulators PU.1, CEBP, AP-1 and KLF. RUNX was the only macrophage 

lineage-determining TF (LDTF) (gray nodes) that did not show concomitant significance 

with motif enrichment and functional analysis in all cell subsets. In addition to the five 

LDTFs, this integrated approach identified additional TFs (yellow nodes) for each cell 

subset that reached significance in both analyses. For AMs, CTCF reached significance in 

HOMER and MMARGE analysis, while for IMs ZEB, FOXD, and HINFP were significant. 

Regarding the two monocyte subsets, IRF was significant for iMos and NUR77, HOXA, 

YY1 and CTCF for pMos. Taken together, these data provide functional evidence for 

putative TFs that shape the chromatin landscape in lung MPs and provide evidence for 

additional TFs that have selective roles in specific subsets of lung MPs that were not 

identified by conventional motif enrichment analysis.

Divergent responses of lung MPs to acute inflammation

The divergent baseline patterns of gene expression and distinct open chromatin landscapes 

associated with each lung MP subset suggests that they are programmed to respond to 

environmental perturbations in a cell-specific manner. To directly test this prediction, we 

performed RNA-seq analysis of AMs, IMs and iMos following exposure to LPS 

administered either intraperitoneally (i.p.) or intranasally (i.n.). Inflammation induced by i.p. 

LPS is a widely accepted model for endotoxin-mediated septic shock/acute respiratory 

distress syndrome and i.n. LPS for pneumonia46.

I.p. LPS administration resulted in a prominent inflammatory response in the lung with a 

significant shift in the composition of myeloid cells 2 h, 6 h and 22 h after LPS 

administration (Extended Data Fig. 3a). As expected, neutrophils and iMo were rapidly 

recruited to the lungs. The proportion of IMs gradually increased during the course of 

inflammation, while AMs showed a temporary relative decrease at 2 h and 6 h after i.p. LPS 

administration (Extended Data Fig. 3a).

IMs and iMos exhibited robust and largely overlapping changes in gene expression after i.p. 

LPS administration (in comparison to baseline expression), whereas AMs showed very 

modest changes (Fig. 5a,b and Extended Data Fig. 3b). In addition to proinflammatory 

cytokines (Il1b, Ccl5, Cxcl10), genes for anti-inflammatory cytokines such Il10 and reactive 

oxygen species scavengers such as Sod2, as well as matrix metallopeptidases (Mmp14, 
Mmp8), were rapidly induced in IMs and iMos after LPS administration (Fig. 5b).

IPA of differentially regulated genes in IMs and iMos compared to their own baseline 

indicated a pattern that was consistent with rapid activation of TLR4 and downstream 

signaling pathways (Fig. 5c). Induced pathways included TLR signaling, NF-κB signaling, 

IL-6 and interferon signaling. Enriched pathways for iMos and IMs were qualitatively 

similar, but some substantial quantitative differences were noted, including oxidative 

phosphorylation, eIF2 and ErbB2 signaling. ERK5 signaling and sphingosine-1-phosphate 

signaling were predicted to be activated in iMos but inhibited in IMs.
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I.n. delivery of LPS resulted in a robust recruitment of neutrophils to the lung, similar to the 

i.p. LPS model (Extended Data Fig. 3c). In contrast to i.p. delivery, AMs were the most 

responsive lung macrophages, with very few acute changes in gene expression observed in 

IMs and iMos (Fig. 5d and Extended Data Fig. 3d). In general, the inflammatory response 

was more dampened in the i.n. LPS response compared to i.p. LPS with fewer number of 

differentially expressed genes and less pronounced changes compared to baseline values 

(Fig. 5e). A small set of genes was rapidly induced in AMs that overlapped with rapidly 

induced genes in IMs including Il1b and Tnf (Fig. 5e). However, the majority of genes 

responding to LPS in AMs exhibited a maximum response at 6 h, representing a delay in 

comparison to the maximal response of IMs and iMos, which occurred at 2 h following i.p. 

administration of LPS (Fig. 5d).

Comparison of genes induced at the time of maximal response in IMs (2 h, i.p. LPS) to 

genes induced at the time of maximal response in AMs (6 h, i.n. LPS) indicated that of the 

253 up-regulated genes in AMs and 1,155 up-regulated genes in IMs, only 43 were in 

common (Fig. 6a). A similar pattern was observed for down-regulated genes. Remarkably, 

IPA analysis indicated that the predicted functional consequences of the AM and IM 

changes in gene expression were in opposite directions for several of the most enriched 

pathways (Fig. 6b). One of the most striking differences is provided by differential 

regulation of genes involved in oxidative phosphorylation, which were down-regulated in 

IMs but up-regulated in AMs (Fig. 6c).

To explore possible mechanisms, we analyzed the basal expression of genes belonging to the 

TLR signaling pathway (Fig. 6d). Tlr4, Ly96 (encoding MD2), Cd14, Lbp (both encoding 

co-receptors for LPS), and the signaling adapter protein encoded by Myd88, are expressed at 

similar levels in AMs and IMs. However, the majority of genes encoding additional 

downstream adapters, kinases and transcription factors mediating responses to TLR4 

ligation exhibit lower expression in AMs. These genes include the key signaling adapters 

encoded by Tram1, Ticam1, Tirap and Traf6 and downstream kinases encoded by Mapk8, 

Ikbkb, Tab1 and Tab2. Genes encoding several major transcriptional targets of these kinases 

also exhibit lower levels of expression in AMs, including all five family members of the NF-

κB family cJun and Irf5 and Irf7. These differences would be predicted to reduce the 

strength of the response of AMs to LPS, but not result in the observed divergent patterns of 

this response.

We next analyzed open chromatin in the vicinity (+/− 3 kb) of the transcriptional start sites 

(TSSs) of genes that exhibited differential responses to i.p. LPS in IMs at 2 h and responses 

to i.n. LPS in AMs at 6 h (Fig. 6e). In both cases, open chromatin was enriched for motifs 

recognized by PU.1 and SP2/KLF factors. However, the remaining significant motifs were 

divergent. Notably, ATAC-seq peaks associated with genes preferentially induced in IMs 

were enriched for NFY, NFIL3/CEBP, IRF, AP-1 and REL motifs. In contrast, ATAC-seq 

peaks associated with genes preferentially induced in AMs were enriched for ERG, ELF5 

and HIC1 motifs.

Direct analysis of open chromatin patterns of genes exhibiting differential responses in AMs 

exposed to i.n. LPS and IMs exposed to i.p. LPS revealed a continuum ranging from nearly 
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identical patterns to strongly cell-type-specific patterns (Fig. 6f). For example, while Batf 
and Cyb5a are induced in AMs but repressed in IMs, the open chromatin environment is 

nearly indistinguishable in the two cell subsets. A similar pattern of open chromatin is also 

observed for Ccl3, which is conversely induced in IMs compared to AMs. In contrast, open 

chromatin environments in the vicinity of Car4 and Ndufs8, which are selectively induced in 

AMs, and Ccl5, which is induced in IMs, exhibit substantial differences in their local ATAC-

seq profiles, consistent with the results of motif enrichment analysis. Therefore, AMs and 

IMs exhibit qualitatively different responses to LPS in vivo associated with differences in 

the TLR4 signaling pathway at baseline and the open chromatin landscapes of TLR4 target 

genes.

Discussion

Although lung MPs reside in the same organ, they exist in distinct microenvironments and 

perform different functions. Consistent with this, transcriptomic analysis of major subsets of 

lung MPs identified by scRNA-seq indicates substantial differences in gene expression 

under homeostatic conditions. For each subset, natural genetic variation distinguishing B6 

and DBA mice resulted in hundreds of significant changes in gene expression, the majority 

of which were cell-subset-specific. These differences are most likely explained primarily by 

effects of genetic variation on cell-specific regulatory elements43 and contribute to the 

phenotypic diversity of B6 and DBA mice. The delineation of the specific patterns of open 

chromatin in each cell-subset and the influence of genetic variation enabled inference of 

major classes of TFs underlying their development and function, some of which have not 

previously been suggested to play roles in lung macrophages. It will therefore be of interest 

to perform loss of function experiments and identify signaling pathways that are necessary 

for the expression and activities of these factors within each macrophage subset.

The most striking findings to emerge from the present studies were the qualitatively different 

responses of AMs and IMs to i.p. and i.n. LPS. At one level, these divergent responses can 

be easily understood based on anatomic compartmentalization of the signal. Remarkably, the 

direct responses of IMs to i.p. LPS and AMs to i.n. LPS are mostly divergent, in many cases 

leading to predictions of opposite biological outcomes. Analysis of the open chromatin 

landscapes of genes that exhibit divergent responses to LPS in AMs and IMs suggest at least 

two underlying mechanisms. A subset of genes exhibit distinct patterns of open chromatin, 

consistent with differences in enriched motifs for differentially regulated genes as a whole. 

In these cases, the accessible landscapes for signal-dependent TFs, such as NF-κB, are 

different. Cell-specific responses to TLR4 ligation of genes with distinct patterns of open 

chromatin are likely to result at least in part from the corresponding genomic regions 

functioning as cell-specific regulatory elements.

A second subset of genes exhibiting AM- or IM-specific responses to LPS were observed to 

have indistinguishable patterns of local open chromatin. While it is possible that cell-specific 

regulation is determined by more distal regulatory elements for some of these genes, our 

findings are more consistent with the possibility that the mechanisms by which TLR4 

ligation regulates gene expression at the signaling level are substantially different in AMs vs 

IMs. The reduced expression of genes encoding components of the TLR4 signaling pathway 
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in AMs as compared to IMs is consistent with an attenuated response to LPS in comparison 

to IMs, but does not explain genes that are activated in an AM-specific manner. Instead, our 

findings suggest that TLR4 couples to alternative, as yet undefined, signaling molecules in 

AMs to activate a divergent set of transcriptional activators and/or repressors. This 

mechanism would provide an alternative explanation for cell-specific differences in 

responses of genes exhibiting similar patterns of open chromatin, through the recruitment of 

different classes of signal-dependent factors that are not involved in the selection of open 

chromatin itself. Moving forward, it will be of substantial interest to better understand 

mechanisms underlying distinct responses of AMs and IMs to TLR4 ligation and more 

generally to decipher their cell-type specific responses in disease models .

Methods

Animal model

Animals.—We obtained C57BL/6J and DBA/2J mice from the Jackson Laboratory. We 

established breeding colonies for both strains in our vivarium and housed them in adjacent 

cages. Male mice, 8–10 weeks old were used for experiments. All protocols were approved 

by the University of California, San Diego Animal Care and Use Committee. Mice were 

housed in cages, maximum 4 mice/cage, in a 12 h/12 h light/dark cycle with free access to 

food and water.

For baseline experiments we used the lungs of two mice/per sample, we performed >5 

independent experiments and representative data of two biological replicates are used for 

anlaysis. The different lung MP subsets used for final analysis derive from multiple mice for 

both strains.

Acute lung inflammation, acute respiratory distress model.—C57BL/6J mice 

were injected intraperitoneally with LPS (Escherichia coli O55:B5, Sigma-Aldrich) 

suspended in 50 μl of PBS at 1 mg/kg concentration. Control mice were injected with 50 μl 

PBS intraperitoneally. Mice were euthanized with carbon dioxide 2 h, 6 h and 22 h after LPS 

administration and lungs were harvested for lung MP isolation. 2 mice per time point were 

pooled and 2 biological replicates were performed at each timepoint equaling 4 mice/time 

point. 3 independent experiments were performed.

Acute lung inflammation, pneumonia model.—C57BL/6J mice were lightly 

anesthetized with isoflurane and 10 μg of LPS (Escherichia coli O55:B5, Sigma-Aldrich) 

suspended in 50 μl PBS was administered intranasally. Control mice were intranasally 

instilled with 50 μl PBS. Mice were euthanized with carbon dioxide 2 h, 6 h and 22 h after 

LPS administration and lungs were harvested for lung MP isolation. 2 mice per time point 

were pooled and 2 biological replicates were performed at each timepoint equaling 4 mice/

time point. 3 independent experiment were performed.

Lung MP isolation

Mice were euthanized with carbon dioxide. Lungs were perfused with PBS trough the right 

ventricle until no blood was visible in the tissue. Lungs were removed, minced and placed in 
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a digestion buffer containing collagenase type 4 (1.6 mg/ml; Roche), DNase type 1 (50 

units/ml; Roche) and Flavoperidol (1 μM, Sigma-Aldrich) in RPMI 1640 medium. Lungs 

were incubated at 37 °C for 15 min while on a rotator. Red blood cells were lysed using 

RBC lysis buffer (eBioscience) at 4 °C for a 5 min incubation. The obtained cell suspension 

was filtered using a 70-micron filter, washed and cells were resuspended in PBS. Cells were 

then incubated with anti-Fc blocking mAb (anti CD16/32, clone 93, BioLegend) and 

viability dye Zombie Aqua (BioLegend) for 10 min. After this, cells where stained with an 

antibody cocktail containing APC Cy7-conjugated CD45, PE-conjugated F4/80, BV605-

conjugated CD11c, v450-conjugated CD11b, PE Cy7-conjugated CD64, AF700-conjufgated 

Ly6c, FITC-conjugated Ly6g, AF647-conjugated SiglecF mAb for 30 min. All labeled cells 

were passed through a FACS Aria II flow cytometer (BD Biosciences) and after proper 

gating 4 subsets of lung MPs were sorted29. Data were analyzed with FlowJo 8.3.3 software 

(TreeStar Inc.). The antibodies used for FACS are listed in Supplementary Table 1.

Single-cell RNA-sequencing

Lungs of 2-week old DBA/2J mice (3 males and 1 female) were harvested and single cell 

suspension of lung cells were prepared as described above. Using FACS we isolated lung 

myeloid cells by gating on CD45+ cells and excluding T cells, B cells and γ/δT cells using 

antibodies against TCRβ chain, CD19 and TCR γ/δ chain. The antibodies used for FACS 

are listed in Supplementary Table 2.

Sorted lung myeloid cells were suspended in PBS containing 0.04% molecular biology 

grade non-acetylated BSA at a concentration of 1,000 cells/μL. The purity of the sorted cells 

as well as the sorted cell number were verified. Using the 10X GemCode technology single 

cells were captured with barcoded beads in a droplet emulsion for the RT reaction. After 

obtaining 10X barcoded cDNA, libraries were prepared following the standard protocol of 

10X Single Cell 3′ v1. The libraries were sequenced on one lane of a Hi-Seq 4000 

(Illumina).

RNA-sequencing library preparation

Baseline samples of sorted lung MPs from C57BL/6J and DBA/2J mice were used. 

Sequencing libraries were prepared from polyA enriched mRNA as previously described47. 

PolyA enriched mRNA was fragmented, in 2x Superscript III first-strand buffer with 10 mM 

DTT (Invitrogen), by incubation at 94 °C for 9 min, then immediately chilled on ice before 

the next step. The 10 μL of fragmented mRNA, 0.5 μL of Random primer (Invitrogen), 0.5 

μL of Oligo dT primer (Invitrogen), 0.5 μL of SUPERase-In (Ambion), 1 μL of dNTPs (10 

mM) and 1 μL of DTT (10 mM) were heated at 50 °C for 3 min. At the end of incubation, 

5.8 μL of water, 1 μL of DTT (100 mM), 0.1 μL Actinomycin D (2 μg/μL), 0.2 μL of 1% 

Tween-20 (Sigma) and 0.2 μL of Superscript III (Invitrogen) were added and incubated in a 

PCR machine using the following conditions: 25 °C for 10 min, 50 °C for 50 min, and a 4 

°C hold. The product was then purified with RNAClean XP beads according to 

manufacture’s instruction and eluted with 10 μL nuclease-free water. The RNA/cDNA 

double-stranded hybrid was then added to 1.5 μL of Blue Buffer (Enzymatics), 1.1 μL of 

dUTP mix (10 mM dATP, dCTP, dGTP and 20 mM dUTP), 0.2 μL of RNAse H (5 U/μL), 

1.05 μL of water, 1 μL of DNA polymerase I (Enzymatics) and 0.15 μL of 1% Tween-20. 
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The mixture was incubated at 16 °C for 1 h. The resulting dUTP-marked dsDNA was 

purified using 28 μL of Sera-Mag Speedbeads (Thermo Fisher Scientific), diluted with 20% 

PEG8000, 2.5M NaCl to final of 13% PEG, eluted with 40 μL EB buffer (10 mM Tris-Cl, 

pH 8.5) and frozen −80°C. The purified dsDNA (40 μL) underwent end repair by blunting, 

A-tailing and adapter ligation as previously described39 using barcoded adapters (NextFlex, 

Bioo Scientific). Libraries were PCR-amplified for 14–16 cycles, size selected using 10% 

PAGE/TBE gels, eluted and quantified with Qubit dsDNA HS Assay Kit (Thermo Fisher 

Scientific), and sequenced on a Hi-Seq 4000 (Illumina) for 51 cycles or a NextSeq 500 

(Illumina) for 75 cycles.

Low input RNA-sequencing library preparation

Lung MP subsets sorted after i.p. LPS or i.n. LPS administration were used. Sequencing 

libraries were prepared according to the Smart-seq2 method48 with some modifications. 

500–5000 FACS isolated cells in Trizol (Thermo Fisher) were used as starting material. 

RNA was extracted with the Direct-zol MicroPrep kit (Zymo Research) with on-column 

DNAseI treatment. 10 μL purified RNA was mixed with 5.5 μL of SMARTScribe 5X First-

Strand Buffer (Clontech), 1 μL polyT-RT primer (2.5 μM, 5′-
AAGCAGTGGTATCAACGCAGAGTAC(T30)VN, 0.5 μL SUPERase-IN (Ambion), 4 μL 

dNTP mix (10 mM, Invitrogen), 0.5 μL DTT (20 mM, Clontech) and 2 μL Betaine solution 

(5 M, Sigma), incubated 50 °C 3 min. 3.9 μL of first strand mix, containing 0.2 μL 1% 

Tween-20, 0.32 μL MgCl2 (500 mM), 0.88 μL Betaine solution (5 M, Sigma), 0.5 μL (5 M, 

Sigma) SUPERase-IN (Ambion) and 2 μL SMARTScribe Reverse Transcriptase (100 U/μL 

Clontech) was added and incubated one cycle 25 °C 3 min, 42 °C 60 min. 1.62 μL template 

switch (TS) reaction mix containing 0.8 μL biotin-TS oligo (10 μM, Biotin-5′-
AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3′), 0.5 μL SMARTScribe Reverse 

Transcriptase (100 U/μL Clontech) and 0.32 μL SMARTScribe 5X First-Strand Buffer 

(Clontech) was added, then incubated at 50 °C 2 min, 42 °C 80 min, 70 °C 10 min. 14.8 μL 

second strand synthesis, pre-amplification mix containing 1 μL pre-amp oligo (10 μM, 

5′AAGCAGTGGTATCAACGCAGAGT-3′), 8.8 μL KAPA HiFi Fidelity Buffer (5X, KAPA 

Biosystems), 3.5 μL dNTP mix (10 mM, Invitrogen) and 1.5 μL KAPA HiFi HotStart DNA 

Polymerase (1U/μL, KAPA Biosystems), was added, then amplified by PCR: 95 °C 3 min, 8 

cycles 98 °C 20 sec, 67 °C 15 sec and 72 °C 6 min, final extension 72 °C 5 min. The 

synthesized dsDNA was purified using Sera-Mag Speedbeads (Thermo Fisher Scientific) 

with final 8.4% PEG8000, 1.1M NaCl, then eluted with 13 μL UltraPure water (Invitrogen). 

The product was quantified by Qubit dsDNA High Sensitivity Assay Kit (Invitrogen) and 

libraries were prepared using the Nextera DNA Sample Preparation kit (Illumina). 

Tagmentation mix containing 11 μL 2X Tagment DNA Buffer and 1 μL Tagment DNA 

Enzyme was added to 10 μL purified DNA, then incubated at 55 °C for 15 min. 6 μL 

Nextera Resuspension Buffer (Illumina) was added and incubated at 21 °C for 5 min. 

Tagmented DNA was purified using Sera-Mag Speedbeads (Thermo Fisher Scientific) with 

final 7.8% PEG8000, 0.98M NaCl, then eluted with 25 μL UltraPure water (Invitrogen). 

Final enrichment amplification was performed with Nextera primers, adding 1 μL Ad1 (100 

μM, universal no barcode), 1 μL unique Ad2.n (100 μM, N7xx) barcoding primers and 27 

μL NEBNext High-Fidelity 2X PCR Master Mix (New England BioLabs), then amplified by 

PCR: 72 °C 5 min, 98 °C 30 sec, 8–13 cycles 98 °C 10 sec, 63 °C 30 sec, and 72 °C 1 min. 
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Libraries were purified using 1.5 volumes of SpeedBeads in 2.5 M NaCl, 20% PEG8000, 

further size selected using 10% PAGE/TBE gels, eluted and quantified with Qubit dsDNA 

HS Assay Kit (Thermo Fisher Scientific), pooled and sequenced on a NextSeq 500 

(Illumina) for 76 cycles or a Hi-Seq 4000 (Illumina) for 51 cycles.

ATAC-seq library preparation

Sorted cells in FACS Buffer were pelleted by centrifugation at 400g for 6 min at 4 °C in a 

pre-cooled fixed-angle microfuge. Supernatant was carefully removed and cell pellet was 

resuspend in 47.5 μl lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 

0.1% IGEPAL CA-630), 2.5 μl of TDE1 (Cat# FC-121–1030, Illumina) by pipetting. 

Transposition reactions were incubated at 37 °C for 30 min. Transposed DNA was purified 

using a Zymo ChIP DNA Clean & Concentrator kit (Cat# D5205) and purified DNA was 

eluted in 10 μl elution buffer (10 mM Tris-HCl, pH 8). Transposed fragments were amplified 

and purified as described previously30 with modified primers.

Data analysis

Single-cell RNA-sequencing.—We used the R package Seurat 49 (version 2.3.4) to 

perform quality control and clustering analysis. Unique molecular identifiers (UMI) that 

barcode each individual mRNA molecule within a cell during reverse transcription were 

used to remove PCR duplicates. Cells expressing <300 or >2000 genes were filtered out to 

exclude non-cells or cell aggregates. We also filtered out cells that contained a percentage of 

mitochondrial UMI reads 5%. After quality control, 1,048 cells were included in subsequent 

analysis. Seurat standard pipeline was used for normalization and scaling, and first 11 PCs 

from PCA were used for t-Distributed Stochastic Neighbor Embedding (t-SNE) 

dimensionality reduction. The shared nearest neighbor (SNN) modularity optimization based 

clustering algorithm was used to group cells into 8 clusters with resolution=0.8. Velocyto28 a 

python package was used to predict the migration of cells.

RNA-sequencing analysis.—FASTQ files were processed to assess quality by 

determining general sequencing bias, clonality and adapter sequence contamination. RNA 

sequencing reads were aligned to the individual genomes for the mouse strain (based on 

mm10 reference genome) of origin using STAR50. Gene expression levels were calculated 

using HOMER39 by counting all strand specific reads within exons. Only the most abundant 

transcripts, including multiple alternative variants, were selected for each gene, and the 

genes whith a length smaller than 250bp were removed. Transcripts per million (TPM) were 

used to evaluate the correlation among replicates. Differential gene expression was 

calculated using DESeq251 to assess both biological and technical variability between 

experiments. Unsupervised hierarchical clustering was used to cluster the gene expression in 

the heatmaps. To identify functional enrichment of genes we used Ingenuity Pathway 

Analysis (IPA) software (Qiagen).

ATAC-sequencing analysis.—FASTQ files were mapped to individual genomes for the 

mouse strain (based on mm10 reference genome) with Bowtie252 and shifted back to 

reference coordinates for DBA/2J strain. Peaks were called with HOMER (findPeaks) using 

parameters “-style factor -minDist 200 -size 200”. After merging these peaks, correlations 
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among replicates from the same cell subset (and the same LPS treatment time point, if 

applicable) were evaluated by correlation using tag counts. The two most highly correlated 

samples were used for identifying the most robust peaks using the irreproducible discovery 

rate (IDR) method. For this step, peaks were called with HOMER’s findPeaks, using 

parameters “-L 0 -C 0 -fdr 0.9 -minDist 200 -size 200”. For baseline analysis, peaks were 

merged with HOMER’s mergePeaks and annotated with HOMER’s annotatePeaks.pl using 

the merged IDR tag directories. For the LPS experiments, peaks were merged with 

HOMER’s mergePeaks using parameters “-d 100”. The raw tags of all samples which had 

reasonable correlation were quantified with HOMER (annotatePeaks.pl) using parameter “-

noadj”. For each cell subset, these raw tags which contained at least 16 tags in at least 2 

samples were used to identify differentially bounded peaks by DESeq2. De novo motif 

analysis was performed on peaks 3kb away from closest TSS using a modified version of 

HOMER’s findMotifsGenome.pl from MMARGE. For LPS analysis, peaks 3kb away from 

the closest TSS were used and motif analysis was performed with HOMER’s 

findMotifsGenome.pl with default parameters.

Motif Mutation Analysis for Regulatory Genomic Elements (MMARGE)45.—To 

model the impact of a motif on chromatin accessibility, MMARGE’s pairwise comparison 

was used. In brief, peaks from both strains per cell type were merged with HOMER’s 

mergedPeaks and annotated with normalized tag counts. These files were scanned for motifs 

and the distribution of chromatin accessibility is calculated for all peaks missing a motif in 

either C57BL/6J or DBA/2J mice. To calculate significance, a Student’s t-test is performed 

between these two distributions.

Statistical analyses

Differences in gene expression between different cell subsets and between the two mouse 

strains were calculated by DESeq2 and multiple-testing was corrected with the Benjamini-

Hochberg procvedure. Data are presented as mean ± SD. Differences in percentage of 

different subsets of myeloid cells in the lung after i.p. and i.n. LPS administration were 

tested using the non-parametric Wilcoxon signed-rank test with Bonferroni correction. Data 

are presented as mean ± SD.

Data availability statement

The sequencing data reported in this article are deposited in GEO with the following 

accession number GSE136916. Additional data supporting the presented findings are 

available in the manuscript and upon request from the corresponding author.
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Extended Data

Extended Data Fig. 1. Single-cell RNA-seq clusters, FACS sorting strategy and quality control of 
FACS and RNA-seq results
a. Single-cell RNA-seq gene expression in clusters used to determine cluster identities. Heat 

map is representing expression values for the most significant genes in each cluster. Cells 

from the lungs of 3 male and 1 female DBA/2J mice were pooled.

b. Zoomed-in view of velocity analysis for single-cell RNA-seq from Fig. 1a.

c. Flow cytometry analysis and sorting strategy to obtain subsets of lung mononuclear 

phagocytes (MPs).

Sajti et al. Page 15

Nat Immunol. Author manuscript; available in PMC 2020 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



d. Validation of sorting strategy with gene expression in sorted lung MPs in C57BL/6J (B6) 

mice (top panel) and DBA/2J (DBA) mice (bottom panel). Bars represent transcripts per 

million (TPM) for one mouse. Two replicates are shown.

e. Spearman correlation heat map of all RNA-seq replicates, N=2 for each cell type in both 

mouse strains.

f. Comparison of gene expression for AM vs. IM and iMo vs. pMo in B6 mice. Scatter plots 

are showing genes with TPM > 16. Blue dots for AM, orange dots for IM and bordeaux dots 

for iMo show genes with fold change (FC) 2 or higher.

g. Comparison of gene expression in pMo isolated from lung vs pMo isolated from 

circulating blood. Scatter plots show genes with TPM > 16. Pale blue dots show genes with 

FC 2 or higher, dark blue dots show genes with FC 4 or higher.

h. Ingenuity pathway analysis (IPA) functional pathways for genes differentially regulated in 

pMo isolated from lung vs pMo isolated from circulating blood.
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Extended Data Fig. 2. ATAC-seq quality control and HOMER de novo motif analysis
a. Spearman correlation heat map of all ATAC-seq replicates, N=2 for each cell type in both 

mouse strains.

b. Comparison of open chromatin regions for iMo vs pMo in B6 mice. Scatter plot shows 

log2 tag counts of ATAC-seq peaks, colored dots show ATAC-seq peaks with fold change 

(FC) 4 or higher, bordeaux for iMo and purple for pMo.

c. HOMER de novo motif enrichment analysis for transcription factor (TF) binding sites in 

distal regions of open chromatin (> 3 kb from a TSS) likely representing enhancers using 

GC matched background for B6 mice. Boxes display −log10 p-values for enrichment of the 

motif, rank order in parenthesis and percentage of motif occurrence in peaks vs background, 

N=2 for each cell type in both mouse strains.

d. HOMER de novo motif enrichment analysis for TF binding sites in distal regions of open 

chromatin (> 3 kb from a TSS) likely representing enhancers using GC matched background 
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for DBA mice. Boxes display −log10 p-values for enrichment of the motif, rank order in 

parenthesis and percentage of motif occurrence in peaks vs background, N=2 for each cell 

type in both mouse strains.

Extended Data Fig. 3. Flow cytometry and ingenuity pathway analysis (IPA) of lung 
mononuclear phagocytes (MPs) after LPS administration
a. Flow cytometry analysis of lung MP subsets and neutrophils after i.p. LPS administration. 

Bars represent the average percentage of given cell subset out of CD45+ leukocytes ± SD. 

Three independent experiments were pooled, 0h N=11, for all other time points N=8. Non-

parametric Wilcoxon signed-rank test with Bonferroni correction was used, * p < 0.05, ** p 
< 0.01, *** p < 0.001.

b. Venn diagram of 4,499 differentially expressed genes in AM, IM and iMo after i.p. LPS 

administration.

c. Flow cytometry analysis of lung MP subsets and neutrophils after i.n. LPS administration. 

Bars represent the average percentage of given cell subset out of CD45+ leukocytes ± SD. 

Two independent experiments were pooled, 0h N= 11, for all other time points N=4. Non-

parametric Wilcoxon signed-rank test with Bonferroni correction was used, * p < 0.05, ** p 
< 0.01, *** p < 0.001.
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d. Venn diagram of 806 differentially expressed genes in AM, IM and iMo after i.n. LPS 

administration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Transcriptomes of lung mononuclear phagocytes (MPs) at baseline
a. Single cell RNA-seq, plot shows dimensionality reduction analysis (t-SNE) incorporated 

with RNA velocity analysis. Cells from the lungs of 3 male and 1 female DBA/2J mice were 

pooled.

b. Gene expression of lung MP in C57BL/6J (B6) and DBA/2J (DBA) mice. Heat map 

shows unsupervised hierarchical clustering of genes expressed more than 16 transcripts per 

million (TPM) in at least one cell type in either B6 or DBA mice. Values are row z-scores.

c. Ingenuity pathway analysis (IPA) of genes differentially expressed between lung MP of 

B6 and DBA mice. Differentially expressed genes calculated using DESeq2 (FC > 2, FDR < 
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0.01) were merged and submitted to IPA analysis. A selection of highly significant functions 

and their activation z-scores are shown in the bar graphs (blue for AM, orange for IM, 

bordeaux for iMo, purple for pMo). The same color scheme is used throughout the article.

d. Examples of gene expression from the IPA functions depicted in Fig. 1c. Bar graphs 

represent mean log2 transcripts per million (TPM+1) ± SD. Differential gene expression was 

calculated using DESeq2.
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Figure 2: Strain-specific transcriptomes of lung mononuclear phagocytes (MPs) at baseline
a. Comparison of gene expression in B6 and DBA mice for each lung MP subset. Scatter 

plots are showing genes with transcripts per million (TPM) > 4. Pale blue dots show genes 

with fold change (FC) 2 or higher, dark blue dots show genes with FC 4 or higher. N=2 for 

each cell type in both strains.

b. Inter-cellular and inter-strain comparison of highly differentially expressed genes. Heat 

map shows unsupervised hierarchical clustering of genes with FC 4 or higher between the 

strains. Values are row z-score.
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c. Examples of strain specific genes included in the heat map in Fig. 2b. Bar graphs 

represent mean log2 transcripts per million (TPM+1) ± SD, N=2. Asterisks indicate 

statistical significance, * p-adj < 0.05, ** p-adj < 0.01, *** p-adj < 0.001 calculated by 

DESeq2 and multiple-testing corrected with Benjamini-Hochberg.
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Figure 3: Epigenetic landscapes of lung mononuclear phagocytes (MPs)
a. Examples of ATAC-seq browser tracks for Spi1, Fabp1 and Il1b for the four lung MP 

subsets. Included are RNA-seq expression data for the same genes. Bar graphs represent 

mean log2 transcripts per million (TPM+1) ± SD, N=2.

b. Comparison of open chromatin regions for AM vs IM in B6 mice. Scatter plots are 

showing log2 tag counts of ATAC-seq peaks, colored dots show ATAC-seq peaks with a fold 

change (FC) of 4 or higher (blue dots for AM and orange for IM).

c. Heat map of hierarchical clustering of ATAC-seq signal in peaks with more than 32 tag 

counts in lung MP from B6 mice. Values are row z-scores.
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d. HOMER de novo motif analysis of distal regions of open chromatin (> 3 kb from a TSS) 

using GC matched genomic background (left panel). Gene expression of transcription factor 

family members corresponding to identified motifs (right panel). N=2.

e. HOMER de novo motif analysis of cell subset specific distal regions of open chromatin (> 

3 kb from a TSS) using all common peaks as background (left panel). Gene expression of 

transcription factor family members corresponding to identified motifs (right panel). N=2.
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Figure 4: Effects of natural genetic variation on lung mononuclear phagocyte (MP) open 
chromatin
a. Inter-strain comparison of ATAC-seq peak tag counts for the four lung MP subsets. Scatter 

plots are showing log2 tag counts of ATAC-seq peaks, colored dots show ATAC-seq peaks 

with fold change (FC) 2 or higher (blue for AM, orange for IM, bordeaux for iMo and 

purple for pMo).

b. MMARGE analysis of lung MP. Distribution of chromatin accessibility was calculated for 

all peaks missing a motif in either B6 or DBA mice. Student’s t-test was used to test for 

significant differences between these two distributions. Heatmap showing p-values for all 
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significant motifs in enhancers (> 3kb away from TSS) and promoters (< 3kb away from 

TSS). N=2 for each cell type in both strains.

c. Integrated network of HOMER and MMARGE analysis results for each lung MP subset. 

Node sizes are proportional to the percentage of peaks containing the motif. Lineage-

determining transcription factors (TF) are represented with green nodes, other TF with 

yellow nodes. Edges are proportional to p-values. Edge color represents the analysis method; 

brown for HOMER with GC matched random background, turquoise for HOMER with 

common peaks as background, purple for MMARGE.
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Figure 5: Unique gene expression signatures for lung mononuclear phagocytes (MPs) during the 
course of acute lung inflammation induced by intraperitoneal (i.p.) and intranasal (i.n.) LPS 
administration
a. Heat map of differentially expressed genes after i.p. LPS administration. Genes with 

transcripts per million (TPM) > 8 in at least 2 samples were included. Columns represent the 

mean fold change of gene expression at different time points after LPS administration 

compared to the baseline of each cell subset. The heat color represents the log2 fold change 

for 4,499 genes with a significance of FDR < 0.05 in at least one of the time course 

comparisons. Red represents up-regulated, blue represents down-regulated genes.
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b. Examples of genes induced after i.p. LPS administration in AM, IM and iMo. Shown are 

log2 (TPM+1) ± SD. N=4 for 0h, N=2 for all other time points. Asterisks indicate statistical 

significance compared to 0h, * p-adj < 0.05, ** p-adj < 0.01, *** p-adj < 0.001 reported by 

DESeq2 multiple testing corrected with Benjamini-Hochberg method.

c. Ingenuity Pathway Analysis (IPA) showing canonical pathways of genes altered by i.p. 

LPS administration as compared to each cell’s own baseline. Each bar represents the 

activation z-score for pathways predicted to be activated (positive z-score) or inhibited 

(negative z-score).

d. Heat map of differentially expressed genes after i.n. LPS administration. Genes with TPM 

> 8 in at least 2 samples were included. Columns represent the mean fold change of gene 

expression at different time points after LPS administration compared to baseline for each 

cell subset. The heat color represents the log2 fold change for 806 genes with a significance 

of FDR < 0.05 in at least one of the time course comparisons. Red represents up-regulated, 

blue represents down-regulated genes.

e. Examples of genes induced after i.n. LPS administration in AM, IM and iMo. Shown are 

log2 (TPM+1) ± SD. N=4 for 0h, N=2 for all other time points. Asterisks indicates statistical 

difference compared to 0h, * p-adj < 0.05, ** p-adj < 0.01, *** p-adj < 0.001 calculated by 

DESeq2 and multiple-testing corrected with Benjamini-Hochberg.
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Figure 6: Intranasal (i.n.) LPS administration induces a moderate activation of AMs
a. Venn diagram of up-regulated (top panel) and down-regulated (bottom panel) genes after 

6h i.n. LPS administration in AM versus 2h i.p. LPS administration in IM.

b. Ingenuity Pathway Analysis (IPA) showing canonical pathways of genes altered by 6h i.n. 

LPS administration in AM (compared to AM baseline) versus 2h i.p. LPS administration in 

IM (compared to IM baseline). Shown is the z-score for pathways predicted to activated 

(positive z-score) and inhibited (negative z-score).
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c. Log fold change (logFC) (versus baseline) for genes from IPA oxidative phosphorylation 

pathway in AM after i.n. LPS administration at 6h and in IM after i.p. LPS administration at 

2h. N=2 for each cell type.

d. Gene expression shown in log2 transcripts per million (TPM) for genes of the TLR 

signaling pathway for AM and IM at baseline.

e. HOMER de novo motif analysis results for promoter regions (< 3kb from TSS) of genes 

activated in AM at 6h after i.n. LPS (top panel) and IM at 2h after i.p. LPS (bottom panel). 

N=2 for each cell type.

f. UCSC genome browser tracks for ATAC-seq signal (left panel) and bar plots for 

expression signal (right panel) for genes that exhibit divergent responses to LPS in AMs and 

IMs. N=2. Shown are log2 (TPM+1) ± SD. Asterisks indicates statistical difference 

compared to 0h, * p-adj < 0.05, ** p-adj < 0.01, *** p-adj < 0.001 calculated by DESeq2 

and multiple-testing corrected with Benjamini-Hochberg.
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