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Recently developed methods of ambient ionization allow the collection of mass spectrometric datasets for 
biological and medical applications at an unprecedented pace. One of the areas that could employ such 
analysis is neurosurgery. �e fast in situ identi�cation of dissected tissues could assist the neurosurgery 
procedure. In this paper tumor tissues of astrocytoma and glioblastoma are compared. �e vast majority 
of the data representation methods are hard to use, as the number of features is high and the amount of 
samples is limited. Furthermore, the ratio of features and samples number restricts the use of many ma-
chine learning methods. �e number of features could be reduced through feature selection algorithms or 
dimensionality reduction methods. Di�erent algorithms of dimensionality reduction are considered along 
with the traditional noise thresholding for the mass spectra. From our analysis, the Isomap algorithm ap-
pears to be the most e�ective dimensionality reduction algorithm for negative mode, whereas the positive 
mode could be processed with a simple noise reduction by a threshold. Also, negative and positive mode 
correspond to di�erent sample properties: negative mode is responsible for the inner variability and the 
details of the sample, whereas positive mode describes measurement in general.

 Copyright © 2021 Evgeny Zhvansky, Anatoly Sorokin, Vsevolod Shurkhay, Denis Zavorotnyuk, 
Denis Bormotov, Stanislav Pekov, Alexander Potapov, Evgeny Nikolaev, and Igor Popov. �is 
is an open-access article distributed under the terms of Creative Commons Attribution Non-
Commercial 4.0 International License, which permits use, distribution, and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial 
purposes.

Please cite this article as: Mass Spectrom (Tokyo) 2021; 10(1): A0094

Keywords: mass spectra, astrocytoma, glioblastoma, brain tumors, feature selection, dimensionality reduction

(Received December 21, 2020; Accepted January 21, 2021; advance publication released online January 22, 2021)

INTRODUCTION
It is well known that the key parameter, de�ning life 

expectancy for patients with a brain tumor is the excess 
of tumor resection since the tumor cells could provoke 
a relapse.1) �ere are a number of methods for tumor 
boundary detection, such as MRI,2) PET,3) �uorescence,4,5) 
ultrasound,6) etc., however, all of them have their own 
limitations. Recently we observe a growing interest in ap-
plications of mass spectrometry for tumor tissue identi�ca-
tion, typing, and tumor boundary detection.7–9) Analysis of 
tumor samples by mass spectrometry is based upon the ob-
servation that tumor cells substantially di�er from normal 

ones in metabolic processes and as consequences have dif-
ferent chemical content.10) Identi�cation of histological type 
and localization of brain tumor tissue during neurosurgery 
allows the correctness of tumor dissection and paves the 
way for the personalized strategy of further patient treat-
ment using chemotherapy taking into account molecular 
characteristics of the tumor. �e comparative analysis of 
tumor types has fundamental value, though the clari�ca-
tion of tumor borders has the highest priority from the 
neurosurgeons’ point of view. �e most important problem 
of the neurosurgery assistive tool is tumor cells detection in 
the transition zone between tumor and unmodi�ed tissue, 
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which is necessary for clinical application of the mass spec-
trometric methods for intraoperative tumor border moni-
toring. �e better tumor border detection—the lower prob-
ability of the relapse and the highest median survival.11)

Analysis of the high-dimensional mass spectrometric 
(MS) data usually employs dimensionality reduction (DR) 
algorithms as the preliminary step for statistical analysis 
and visualization. Among DR methods most widely used 
are linear methods such as PLS-DA and PCA.12–17) Recently 
more advanced non-linear methods, for example, t-SNE 
and UMAP to name a few, were developed.18) However, even 
the trivial thresholding operation could be used as a DR ap-
proach. We have demonstrated that thresholding allows the 
construction of a feature set of manageable size and apply-
ing this feature set for the successful identi�cation of di�er-
ent tissue types.19) Another area where DR algorithms are of 
high demand is hyperspectral imaging such as MS imaging. 
It is common for MS imaging data analysis to visualize data 
in pseudocolors when each RGB channel of the pixel is de-
�ned by the value of three selected feature’s values. �e �rst 
three PCA components and three selected ions are the most 
commonly used features in such visualization.20,21)

In this paper, we compare the performance of two linear, 
�ve nonlinear DR algorithms and thresholding in their 
ability to emphasize the di�erences between mass spectra of 
two histological classes of objects. Inspired by the MS imag-
ing approach we also used a visualization technique called 
the spectra similarity matrix (SSM) to compare di�erent 
approaches performance. SSM allows rapid visual evalua-
tion of similarity of a large set of spectra as was previously 
shown22) (Fig. S1).

We have used astrocytoma and glioblastoma MS data 
obtained with inline cartridge extraction23) as a dataset. 
Each sample of the tumor is characterized by a series of 
consecutively measured mass spectra (scans) during the ex-
traction. �e key di�culty in the analysis of this dataset is 
that both inter and intra class variability is extremely high. 
�e intraclass variability could be attributed to di�erences 
in patients, tumor location, and intratumor morphological 
variations in the tissues dissected during single neurosur-
gery. �ese intratumor variations could be explained by the 
tumor genesis processes,10) so the tumor could be represent-
ed as a combination of benign and malignant or more and 
less benign part of the tumor.24) �e high variability may 
cause problems for rapid, precise, and objective analysis of 
the tumor-speci�c features. Adequate selection of DR algo-
rithm for MS data processing is necessary for the con�dent 
application of statistical and machine learning techniques 
for the development of intraoperative tumor border moni-
toring techniques.

EXPERIMENTAL
Measurements

Spectra were measured in low resolution under clini-
cal conditions with �ermo LTQ XL. Inline cartridge 
extraction23) followed by electrospray ionization was used 
for mass spectrometric pro�ling of samples, which proceeds 
microextraction of substances from the sample in the sol-
vent �ow, while the sample is held on the glass micro�ber 
�lter. Spectra from �ermo LTQ XL were measured in both 
positive and negative ion modes with resolutions 2000 at 

m/z 744. All spectra were measured in the m/z 100–2000 
ranges. �e exact description of the experimental protocol 
was published previously.25)

Samples
Tissue samples of 86 glioblastoma tissues from 30 pa-

tients and 76 astrocytic tissues from 26 patients were pro-
vided by the N.N. Burdenko NSPCN and analyzed under a 
protocol approved by N.N. Burdenko NSPCN Institutional 
Review Board (order 40 from 12.04.2016, revised with order 
131 from 17.07.2018). A signed informed consent form, �lled 
out in accordance with the requirements of the local ethical 
committee, speci�cally noting that all removed tissues can 
be used for further research, was obtained from all patients 
before surgery. �e study was conducted in accordance with 
the Helsinki Declaration as revised in 2013. All procedures 
were carried out according to the relevant guidelines and 
regulations.

According to histology analysis dataset contains 30 
glioblastomas (WHO Grade IV; 9 with IDH-1 R132H muta-
tion) with di�erent IDH status, 17 anaplastic astrocytomas 
(WHO Grade III; 8 tumors with IDH-1 R132H mutation), 8 
di�use astrocytomas (WHO Grade II; 6 tumors with IDH-1 
R132H mutation) and 1 gemistocytic astrocytoma (WHO 
Grade II with IDH-1 R132H mutation).

Usually, 3 fragments from each dissected tissue sample 
from the same single patient were measured with each 
instrument for taking into account and evaluating inner 
biological variability.

One part of each tissue sample was annotated with rou-
tine hematoxylin and eosin staining and further immu-
nohistochemical analysis of tissue fragments. �ree other 
fragments of each sample were measured with �ermo LTQ 
XL right a�er neurosurgery.

Processing
Spectra were processed with the algorithm as follows. 

Mass spectra were binned with bin width 0.25 m/z as de-
scribed previously.26) Spectra of each measurement were 
�ltered by a moving median �lter with width and step equal 
to 51. SSM with cosine measure similarity was calculated as 
described previously22) (Fig. S1). �e baseline subtraction 
was carried out through an algorithm described previ-
ously.27)

Dimensionality reduction
DR was made with Scikit-learn28) machine learning li-

brary using default parameters values provided for each 
method if not speci�ed explicitly. Two linear (PCA and 
partial least squares discriminant analysis (PLS-DA)29)) 
and four nonlinear (non-negative matrix factorization 
(NNMF),30) isometric mapping (Isomap),31) UMAP32) and 
Di�usion map33)) methods were used for DR to three-, �ve- 
and six-dimensional data representation. For the threshold-
ing the levels of threshold were selected to keep 5, 10, 25, 75, 
and 200 highest intensities in each scan.

Linear methods looking for a linear combination of fea-
tures (intensities) of mass spectra that are able to capture 
the most important properties of the set of spectra and 
reduce the dimensionality of the data by rejecting noisy and 
low-intensity components of such representation. So the 
intensities are always linearly taken into account for output 
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calculation and that makes results of such calculations easy 
to interpret and up to some extent reversible, which means 
it is possible to �nd which points in the original dimen-
sion correspond to a particular point in low-dimensional 
representation. Linear methods work rather well when 
groups of spectra are linearly separable, which means there 
is a hyperplane such that each group located on one side of 
it. Nonlinear methods allow distinguishing the groups of 
spectra that are not linearly separable, for example, form 
a set of concentric circles. Nonlinear methods are di�cult 
to interpret and extract information about the contribu-
tion of particular feature intensity into the position of the 
spectra in low-dimensional representation. PCA produces 
linear combinations of features as components of the high-
est variability in the data. NNMF converts the matrix (M) 
into a product of nonnegative factors W*H so that the 
factors W and H minimize the root mean square residual 
between M and W*H. So, W is the matrix of coordinates 
(columns) of the components H (rows) in the new repre-
sentation. PLS-DA linearly separates data into components 
that have the most distinguishing power to given labels. 
Isomap provides components of a better representation of 
the internal structure (geometry) of the data based on the 
mutual Euclidean distance between raw features of the data. 
Di�usion map provides a low-dimensional representation 
of the data while keeping its local geometry based on the 
graph of the data and di�usion distances calculated from 
Markov processes for the data. UMAP—uniform manifold 
approximation and projection algorithm that allows the dif-
ferent scale of the data to be highlighted, so both local and 
large-scale data structures could be observed through the 
components of UMAP. �e number of nearest neighbors 
was chosen to �ve for UMAP and Isomap algorithms, as the 
contrast for �ve components is optimal in data representa-
tion (Figs. S19–S22). Higher values lead to lower contrast of 
SSMs or rough structure data representation.

All calculations and visualizations were made using code 
written by the authors using MATLAB and Python. �e 
code is available on request. �e time required for algo-
rithms to be calculated on the dataset (808 spectra and 7600 
features in each) is up to one minute.

RESULTS
Dimensionality reduction is an important step in the 

analysis of mass spectrometry data, which is required for 
visualization for further application of mathematical, sta-
tistical, and machine learning techniques. �e ideal DR 
algorithm should preserve both global and local structures 
in the original data and at the same time denoise data. 
Dimensionality needs to be reduced to two or three dimen-
sions for visualization purposes because only such data 
could be analyzed by human beings. Many statistical and 
mathematical methods prefer that the number of features 
was less than the number of samples. In medical mass 
spectrometry datasets that requirements never ful�ll as the 
number of peaks could easily be in hundreds or thousands, 
while the number of samples rarely exceeds 100. In our da-
taset, spectra are located in 7600-dimensional space.

�e most widely used DR techniques in mass spec-
trometry are classical linear methods such as PCA and 
PLS-DA.12–17) Recently a number of new DR algorithms 

were developed, such as NNMF,30) isometric mapping 
(Isomap),31) UMAP.32,34) We exclude the famous t-SNE35) 
algorithm and recently published PHATE6) from consider-
ation in this paper, as they require the whole dataset to gen-
erate the mapping and does not allow calculating projection 
of new points a�erward, which is necessary for methods to 
be used with machine learning techniques down the pipe-
line.

�resholding is usually applied to remove noise from the 
signal. During thresholding intensity set to zero for all bins, 
which have original intensity below the speci�ed value. �is 
procedure could be also considered as a naive method of 
DR, in which only a subset of high-intensity bins forms di-
mensions in projection space. So we calculated transformed 
spectra, in which only 5, 10, 25, 75, and 200 highest intensi-
ties are preserved in each spectrum. �is procedure creates 
spaces dimensions which are shown in Table 1.

From this data, it could be seen that spectra in the posi-
tive mode are more conservative because the dimensional-
ity of the data grows slower, which means that on average 
the same bins have high intensity in spectra more o�en in 
positive than in negative mode. So, keeping only 5 major 
peaks in each spectrum we could reduce data dimensional-
ity by two orders of magnitude.

Visual analysis
Recently we have developed a fast and e�cient visualiza-

tion method for evaluation stability and reproducibility 
of the mass spectra called SSM.22) In the nutshell SSM is 
the matrix, every cell of each contains a value of similarity 
measure between two spectra, corresponding to indices of 
column and row of matrices in Fig. 1. Any measure could 
be used for SSM construction, here we are using cosine 
measure for the computational performance reasons. A 
well-known correlation matrix is a particular case of SSM 
in which correlation is used as (dis) similarity measure and 
it is widely applied in mass spectrometry36) and other disci-
plines.37)

Here we adopt SSM analysis for the evaluation of DR ap-
proaches performance. �e visual analysis here is based on 
the ability of the human eye to detect structure in properly 
colored images. From this point of view, feature selection 
techniques and DR methods in particular should increase 
contrast in properly organized SSM images. When spectra 
of the same class are located next to each other, properly 
selected features should keep low intraclass while increasing 
inter-class similarity. Visually it turned out as two squares 
of high-value cells located on the main diagonal of the ma-
trix, separated by low values o�-diagonal areas. A great ex-
ample of such contrast is Isomap in Figs. 1B and 1E, where 

Table 1. Dependence between threshold value (the number of inten-
sities in each spectrum) and non-zero bins in the average 
spectrum of all spectra.

N peaks
Dimensionality

Negative Positive

5 120 72
10 204 130
25 403 332
75 897 789

200 1687 1592
7600 7553 7543
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we can see two distinct classes represented by red squares. 
In Figs. 1C and 1F spectra are organized di�erently and we 
can see that two classes are split into four smaller subsets 
along the main diagonal. In addition to these small red 
squares, we can see o�-diagonal red rectangles indicating 
the presence of groups of highly similar spectra located far 
from each other along the matrix border.

Positive mode data
It was shown already that di�erent modes of spectra em-

phasize di�erent characteristics of samples.25,38) Data from 
positive mode is more stable as we have seen in Table 1, and 
characterizes the data acquisition process.

First, we have analyzed the results of thresholding (Figs. 
S2 and S3). For each threshold value, we have made two 

Fig. 1. SSM images for the Isomap DR application. Top row (A, B, C) - positive mode, bottom row (D, E, F) - negative mode. Le� column (A, 
D) - raw spectra, middle column (B, E) - SSM for 7 features a�er Isomap DR ordered by date of acquisition, right column (C, F) - SSM for 
7 features a�er Isomap DR ordered by diagnosis. Take into account that colormap axis has di�erent limits in the le� column.

Fig. 2. SSM images for the dataset with thresholding. Top row (A, B, C) - positive mode, bottom row (D, E, F) - negative mode. Le� column 
(A, D) - raw spectra, middle column (B, E) - SSM for thresholding (5 and 25 features) ordered by date of acquisition, right column (C, 
F) - SSM for thresholding (5 and 25 features) ordered by diagnosis.
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SSM plots. In the �rst plot, SSM scans are arranged accord-
ing to the date of acquisition (Fig. S2). In this SSM we could 
check the presence of the so-called ‘batch e�ect,’ which 
corresponds to changes in measurement conditions due to 
device maintenance. In the second plot, SSM scans are �rst 
aligned according to diagnosis and within the diagnosis 

scans aligned according to the date of acquisition (Fig. S3). 
�e boundary between diagnoses is shown as vertical and 
horizontal black lines. �is plot should help us to detect dif-
ferences between classes of data, which is a diagnosis in our 
case.

It could be seen that in positive mode SSM hardly chang-

Fig. 3. SSM images for the dataset with NNMF DR. Top row (A, B, C) - positive mode, bottom row (D, E, F) - negative mode. Le� column (A, 
D) - raw spectra, middle column (B, E) - SSM for NNMF (3 and 7 features) ordered by date of acquisition, right column (C, F) - SSM for 
NNMF (3 and 7 features) ordered by diagnosis.

Fig. 4. SSM images for the dataset with PLS-DA DR. Top row (A, B, C) - positive mode, bottom row (D, E, F) - negative mode. Le� column (A, 
D) - raw spectra, middle column (B, E) - SSM for PLS-DA 7 features ordered by date of acquisition, right column (C, F) - SSM for PLS-DA 
7 features ordered by diagnosis.
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es when we decrease the dimensionality of data from 7600 
to 72 (Figs. 2A and 2B). �e batch e�ect is almost unnotice-
able in Figs. 2B and S2, however, when we align data ac-
cording to diagnosis in Figs. 2C and S3, it becomes visible, 
as the astrocytoma group is visually split into two more 
homogeneous subgroups (Fig. S18).

When we apply DR algorithms to positive data, the batch 
e�ect becomes more visible (Figs. S6 and S7). Please note 
that the range of colormap on DR �gures Figs. S6–S17 is 
di�erent from thresholding �gures Figs. S2–S5. NNMF 
(Fig. 3) and Isomap (Fig. 1) gave the best visualization of 
the batch e�ect in Fig. S6. On PCA, Di�usion map, and 
PLS-DA (Fig. 4) it is noticeable. Surprisingly both versions 
of UMAP gave no visual manifestation of batch e�ect. 
Figure S7 also shows that UMAP is not able to contrast dif-
ferences between diagnoses also. Such a bad performance 
of a well-recognized algorithm could be explained by using 
default values for all parameters except distance measure. 
We know that the results of UMAP are quite sensitive to 
parameters such as minimal distance ε and number of 
neighbors µ. A proper selection of these parameters is re-
quired for each dataset.

We have varied the dimensionality of the target space in 
the output of DR methods, so the SSMs were calculated for 
3 (Figs. S8 and S9), 5 (Figs. S6 and S7), and 7 (Figs. S10 and 
S11) compressed components. It could be seen that NNMF 
and Isomap are more contrast in Figs. S8 and S9, when the 
dimension is 3, while neither batch nor diagnosis e�ect is 
visible on PCA and PLS-DA in this dimension. �e di�u-
sion map happens to be least sensitive to the variation of the 
dimensionality of the target space in positive mode.

Negative mode data
Data from the negative mode is much less stable than in 

the positive mode as could be seen from Figs. S4 and S5. We 
have discussed previously that negative data controls �ne 
variations between samples, patients, and diagnoses.25,38) 
Indeed, the batch e�ect is much less contrast in Fig. S5 
compared to Fig. S3. It is also clear from Figs. S4 and S5 
that contrary to the positive mode thresholding has a pro-
found e�ect on data in negative mode. In 120-dimensional 
space, constructed by leaving only 5 top intensities in the 
spectra, the overall similarity on SSM is below 0.2. �at 
means that the top 5 intensities rarely have the same posi-
tion and the same value in di�erent spectra. �e structure 
of the SSM is gradually improved once we increase the di-
mensionality of data and become almost indistinguishable 
when we preserve 22% of original bins by keeping 200 top 
intensities in each spectrum.

When we applied DR methods to the negative mode 
spectra, we observed that at low target dimensions of 3 
(Figs. S14 and S15) and 5 (Figs. S12 and S13) NNMF became 
useless as they were not able to contrast neither batch nor 
diagnosis e�ect. �e only method that gave reliable contrast 
on SSM in the case of the target dimension of 3 was Isomap. 
Both linear algorithms (PCA and PLS-DA) and Di�usion 
map start performing better from the target dimension 5 
(Figs. S12 and S13). NNMF somehow recovers its perfor-
mance on the target dimension 7 (Figs. S16 and S17) but 
contrary to the positive mode data even in this case contrast 
provided by NNMF is worse than one from PCA.

It is interesting enough, that neither positive nor nega-

tive data did not show a noticeable diagnosis di�erence, 
which proves that analysis of the di�erence between glial 
tumors requires careful rational feature selection which 
could not be achieved ever by sophisticated DR algorithms. 
On the other hand, the presence of such global variation 
in the spectra as the batch e�ect could be easily detected 
by the application of DR techniques in both modes and by 
thresholding in the positive mode. �e best performance 
was demonstrated by the Isomap algorithm, while NNMF is 
useful mainly in positive mode, which is characterized by a 
much more stable spectrum structure.

PCA does not produce any satisfying results for both 
positive and negative mode: there are no meaningful struc-
tures revealed in 3, 5, or 7 components (Figs. S6–S17). PCA 
dimensionality reduction leads to blurring the contrast 
parts of the SSM view. �us, PCA does not reproduce the 
internal structure of the data.

DISCUSSION
�e large dimensionality of the mass spectrometry data 

causes problems for further analysis. Most statistical meth-
ods that use Gaussian distribution become less e�cient 
in feature space with dimensions above 10–12, as at those 
dimensions the shape of a multidimensional Gaussian is 
almost indistinguishable from a multidimensional sphere. 
Many machine learning techniques su�er from the “curse 
of dimensionality” when an algorithm quickly becomes 
intractable with an increase in the number of feature space 
dimensions. In medical mass spectrometry, a small number 
of samples also requires a reduction of the dimensionality 
of the dataset. All of the above makes DR techniques an 
important step in the mass spectrometry processing pipe-
line. In this paper, we compared the performance of seven 
DR algorithms with each other and with a naive approach 
of DR by thresholding the spectra by the number of major 
peaks.

�e analysis of results of the simple thresholding ap-
proach demonstrates the high level of homogeneity of SSM 
in the positive mode and great variability of SSM in the 
negative mode while varying the threshold, which corre-
sponds to the stability of the spectra structure in positive 
and their variability in negative mode. �e structure of 
the data is easy to observe in the positive mode with any 
threshold and proper spectrum ordering. At the same time, 
there is no obvious structure in the data in the negative 
mode until thresholding preserves 20% of original features. 
�is could be explained by the di�erences in spectra char-
acteristics in di�erent polarities. In the positive mode, ma-
jor intensities (about ten highest) are rather stable and their 
relative intensity does not vary too much. Contrary to this 
in the negative mode spectra, the major peaks have signi�-
cant variability of the relative intensities. �is leads to the 
situation when almost all values in SSM are zero for a high 
threshold in negative mode, despite the fact that the dimen-
sionality in negative mode is almost 50% higher when �ve 
major intensities are preserved. �is peak intensity variabil-
ity could also map to the high variability of cosine measure 
in SSM when a higher number of peaks is selected. Hence, 
one could suppose that the positive mode better describes 
the measurement in general, whereas spectra in the negative 
mode better re�ect details of the particular sample. �is 
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conclusion could be important as it suggests the need for 
design approaches for the combined analysis of both polari-
ties of each sample in the dataset. To conclude, the thresh-
olding procedure seems to be reasonable in positive mode 
for tracking global changes in the structure of the spectra 
due to variation in measurement procedures or sample pro-
cessing. In the negative mode, thresholding could help only 
for the denoising of the spectra.

A comparison of the DR algorithms demonstrates that 
the Isomap algorithm outcompetes all other methods in 
both modes and all three selected target dimension values. 
�is algorithm is not widely used in mass spectrometry 
and is usually mentioned together with the much more 
popular t-SNE in the analysis of mass spectrometry imag-
ing. Isomap highlights the major groups of the data in a 
most contrastive way and the groups of the data have low 
dispersion in the visual analysis of the corresponding SSMs, 
which means it should reduce an error rate for the following 
data analysis techniques.

Another algorithm that performs very well was NNMF, 
which is also known for its applications in mass spectrom-
etry imaging. �e bene�t of NNMF is the non-negative 
nature of its loading, which makes interpretation of the 
NNMF component much more straightforward in compari-
son to PCA and PLS. �e non-negative values of the com-
ponents also make it visually di�erent from other methods. 
However, it demonstrates clear detection of the batch-e�ect 
in the positive mode, while its performance in negative 
mode is worse than of Isomap.

Together with PCA, PLS-DA is one of the most widely 
used algorithms of dimensionality reduction. PLS-DA is the 
only considered supervised algorithm in this paper, which 
takes into account target labels. PLS-DA demonstrates 
similar results in negative and positive modes. So, the SSM 
views for both polarities are similar and demonstrate the 
visible batch-e�ect (Figs. S6–S17). However, the comparison 
of the PLS-DA results with other algorithms results reveals 
a rather good representation of the data structure for the 
positive mode and signi�cantly worse representation for 
the negative mode. Surprisingly, the PLS-DA demonstrated 
worse results than Isomap for the positive mode, though 
in the negative mode their results were comparable. �is 
could be explained if we assume that the positive mode 
is responsible for the experimental speci�cs, whereas the 
negative mode is responsible for the speci�cs of the sample 
and patients.

UMAP is a very promising method, which has numerous 
adjustable parameters that allow its application to absolutely 
di�erent data types taking into account the speci�cs of 
the dataset in a concrete case. �e UMAP in our case did 
not succeed. We think this is due to the use of the default 
parameter set. �e parameters should be adjusted in the 
future for using UMAP for dimensionality reduction and 
using its results with classi�ers.

In general, �ve components of reduced space of features 
for positive mode and seven components for negative mode 
are enough for the detection of structure in the data and 
speci�cs of the spectra by most analyzed algorithms, which 
is suitable for further analysis with machine learning and 
statistical data exploration algorithms.

Previously the thresholding by peaks amount reveals op-
portunity for feature set selection in classi�cation tasks,19) 

however, in that work a specially designed feature selec-
tion procedure was applied to the data a�er thresholding. 
Current analysis proves that the additional processing is 
necessary for extraction information required for inter-
preting the data. It also proves that the global alterations 
in spectrum structure, caused by changes in measurement 
procedure, such as di�erent sources of solutions or device 
maintenance, could be easily detected by a simple combina-
tion of dimensionality reduction and correlation analysis 
in reduced space. Contrary to that diagnosis- patient- and 
sample-speci�c features of the spectra require more elabo-
rate feature selection supervised procedures.

�e presented method is not directly applicable to the 
imaging data, however, it is inspired by MS imaging, which 
uses components of the reduced feature space to visual-
ize MS imaging structures. We think that imaging mass 
spectrometry could employ this method eliminating infor-
mation about the spatial structures. �e spectra would be 
aligned in order to keep spatial closeness, and mutual simi-
larity will be calculated, which could lead to understanding 
the number of classes and important features in reduced 
feature space. But detailed analysis is beyond the scope of 
the current paper.

CONCLUSION
�e positive and the negative modes characterize the 

measurement di�erently. Both polarities should be mea-
sured for a large description of the sample by its mass spec-
tra, measured without sample preparation (ambient-like 
ionization methods). �e positive mode is less variative and 
is better for batch-e�ects demonstrating. �e negative mode 
is more variative and is better for annotating the speci�c 
sample.

�e most e�ective algorithm for dimensionality reduc-
tion is Isomap. Further optimization of hyperparameters 
should be carried out for a better choice of dimensionality 
reduction algorithm. Nevertheless, the Isomap algorithm 
reveals the best performance in the information complete-
ness of stayed features. �e Isomap demonstrates the best 
contrast for batch-e�ect even for the negative mode, where 
spectra have a rather high-intensity variability, which 
minimizes the batch-e�ect presence. UMAP might be more 
e�ective than the Isomap algorithm, but it is the open ques-
tion of the hyperparameter optimization.
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