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Abstract: Cancer is a fetal and complex disease. Individual
differences of the same cancer type or the same patient at
different stages of cancer developmentmay require distinct
treatments. Pathological differences are reflected in tis-
sues, cells and gene levels etc. The interactions between
the cancer cells and nearby microenvironments can also
influence the cancer progression and metastasis. It is a
huge challenge to understand all of these mechanistically
and quantitatively. Researchers applied pattern recogni-
tion algorithms such asmachine learning or datamining to
predict cancer types or classifications. With the rapidly
growing and available computing powers, researchers
begin to integrate huge data sets, multi-dimensional data
types and information. The cells are controlled by the gene
expressions determined by the promoter sequences and
transcription regulators. For example, the changes in the
gene expression through these underlying mechanisms
can modify cell progressing in the cell-cycle. Such molec-
ular activities can be governed by the gene regulations
through the underlying gene regulatory networks, which
are essential for cancer study when the information and
gene regulations are clear and available. In this review,
we briefly introduce several machine learning methods
of cancer prediction and classification which include
Artificial Neural Networks (ANNs), Decision Trees (DTs),
Support Vector Machine (SVM) and naive Bayes. Then we
describe a few typical models for building up gene regu-
latory networks such as Correlation, Regression and Bayes
methods based on available data. These methods can help

on cancer diagnosis such as susceptibility, recurrence,
survival etc. At last, we summarize and compare the
modeling methods to analyze the development and pro-
gression of cancer through gene regulatory networks.
These models can provide possible physical strategies to
analyze cancer progression in a systematic and quantita-
tive way.

Keywords: flux; gene regulatory network; landscape;
machine learning; ordinary differential equations; sto-
chastic differential equations.

Introduction

By 2018, about 9.6 million people worldwide had died of
cancer, and cancer has become recognized as the second
leading cause of human death [1]. Moreover, deterioration
of the global ecosystem has contributed to a spurt in the
cancer incidences. It is expected that by 2030, the number
of cancers will reach 23.6 million [2], more than double of
the current number. Cancer is a generic term to a kind of
fetal and complex disease. In the majority of cancers, the
disease affect different tissues of the body. The normal cells
are transformed to cancer cells in a multistage process and
finally turn into malignant cancer cells. These variations
include genetic (genes) and epigenetic (physical and
chemical carcinogens, and biological infections) changes.

There are approximately three billion base pairs in
human DNA. About 20% of the human DNAs are used to
encode the proteins, and the other 80% are used to encode
the retrotransposons, transposons and pseudogenes [3, 4].
Meanwhile, DNAs also encode many types of microRNAs.
With the use of microarray and RNA-sequencing data,
researchers began tomonitor transcriptomes on a genome-
wide scale, which has dramatically expedited compre-
hensive understanding of the gene expression profiles. The
enormous amounts of high throughput data have been
collected and available waiting for analysis and process-
ing. Accurate prediction and classification are one of the
major important and challenging issues for medical pro-
fessionals [5]. At the same time, computer technology is
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also developing rapidly which provides strong support for
researchers to solve the problem of large scale data
computing. These enable researchers to utilize automation
and computer-based modeling for efficient processing of
large data sets. Computational approaches have been
developed to solve these kinds of complex calculation
problems and help to get more information about cancer.
Dataminingand themachine learning (ML)methodsbecome
an essential tool for researchers [6, 7]. These techniques can
be used for diagnosis and prognosis of different cancer dis-
eases from the complex datasets or predicting cancer sus-
ceptibility, recurrence, survival etc. in future [8–10].

However, it is generally believed that analyzing a large
amount of datasets does not necessarily provide compre-
hensive understanding of a given gene in a biological
process. Many crucial biological processes and molecular
pathways are based on the interactions and regulations
among genes. The genes in cellular environment regulate
each other and the gene expressions also reflect the result
of regulation. In order to understand the cellular function,
it is necessary to study the regulations of genes from a
holistic perspective instead of from individual manner.
Developing gene regulation models such as gene regula-
tory networks [11–13] can facilitate the quantitative un-
derstanding of these comprehension problem. Gene
regulatory network can be inferred from the gene expres-
sion data such as RNA-seq [14], microRNAs data (miRNAs)
such as microRNA (miRNA)-seq [15], protein-DNA inter-
actomic data such as ChIP-seq [16] and so on. These data
can serve as the raw input data to provide information on
gene regulations and functions at the gene expression
level. According to the gene expression information, gene-
gene interactions can be inferred among different genes.
Gene regulatory networks often have the information of the
regulatory motifs, expression profiles and interactions
between regulatory genes [17]. The importance of gene
regulatory networks has become increasingly significant
for all biological systems [18]. Furthermore, gene regula-
tory network can also serve as a working model to help the
researchers to propose some hypotheses and assist in
experimental design [19].

How to infer the actual gene regulatory network with
these information and resources becomes an endless dis-
cussion. That is because different models have different
characteristics and are suitable for different data types. In
this review, we summarized several common machine
learningmethods such asArtificial NeuralNetworks (ANNs),
Decision Trees (DTs), Support Vector Machine (SVM) and
naive Bayes. We also introduced a few models which are
popular in establishing the gene regulatory networks. These
models are Correlation, Regression and Bayesian (native

and dynamic) methods. Then we provide some examples to
compare theanalysis andaccuracy. To improve theaccuracy
of the gene regulatory network construction some prior in-
formation has been added into certain of the methods.

Ordinary differential equations (ODEs) are mathemat-
ical methods for the descriptions of non-linear dynamical
evolution of the system. Stochastic differential equations
(SDEs) are theODEswith added noise termswhich describe
the stochastic fluctuations. More specifically, SDEs also is
often called ’Langevin’ equations which can be used to
describe dynamical systems [20, 21]. SDEs can be regarded
as an extension of the dynamic system theory to the noisy
or fluctuating regime. This is an important generalization,
as real systems cannot be completely isolated from their
environments, so they are always influenced by external
sources. ODEs and SDEs are widely applicable on molec-
ular dynamics. In this review,we also introduces analytical
methods (ODE and SDE) based on gene regulatory net-
works to reveal the progress and development of cancer. In
particular, wewill introduce a landscape and flux theory to
globally describe to dynamics of the understanding gene
regulatory net work and apply the theory to cancer. Both
data mining and mathematical models can help us in
cancer prediction and diagnosis which can provide
necessary information on cancer treatments.

Machine learning methods in
cancer study

Machine learning methods

Machine learning (ML) is widely used for predicting pat-
terns in a generalizable way [22]. ML exploits the compu-
tational methods to learn information directly from the
historical data or experiences. Machine learning is usually
divided into twomain types: (i) supervised learning and (ii)
unsupervised learning. In supervised learning, a labeled
set of input data is used for the training and map to the
desired output. After many iterations of this training, the
model, when it receives a input, can give an output based
on the experience it has learned. In contrast, the unsu-
pervised learning methods provided no labeled input and
there is no output during the learning process. For
example, clustering is a typical unsupervised method. We
need to artificially specify the number of clusters. Then the
algorithm tries to put the data in different clusters in order
to describe the data characteristics. During the process,
each new sample can be put into the identified clusters
which has the similar characteristics.
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Once we built or validated amodel, then it can be used
for classification and regression or to check which parts of
the data are relevant. Usually, there are four steps to apply
machine learning technology to data sets. (a) Put forward a
specific mathematical problem suitable for data statistical
model. (b) Determine which specific model in the model
class is most suitable for the data (this usually involves the
numerical optimization function of some objectives to
generate a set of fixed parameters to identify the specific
model in the model class) (c) Use test sets or cross valida-
tion to validate the model (When this step is over, the
model has finished the building and training step). Cross
validation is the most frequently used method for learning
and validation of the datasets. (d) Application of the final
model in new data.

There are several machine learning methods which
widely used for the study of cancer prediction and prog-
nosis. They include (i) Artificial Neural Networks (ANNs),
(ii) Decision Trees (DTs), (iii) Support Vector Machine
(SVM), (iv) naive Bayesian and ect.

ANNs can be applied to automatic recognition, descrip-
tion and classification [23, 24]. ANNsmodel can be trained to
get the relevant output after we give the model certain
amount of input variables. As Figure 1 shows, ANNs contain
input layer, output layer andmultiple hidden layers between
the input and output layers. The hidden layers represent the
neural connections. At present, there has not been very good
algorithm to determine the number of hidden layers [25].
Usually, it is based on experiences which are typically used
for the process. The ANNs model can be characterized as a
’black-box’ technology. Trying to figure out theANNworking
process or why it does not work is still a challenge.

DTs follow a tree structure where nodes represent the
input data and the leaves represent the output [26].
Figure 2 demonstrates a decision tree structure. The nodes
represent the variables and the arrows represent the
decision rules. Based on the tree structure, the traversing
and classification are very quick. When there is a
new sample, traversing the tree can allow sufficient
reasoning. The specific architecture can help for conjecture
and make classification decision. The approach is a
prominent machine learning method and widely used in
classifications [27].

Naive Bayesians are widely applied in classification,
knowledge representation and reasoning [28]. The
approach used the probability estimations rather than
predictions. Naive Bayesians are composed of mainly
directed acyclic graph and the classifiers are based on the
probabilistic approach [29]. For known conditional den-
sities, the Bayesians decision rules assign the classifica-
tions with the maximum posterior probability to obtain the
optimal classifiers. Figure 3 shows an illustration of a BN.

Figure 1: An illustration of theANNstructure. Thearrows connect the
input nodes to the output nodes. ANN: Artificial Neural Networks.

Figure 2: An illustration of a DT structure. The variables X, Y, Z are
represented by a circle and the Class A and B are represented by
squares. T1, 2, 3 represent the classification rules to classify the
variables.

Figure 3: An illustration of a Naive Bayes (BN). Nodes A, B, C and D
represent variables with their conditional probabilities.
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The nodes A, B, C and D are the variables and the calcu-
lated conditional probability (the edge) for each variable
have been listed besides.

SVMs are the approach more widely used in cancer
prediction and prognosis field recently [30, 31]. SVMs can
map the input vector into high dimensional feature spaces.
Then the hyperplane can be identified to separate the input
data into two classes. The distance between the two hy-
perplanes (classes) should be maximized which can be
used for reliable classifications. Figure 4 is a simple
example which illustrates how a SVM model work to
classify the tumor samples among benign and malignant
tissues according to the conditions of age and tumor size.

Thesemachine learningmethods have often been used
in cancer studies [32–35]. The algorithms arewidely used to
predict cancer types or classifications.

Machine learning methods in cancer
prognosis and prediction

The ML techniques have been wildly used in cancer prog-
nosis and prediction [36–39]. Most of the studies employed
ML techniques for modeling cancer progression and iden-
tifying informative elements on classifications [40]. Gene
expression profiles and clinical data have been used as the
input data on the prognostic procedure. ML techniques
have been used to predict cancer susceptibility, recurrence
and survival.

The study inRef. [25] usedANNs todiscriminate between
benign type and malignant type of breast cancer accurately
and predict the probability of breast cancer for individual
patients. In theirwork,ANNs are employed to be a prediction
model which can classify malignant mammographic results
from benign. Their dataset consisted of 62,219 consecutively

collected mammography results. The dataset was fed as
the input of the ANN model. The ANNs model is a 3-layer
feed-forward ANNwith 1,000 hidden layer nodes. There is
a large number of hidden layer nodes in the models, as
they have tested many times to have the results that large
number hidden layer nodes generalizes better than net-
works with small number of hidden layer nodes. The au-
thors trained and tested the model with 10-fold cross
validation. They calculated AUC (Area Under Curve) to do
the sensitivity analysis, the result is 0.965. At last, the
authors made conclusion that their model can accurately
discriminate malignant samples from benign ones and
effectively predict the risk of breast cancer for individual
abnormalities.

The study in Ref. [41] used an SVMmodel to predict the
recurrence within 5 years of breast cancer. The data was a
679 patients dataset. Many types of variables are consid-
ered in the model such as histological grade, tumor size,
number of metastatic lymph node, estrogen receptor,
lymphovascular invasion, local invasion of tumor, and
number of tumors and so on. The authors used the ML
model to classified these patient data into high and low risk
groups. Three prediction models: SVM, ANNs and Cox-
proportional hazard regression model, were constructed
and compared with each other in the study. The results
show that the most effective model was SVM after
comparing with other two established prognostic models.
Another study in Ref. [37] used a decision tree system to
study the recurrence of Oral squamous cell carcinoma
(OSCC). The authors integrated a multitude of data such as
clinical, imaging, and genomic ones. They identified the
factors which dictate OSCC progression and predict po-
tential recurrence of OSCC.

The study [42] used a decision tree (DT) model to
identify patients with significant prostate cancer on pros-
tate biopsy. The features of the DT including the informa-
tion of the age, prostate-specific antigen (PSA), digital
rectal examination (DRE), volume of the prostate, and PSA
density (PSAD). The classification and regression tree
(CART) analysis was carried out. The model resulted in an
83.3% area under the receiver operating characteristic
(ROC) curve and detected out 92 patients which have sig-
nificant prostate cancer of 221 prostate patients. The model
of DT can help to reduce unnecessary biopsies without
missing significant prostate cancer.

The study [36] is a prediction model developed for
evaluation of survival women that have been diagnosed
with breast cancer. There are three machine learning
models was carried out for the prognosis of breast cancer
survivability: SVM, ANNs, and semi-supervised learning
models. The data contains surveillance, epidemiology, and

Figure 4: An illustration of a linear SVM classification. The
classifications are according to the tumor size and patient age. The
arrows are specified the misclassified tumors.
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end results database for breast cancer. The authors made a
conclusion that semi-supervised learning model per-
formed well that physicians can easily employ without
consumingmuch time and effort for parameter selecting of
the model. The ease of use and rapid outcome of the pre-
diction model may ultimately lead to an accurate and less
invasive prognosis for breast cancer patients.

According to the recent studies, most of these publi-
cations make use more than one ML algorithms and
integrate different data types from various data sources
for the prediction/prognosis of cancer types [43]. The
study [44] detected the influence of genetic polymorphisms
on breast cancer which measured 98 single nucleotide
polymorphisms (SNPs) distributed over 45 breast cancer
relevant genes in 174 patients, comparing machine
learning methods of SVMs, DTs, and naive Bayes. In most
cancer studies, the data should have both normal and
cancer samples for the difference analysis. The research
data set contains 174 samples from patients who were all
females and newly diagnosed invasive breast cancer and
158 control samples who were anonymous females. The
researchers used the whole data set which contains the
patients with some missing SNP calls, the naive Bayesian
method’s accuracy can reach to 63% (the baseline is 50%).
When the researchers prune the data set down to only
complete patient genotypes, the naive Bayesian method’s
predictive power was increased to 67%. Generally, data
preprocessing can effectively improve the prediction ac-
curacy of the model. Besides keeping data integrity, noise
reduction and de-noising are also often used methods.
When the researchers provide a quadratic kernel SVM
methods, the predicted accuracy further improves to 69%.
The DTs with maximal performance achieves 68% ± 1%
accuracy. The comparison can be seen in Table 1.
Compared with other two models, the DTs have more
balanced errors (The difference between sensitivity and
specificity was smaller than that from other models), and
the errors occur more evenly when predicting cancer and

noncancerous patients. The prediction powers of different
models also depend on the types of data and the mathe-
matical problems to be predicted. In this data set and
problem, the three learning algorithms naive Bayesian,
SVMs and DTs performed similarly.

Gene regulatory network
identification methods in cancer
biology

Cancer is a system disease and often related to polygene
mutation and regulation variations. Therefore, under-
standing how these genes activate or repress of other genes
has long been a goal of cancer biology. Detecting gene
interactions or regulations by experiments can be very
difficult and time consuming. There are approximately
20,000 genes in human genome. It is not feasible to check
the gene interactions or regulations pair by pair. Re-
searchers use DNA microarray [45], next-generation
sequencing (most notably RNA-Seq) [46, 47] to a quanti-
tative detect the transcriptomic profile of an individual cell
or cell population. There are several often used methods to
identified corresponding gene regulatory network such as
Correlation, Regression and Bayesianmethods (simple and
dynamic Bayesian) etc.

Correlation is the most simple and basic method of
network inference. Researchers often calculated the
correlation for each pair of genes to know which genes
are related. Kendall rank correlation coefficient and
spearman correlation coefficient are the most often used
methods. If the correlation coefficient value between the
two genes’ expressions reaches a certain value, then
there is a certain correlation between these two genes and
they can be linked together. This is useful for us if one
wants to have a general idea of which gene pair is related.
Since the connection has no direction or distribution
between direct or indirect regulation, it is fast and scal-
able for large dataset. This kind of network is often
named as a “gene co-expression network” rather than a
gene regulatory network. Although the network identifi-
cation is simple, the correlated networks can generate
powerful results when appropriate analytical tools are
applied. Weighted Gene Co-expression Network Analysis
(WGCNA) is a widely used method in gene network
studies. This tool can be used to calculate the correlations
as the weights of the links for the network [48]. Recently,
studies based on gene co-expression network [49–52]
often combine protein-protein interaction (PPI), gene
ontology (GO), quantitative real time polymerase chain

Table : Discrimination of breast cancer patients from normal
controls using machine learning techniques. The mean and SD of
five -fold cross validation trials.

Algorithm Maximal
accuracy (%)

Sensitivity
(%)

Specificity
(%)

Navie Bayes  ±   ±   ± 

DTs  ±   ±   ± 

SVM linear kernel  ±   ±   ± 

SVM quadratic
kernel

 ±   ±   ± 

SVM cubic kernel  ±   ±   ± 

SVM, Support Vector Machine; DTs, Decision Trees.
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reactions (qRT-PCR) or pathway-enrichment analysis to
identify the significance of the gene modules or the bio-
logical functions of the identified dysregulated genes.

Regression is another common method in network
identifications. This analysis method is more computa-
tionally expensive than the Correlation methods. It can
provide the advantage of predicting causal direction. The
regression method’s simplest form follow the linear
regression equation as below:

Xj = β0 + β1Xi + ϵ. (1)

In Eq. (1), β0 represents the intercept, β1 represents the
slope, the random error item is ε. β1 can describe the rela-
tionship between Xj and Xi. It can be assigned as theweight
of the edge from Xi to Xj. This is the simplest regression
form. Its limitation is that linear relationships between
genes are usually assumed. This will result to failure to
detect non-linear regulations. A method named the Least
Angle Regression (LARS) [53] made a progress to detect
both linear and pre-defined non-linear regulations.

Bayesian methods are divided into simple and
dynamic Bayesian ones. These methods have been used in
gene network identification. When one use Bayesian

method, a conditional probability P(Xj
⃒⃒⃒⃒
Xi) is often used to

represent an interaction from gene j to i. Xj and Xi represent
the gene expression level of gene j and i. Gene j can be seen
as the parent of gene i. The graphical representation of
these conditional probability can lead to the Bayesian
networks.When one has gene expression data such asDNA
microarray, one can use a maximum likelihood estimation
to determine the highest posterior probability of the
observed data. The Bayesian methods can give the direc-
tion of the edge of the network. Furthermore, Bayesian
network can be regarded as a network of interactive prior
knowledge. Therefore, the computational cost of Bayesian
is higher than the methods have mentioned before.

Werhli and Husmeier [54] integrated gene expression
data with multiple sources of prior biological knowledge
to reconstruct the gene regulatory network. Moreover,
Markov Chain Monte Carlo (MCMC) was used as a scheme
to sample the hyperparameters from the posterior distri-
bution. This can reduce reconstruction error as the values
of the hyperparameterswere close to be optimal. They have
evaluated the results on the Raf related pathway. Including
prior knowledge is advisable to improve the accuracy of the
gene regulatory network reconstruction results.

Tan and Mohamad [55] proposed Bayesian network to
reconstruct gene regulatory networks. Hill-climbing algo-
rithm and Efron’s bootstrap approach were applied with
the Bayesian network model. At first, they use Saccharo-
myces cerevisiae cell-cycle gene expression dataset and

Escherichia coli dataset because one can handle the
microarray datasets with missing values. Then Bayesian
networks using hill-climbing algorithm and Efron’s boot-
strap approach were applied. At the end, the result of the
gene networks using S. cerevisiae dataset not only have
achieved more than 90% positive prediction rate for the
existing interactions and regulations, but the networks
also have discovered potential interactions between genes.

Dynamic Bayesian can detect a feed-back loop and
self-activated edge which is common in gene regulatory
network. And that requires to be provided a gene expres-
sion variations at different specific time point. In practice,
available data through DNA microarray, PCR and RNA-seq
are not real time ones. The cells are dead for analysis each
time point. Therefore, each cell can provide only one time
point information. Although the real time high through put
gene expression data do not exist, one may explore the
ensemble of cell at each time point and treated as pseudo
time series for studying the ensemble evolution. A tempo-
ral dataset in real time can allow one to detect a feed-back
loop and self-activated edges and predict observations at a
future time-step data. So obtaining temporal data or
pseudo-temporal data are necessary for reconstructing a
Dynamic Bayesian network (DBN). There are certain diffi-
culties and complexities for the experiments to obtain this
kind of data. DBN construction are more computational
expensive than the simple Bayesian. Although DBN has
many requirements of data set, it is still widely used as the
network contains direction and feed-back loops. The
Comparison of these methods can be seen in Table 2.

Dojer et al. [56–60] extended the framework of dy-
namic Bayesian networks to incorporate perturbations.
Moreover, they use time series data from perturbation ex-
periments and a discretization method was applied to infer
an optimal network. The expressions of genes often have
many much perturbations from some special treatments
such as knockout experiments, this results the changes of
the network interactions. The perturbations can be incor-
porated in the differential equation of mRNA and genes for
the model. Based on the results, they show that the quality
of inferred networks can markedly improve the accuracy
due to the perturbed expression data.

Vinh et al. [61] demonstrated that using Dynamic
Bayesian network (DBN) to reconstruct the biological
network has limitations which only fit small sized net-
works. Furthermore, the DBN learning with local search or
stochastic global optimization only can locate sub-optimal
solutions. To overcome above defects, they integrated the
DBN approach with a deterministic global optimization for
genetic network construction using time course gene
expression data. The proposed approach employedmutual
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information test (MIT) which is a novel scoring metric
based on information theory for learning a global optimi-
zation structure. The GlobalMIT can learn high-order time
delayed genetic interactions. A scoring function was
applied to assess the goodness-of-fit of the DBN which can
help to obtain optimal gene regulatory networks. As a
result, they concluded that deterministic global optimiza-
tion approaches can infer large scale genetic networks.

In Table 2, we have compared the advantages and
disadvantages of the above models and some examples.
We can see that the correlation method can process large
scale dataset but the edges of the network have no direc-
tionality. The regression and simple Bayesianmethods can
construct the network with directions but do not have feed-
back loops. The network constructed by dynamic Bayesian
methods do have directions and feed-back loops but
required temporal data.

The study [62] established a theoretical framework to
analyzehow the gene activitymodulatesmetabolic pathway
activity. They constructed the metabolic regulatory network
through literature survey. They used a parameter randomi-
zation approach to identify the robust stable metabolic
states of the regulatory network. They collected the key
genes and related genes which are in the downstream of the
key genes. Then they utilized unsupervised hierarchical
clustering analysis (HCA) to determine the patterns of
three clusters (W[Warburg], O[OXPHOS] and hybrid W/O).
Through principal component analysis (PCA), they visual-
ized the three clusters by projecting onto thefirst and second
principal components. These results show that cells in theW
statemostly use glycolysis for ATP production, cells in the O
state mainly use OXPHOS for ATP production, and cells in
the hybrid W/O state can utilize both glycolysis and oxida-
tive phosphorylation (OXPHOS) to generate ATP. They
pointed out targeting both OXPHOS and glycolysis may be
necessary to eliminate cancer aggressiveness. This study
offers a new perspective on coupling of gene regulationwith
metabolic pathways.

As biological events, such as transcription, translation,
biochemical reactions, occur at multiple time scales,
approaches with only data mining and machine learning
may result in ill-posed problems or non-physical solutions.

The study [63] discussed how machine learning and multi-
scale model can be integrated to reach a ‘synergy’ effect.
This paper reviewed how machine learning methods which
provide the appropriate tools can train data, prevent over-
fitting, and identify correlations etc. In the mean time, the
multi-scale models can integrate the underlying physics or
biological features to explore the interactions, related
mechanisms and understand the function of the predicting
system dynamics and causality. This study can provide new
insights into disease mechanisms, help us to identify new
targets on treatment strategies and make decisions which
are beneficial for human health.

Using gene regulatory network to
study cancer

Non-linear dynamical models from ordinary
differential equations

ODE models are the effective analysis approach for non-
linear dynamical systems as they can be used to describe
the gene regulatory network dynamics, multi-stability,
limit cycles, chaos and etc. ODE models are more quanti-
tative because they represent the underlying physical
systemdynamic by continuous variableswhile others often
use discrete variables. Furthermore, the extensive experi-
mental literature can provide options on ODEs models,
such as parameter selections and kinetic laws in
functions [64].

dxi
dt

= Fi(x1, x2,…xn, p, u). (2)

In Eq. (2), x is the expression level of gene i at time t. n
represents the gene number and u represents an external
perturbation of the system. Fi is a vector which represents
the deterministic driving force. In ODEmodels, continuous
time variables are used and there is no negative value as
the protein andmRNAproductions cannot be negative. The
degradation rate of mRNA or proteins is assumed to be a
constant to simplify the computations.

Table : Comparison of network construction methods.

Algorithm Temporal data required? Direction? Applicable conditions Instances

Correlation No Undirected Large scale dataset; fast []
Regression No Directed No feed-back loops []
Simple Bayesian No Directed Fit small network; No feed-back loops []
Dynamic Bayesian Yes Directed Fit small network; detection of feed-back loops []
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In the study [65], the researchers constructed a reg-
ulatory network which consists of regulatory proteins and
metabolites. After an extensive literature analysis, a
comprehensive network was constructed capturing the
regulations of oxidative respiration and glycolysis on
both genes and metabolites. The network contains two
major metabolic pathways: aerobic glycolysis, glucose
oxidation, fatty acid oxidation and glutamine oxidation
(OXPHOS). These two pathways inhibit each other as they
compete for shared metabolites. The network also con-
tains the specific genes which directly regulate the path-
ways. For example, the fatty acid and glucose oxidation
are regulated by AMPK which is an energy sensor gene
and the glycolytic pathway is regulated by HIF-1 which is
a hypoxia inducible factor. Metabolites such as ROS
produced by the pathways are also reflected in the
network. Some regulated genes such as RAS, MYC, and
c-SRC coupled to oncogenic pathways are also included in
the network.

The researchers have coarse-grained gene regulatory
circuit into a minimal circuit which are AMPK, HIF-1, and
ROS shown in Figure 5.

This can help us to understand the major behaviors of
the network. The effects of other genes can be regarded as
the input of the network. The dynamical behaviors of the
gene regulatory network (AMPK, HIF-1, ROS) can be
quantified by the non-linear differential rate equations as
below [65]:

dX
dt

= gX ⋅ G − X ⋅ kX ⋅ K. (3)

In Eq. (3), X represents the gene expression level of
the protein. gX and kX are the production and degradation
rates of gene X, respectively. G and K represent the
regulation functions of the production and degradation of
X, respectively. The authors used a non-linear function
named Hill function to describe the regulation of X by a
component Y.

Hs(Y ,Y0, λY , nY) = H−(Y ,Y0, nY) + λYH+((Y ,Y0, nY). (4)

Here, Y0 is the threshold level of Y, nY represent Hill
coefficient and λY is themaximumorminimum fold change
of X due to the regulation of Y. In Eq. (4), H− and H+ are the
inhibition Hill function and excitatory Hill function,
respectively which are shown as Eqs. (5) and (6).

H−(Y ,Y0, nY) = 1

[1 + ( Y
Y0)]

nY . (5)

H+(Y ,Y0, nY) = ( Y
Y0)nY

[1 + ( Y
Y0)]

nY . (6)

λY<1 represents an inhibitory regulation and λY>1 repre-
sents an excitatory regulation. The regulatory function of
production X is G = Hs(Y ,Y0, λY , nY ); The regulatory
function of degradation X is K = Hs(Y ,Y0, λY , nY ), here X is
regulated by Y. When X is regulated by two components Y
and Z simultaneously, the function of production or
degradation can be written as Eq. (7):

G(or K) = ⎧⎨⎩ Hs(Y ,Y0 , λY , nY)Hs(Z, Z0 , λZ , nZ) Y and Z are independent

Ccomp(k0,Y ,Y0
X , kY , nY ,Z,Z

0
X , kZ , nZ) Y and Z are competitive

.

(7)
Based on the ODEs, the two stable steady states

emerged [65]. In normal cells, there are two steady
states: one is from the Warburg effect (W) and the other is
from the oxidative respiration (O), shown in Figure 6A.
This result is consistent with the fact that cells usually
use glucose oxidation to produce energy, but during the
anaerobic exercises, cells turn to glycolysis. Then the
analysis for the cancer cells are reflected by larger γ and
lower kh. It was found that cancer cells have a new hybrid
state (W/O) shown in Figure 6B [65]. In the hybrid state
(W/O), the expression levels of pAMPK and HIF-1 are both
high. this can enhance metabolic plasticity to promote
tumor occurrence and metastasis. The hybrid state illus-
trates that the cancer cells have the capability to

Figure 5: The coarse-grained the network of AMPK:HIF-1:ROS regu-
latory circuit. ROS represents both mtROS and noxROS. RAS, MYC,
and c-SRC modulates the balance of glycolysis and OXPHOS (Image
source: Yu et al. [65] with permission). noxROS, NADPH oxidase
reactive oxygen species; mtROS, mitochondrial reactive oxygen
species; HIF-1, hypoxia-inducible factor 1; AMPK, AMP-activated
protein kinase; OXPHOS, oxidative phosphorylation.
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simultaneously make use of both glycolysis and mito-
chondrial OXPHOS.

The researchers found eight types of cancer from TCGA
database to evaluated the results and further proposed to
design metabolic therapies by considering the hybrid
metabolic phenotype (W/O) [65]. By simulating the effec-
tiveness of several therapies through the model, they found
thatmetformin ismore likely topush thecells into thehybrid
metabolic phenotype than the others. This model can also
give explanations of why hybrid therapies are more
effective [65].

Researchers [66] pointed out that if onewants to use the
immune system as a treatment for cancer, the contribution
of tumor microenvironment to the complex interactions
between the cancer cells and the immune response must be
better understood. Exosomes are small (30 − 200 nm) vesi-
cles whose functions are to transfer proteins, mRNAs, and
microRNAs to other cells. Researchers developed an ODEs
model to study the role of exosome communication which
are critical to the cancer immunity interplay. Thismodel can
help researchers compare the effectiveness of radiation
therapy to the combination with immune therapy and
illustratehow themodel canprovidebasis for thedesignand
evaluation of the combination therapies.

As the parameter determination of the model will
consume much time, researchers developed a compu-
tational method named RACIPE which can reduce the
searching time during model parameter determination
of ODE models [67]. The input of RACIPE is the topology
of gene regulatory network, and generates an ensemble
of models with random kinetic parameters. Then con-
ventional ODE based simulation is used for each random
model to obtain steady states. Finally, relevant analysis
is carried out according to the corresponding biological
characteristics on the gene expression data from all

models. This can help to pin down the range of the
parameters consistent to the global behaviors.

The landscape flux models through
stochastic differential equations

The landscape flux theory in non-equilibrium system

In cellular environment, the transcriptional, translational,
and post-translational regulations due to either low copy
number ofmolecules or slow switching among the states of
promoter structure, chromatin epigenetics, or nuclear ar-
chitecture can lead to intrinsic noise or fluctuations [68].
The pathway-specific or global differences in the abun-
dance of cellular components, or differences in the timing
of cell-cycle events, environments can lead to extrinsic
noise or fluctuations [69, 70]. The intrinsic and extrinsic
noise cannot usually be ignore. Compared to the ODE
model, a stochastic driving force which can describe the
effects of both the intrinsic and extrinsic noise can be
introduced into the stochastic dynamic model (stochastic
differential equation (SDE) model). The stochastic dy-
namics of the system can then be described by the Lan-
gevin equation [71–73]:

dxi
dt

= Fi(x) + η(x, t). (8)

For the stochastic dynamics described by the Langevin
equation, researchers can obtain the probability distribu-
tions by collecting the real time trajectories. In Eq. (8), η(x, t)
is the stochastic force obeying Gaussian distribution and

〈η(x, t)〉 = 0 and 〈η(x, t)ηT(x, t′)〉 = 2D(x)δ( t − t′). D(x) is
a diffusion matrix which characterizes the fluctuation
strength and the correlation.

Figure 6: The steady states in the phase
space of AMPK and HIF-1. The red and blue
lines represent the null cline of embedded
image and the null cline of embedded im-
age, respectively. The green solid and green
hallow dots denote stable steady states
and unstable steady state, respectively
(Image source: Yu et al. [65] with permis-
sion). PAMPK, phosphorylated AMP acti-
vated protein kinase; HIF-1, Hypoxia-
inducible factor 1.
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Since the individual stochastic trajectories are unpre-
dictable, the probability evolution is linear and predictable.
The corresponding probability (P(x, t)) evolution equation
follows the Fokker–Planck equation: ∂P(x, t)/∂t = − ∇ ⋅
[FP − ∇ ⋅ (DP)]. This can be written as ∂P/∂t = − ∇ ⋅J. The
meaning of this equation is a local probability conservation
law. The local probability change is equal to the net in or out
flux. The flux is given as J = FP − ∇⋅(DP), where the first
term is related to the deterministic force while the second
term represents the fluctuation. In the steady state,
∂Pss/∂t = ∇ ⋅ Jss = 0, where Jss stands for steady state. The
probability flux of steady state satisfies Jss = FPss − D⋅∇Pss.
When Jss is deviated from zero, the detailed balance is
broken and the degree of non-equilibrium away from equi-
librium can be quantified. Since the steady state flux
∇⋅Jss = 0. This indicates that the steady state flux is
rotational. Therefore, for non-equilibrium systems, the
driving force F can be decomposed into a gradient of the
potential landscape and a curl flux force [74, 75]:
F = −D ⋅ ∇U + Jss/Pss, whereU = −lnPss can be viewed as the
potential landscape of the system [76]. In general, the gene
regulatory networks often have more than two genes. It is
impossible to view the landscape in more than two or three
dimensions. Researchers usually projected the landscape
into two or three chosen genes or collective coordinates from
the combination of different genes such as principal
component analysis (PCA) to view the landscape clearly.

Effects on biological noise

In biological system, the noises mainly involve intrinsic
and extrinsic noise. The intrinsic noise often refers to sta-
tistical number fluctuations in a given process such as DNA
transcription into RNA, RNA translation into a peptide, a
peptide folding into a functional protein and protein
degration etc. The extrinsic noise usually refer to the fluc-
tuations from environments. In the SDEs, the term η is used
to represent the noise amplitude. If the system only con-
tains few molecules, intrinsic noise will be the primary
consideration. If there are large number molecules in the
system, intrinsic noise is usually small and extrinsic noise
can be significant, as the extrinsic noise is due to envi-
ronmental factors associated with other processes. This
can be described by the SDEs as the set of equations which
can describe the system dynamics.

One can quantify the degrees of noise or fluctuations
by calculating Fano factor. Fano factor is defined as:
F = σ2/μ which represents noise strength. Here, σ is the
standard deviation and μ is the mean of the probability
distribution. Ideally, the independent stochastic processes
is expected to be a Poisson distribution. In that case, the

value of Fano factor is 1. If the value of Fano factor is large
(small) compared to 1, it implies the degree of noise or
fluctuations is large (small) and the underlying statistical
distribution is deviated from Poisson.

Self-consistent mean field approximation

Usually, solving the Fokker–Planck equation to get the
time dependent and the steady state probability/potential
landscape is difficulty. The self-consistent mean field
approach [72] can provide an approximation by assuming
a separable form of the probability distribution
P(x1, x2,⋯, xn, t)∼∏

i
P(xi, t). Therefore, the probability can

be solved self-consistently. The dimensionality in the

problem is reduced from mn to m × n, making the compu-

tation more tractable.
The Gaussian Probability Distribution can be used as

an approximation for the form of the probability distribu-
tion. For small fluctuations, the mean vector x̄(t) and the
covariancematrix σ(t) of theGaussian distribution obey the
following moment equations:

ẋ(t) =F(x(t))σ̇(t) =A(t)σ(t)+σ(t)AT(t)+ 2D(x(t)). (9)

The elements of the matrix A are given by

Aij( t) = ∂Fi(x( t))
∂xj( t) . Due to the self-consistent mean field

approximation of separable distributions, only diagonal
elements of σ(t) are considered in Eq. (9). Thus based on the
approximation of separable Gaussian distributions, the
evolution of the probability distribution to each variable xi
is given by

P(xi, t) = 1̅̅̅̅̅̅̅
2πσi(t)

√ exp
⎧⎪⎨⎪⎩ −

[xi − xi(t)]2
2σi(t)

⎫⎪⎬⎪⎭. (10)

For a monostable system, the steady state probability
distribution obtained from Eq. (10) is a separable Gaussian
distribution centered at the fixed point. For a multistable
system, there is a separable Gaussian distribution associ-
ated with each fixed point. The final steady state proba-
bility distribution Pss(x) is constructed as a linear
combination of these Gaussian distributions, with the
combination coefficients chosen to be the relative fre-
quencies of occurrence of the corresponding fixed points
obtained by running different initial conditions.

Optimal path through path integral formulation

Consider stochastic systems governed by the Fokker–
Planck equation with a constant diffusion matrix:
∂P(x, t)/∂t = − ∇ ⋅[F(x)P(x, t) − D ⋅ ∇P(x, t)]. Based on
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the Onsager-Machlup functional approach [76], the tran-
sition probability from the initial state xini at time ti to the
final state xfin at time tf is given by a path integral:

P(xfin, tf ; xini, ti) = ∫D [x( t)] exp{ − S[x( t)]} = ∫D [x( t)]
exp{ − ∫L (x( t))dt}, where L (x( t)) = 1

4 ( ẋ − F(x)) ⋅ D−1 ⋅

( ẋ − F(x)) + 1
2 ∇ ⋅F(x) is the Lagrangian and S[x( t)] =

∫L (x( t))dt is the action of the path. The notation

∫D [x( t)] represents an integral over all the possible paths

beginning from the initial state xini at time ti and ending in
the final state xfin at time tf. According to this formula, each
path is assignedwith a probability weight, exp{ − S[x( t)]},
associated with the action of that path. The dominant or
optimal kinetic paths are identified as the paths with the
maximum probability. In non-equilibrium systems the
non-vanishing curl flux Jss drives the kinetic path to deviate
from the steepest descent path on the landscape. There-
fore, the kinetic paths of the non-equilibrium systems are
in general irreversible.

Non-equilibrium thermodynamics

From the Fokker–Planck equation, we can obtain the
intrinsic entropy of the stochastic non-equilibrium
dynamical system as S = ∫P(x, t)lnP(x, t)dx. In the non-
equilibrium system, exchange in energy and information
results the dissipation. It depicts a global physical
characterization of the non-equilibrium system. The

change of the system entropy with time can be written as:

Ṡ= Ṡt− Ṡe, Ṡt = ∫dx( J ⋅ (DD)−1 ⋅ J)/P, where Ṡt is the entropy
production rate which is positive or zero and

Ṡe = ∫dx(J⋅(DD)−1 ⋅ F′) is the heat dissipation or entropy flow
rate which can be either positive or negative. F′ = F − D∇⋅D
is the effective force. If we define Ṡ as the entropy change of
the system of the non-equilibrium system, then Ṡt is the
total entropy change of the system and the associated

environment. In the steady state, Ṡ = 0, the heat dissipation
is equal to the entropy production rate [77]. The flux of the
system can be written as: J(x, t) = FP − D∇P.

Applications of the landscape flux models

Recently, researchers used literature research and text
mining methods to reconstruct gene regulatory network to
study the cancer progression and metastasis [78–80].
Cancer is a fetal disease regulated by the underlying gene
networks. The researchers use EVEX database to search the
experimental literature and find which genes regulate
which genes. The regulations of the network are all ob-
tained from the experiments. The regulations not only have
directions and feed-forward loops but also contain the
genes promoted or suppressed by other genes.

Researchers in study [81] reconstructed a cancer gene
network which contains 32 nodes (genes) and 111 edges
(regulations) shown in Figure 7. The arrows represent ac-
tivations and the filled circles represent the repressions. In

Figure 7: The regulation network of cancer
including 32 nodes and 111 edges (66
activation regulations and 45 repression
regulations) (Image source: Li et al. [81]
with permission). VEGF, vascular
endothelial growth factor; TGF,
transforming growth factor; TNF, tumor
necrosis factor; CKD, chronic kidney
disease.
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the gene regulatory network, the green nodes are apoptosis
genes, the magenta nodes are cancer marker genes and the
light blue nodes are tumor repressor genes. To describe the
dynamics of the underlying network, the researchers
developed the corresponding ordinary differential equa-
tions. For the Hill regulatory function term, the activation
and repression can be represented. The equations are
shown as below:

Fi = −Ki × Xi + a × Xai

Sn + Xai

+ b × Sn

Sn + Xbj

. (11)

In the Eq. (11), i= 1, 2,…, 32, so there are 32 equations. S
represents the threshold of the sigmoid function which is
specified as S = 0.5. The Hill coefficient n determines the
steepness of the sigmoidal function which is specified as
n = 4. k is the self-degradation constant and a and b are the
activation and the repression constants, respectively. To
certain node i, Xai and Xbj represent average interaction
strengths for activation and repression from other genes.
For each node i, Xai is defined as (Xn

a( 1) ×M(a(1), i) +
Xn
a( 2) ×M(a(2), i) +/ +Xn

a(m1) ×M(a(m1), i))/m1. Xbi is

defined as (Xn
b( 1) ×M(b(1), i) + Xn

b( 2) ×M(b(2), i) +/ +
Xn
b(m2) ×M(b(m2), i))/m2. Here, a(1), a(2),… a(m1) is a list

of node number which activate node i, and b(1), b(2),…
b(m2) is a list of node number which repress node i.M( j, i)
( j, i = 1, 2, …, 32) is a matrix acquired by multiplying the
interaction type matrix Mi and interaction strength matrix
Ms from node j to node i.M( j, i) =Mi( j, i) ×Ms( j, i) ( i, j = 1,
2,…,32). In Eq. (11), the first term represents self-
degradation, the second term represents activation and
the third term represents repression.

The 32 ODEs can describe the driving force of the sys-
tem and govern the network dynamics. According to
U = −lnPss, the researchers quantified the potential land-
scape of the system. Figure 8 shows that the landscape
contains three states characterized by the basins of at-
tractions which are normal, cancer and apoptosis state,
respectively. The landscape can reflect the cancer pro-
gression such as cancerization and apoptosis process. The
landscape topography, the transition rate, and the domi-
nant kinetic paths are determined both by the landscape
gradient and curl probability flux as illustrate in Figure 8B.
Together, they (Figure 8A and B) can give a global and
system view of cancer progression and apoptosis process
which can provide the physical explanation and quantifi-
cation for the underlying mechanisms of cancerization.

Since the regulations can influence the landscape
topography, the researchers use global sensitivity analysis
to uncover the key regulations or genes in the gene network
influencing the stability and topography of the cancer

landscape. The results of global sensitivity analysis can
provide away to identify the key elementswhich determine
the cancerization and apoptosis process. Moreover, the
results can help the researchersmaking certain predictions
about which regulations are crucial for cancer progression
and cancer treatment.

The researcher used the stochastic dynamical model to
further study specific types of cancer such as breast cancer
and gastric cancer [79, 82]. Here, we summarized the
gastric cancer as an example [82]. They identified a gene
regulatory network to investigate gastric cancer. The gene
regulatory network contains both the genetic level and
epigenetic information of gastric cancer and gastritis. As

Figure 8: The tristable landscape for the cancer network.
(A) The three dimensional landscape and dominant kinetic paths.
The yellow path, the magenta path and black paths represent the
path from normal state to cancer state, from cancer state to normal
state and from the normal and cancer state to apoptosis state,
respectively. (B) The corresponding twodimensional landscape. Red
arrowsandwhite arrows represent the negative gradient of potential
energy and theprobabilistic flux, respectively (Image source: Li et al.
[81] with permission).
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shown in Figure 9, there are 15 nodes (genes) and 72 edges
(regulations).

The researchers then quantified the dynamics of the
underlying gene regulatory network by the ODEs:

dXi

dt
= Fi = gi ∏

ni

j=1
Hji − kiXi (12)

In Eq. (12), dXi
dt represents the specific gene expression or

protein concentration changes with time, g and k are the
generation rate and self-degradation rate of the gene or
protein, respectively.Xi represents the gene expression level
(protein concentration) of the gene i. j denotes the gene
which regulates the gene i. ni is the gene number which
regulates the gene i.Hji is a Hill function [65] defined below:

Hji =
Snji

Snji + Xn
j

+ λrji
Xn
j

Snji + Xn
j

(13)

In Eq. (13), S represents the “threshold” of the sigmoid
regulatory function. n is the Hill coefficient for depicting
the steepness of the sigmoid function which describes the
cooperatively of the interactions. The parameter λji denotes

the regulation strength from Xj to Xiwhich is a real number
greater than 1. r denotes the regulation type. If the regu-
lation type is activation, r is set to be +1. If the regulation
type is inhibition, r set to be −1. There are 15 genes, so the
gene regulatory network can be described by 15 ODEs with
additional noise term describing the intrinsic and external
fluctuations. The researchers are able to quantified the
potential landscape according to U = −lnPss, where Pss is
the steady state probability function obtained by the
collection of statistics of the stochastic trajectory simula-
tion of the gene expression. In Figure 10, there are three
stable states which are normal, gastritis and gastric cancer,
respectively. The definition of each state is based on the

Figure 9: The regulatory network of the gastric cancer with 15 nodes
and 72 regulations (57 activations and 15 repressions. The arrows
represent the activating regulations and the short bars represent the
repressing regulations) (Image source: Chong et al. [82] with
permission). TNF-alpha, Tumor necrosis factor-alpha; HIF-1alpha,
Hypoxia-inducible factor 1 alpha; TGF-beta, transforming growth
factor-beta; ZEB, zinc-finger E-box-binding; CKD2, chronic kidney
disease stage 2; APC, Adenomatous polyposis coli; EGFR, epidermal
growth factor receptor; VEGF, vascular endothelial growth factor.

Figure 10: The tristable state landscape of the gastric cancer.
(A) The three dimensional landscape anddominant kinetic paths. (B)
The corresponding two dimensional landscape of the gastric cancer.
The lines in red, blue, violet and yellow represent respectively the
dominant kinetic path from the normal to the gastritis state, from the
gastritis to the normal state, from the gastritis to the gastric cancer
state, and from the gastric cancer to the gastritis state.White arrows
and green arrows represent the negative gradient of the potential
landscape and the steady state probability curl flux force,
respectively (Image source: Chong et al. [82] with permission). TNF-
α, Tumor necrosis factor-α; EGFR, epidermal growth factor receptor.
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biological function and gene expression levels. The lines in
red, blue, violet and yellow are the dominant kinetic paths
from one state to the other. The white arrows are the
negative gradient of the potential landscape and the green
arrows are the curl flux force. The barrier heights and
dominant kinetic paths can reflect the global stabilities and
the state switching routes which can quantified the gastric
cancer formation process.

To investigate the underlying mechanism caused by
genetic or epigenetic factors, the authors simulate how
Helicobacter pylori (H. pylori) infection can influence
gastric cancer progression [83, 84]. Figure 11 shows
different H. pylori infection degrees can lead to the land-
scape topography changes which illustrates the process
from the normal state through the gastritis to gastric cancer
state. In Figure 11, the label H represents the H. pylori
infection degrees. When the value of H is increased, the
basin of the gastritis state becomes deeper and closer to
gastric cancer state basin, and finally emerges to the gastric
cancer state. This can demonstrate how the H. pylori ac-
celerates the gastric cancer formation with gastritis.

Researchers in study [78] identified the gene-
metabolism integrative network to quantify the global
driving forces for cancermetabolism dynamics through the
underlying landscape and probability flux. As shown in
Figure 12, the gene-metabolism integrative network con-
tains two parts: gene regulatory network and metabolic
pathway. The gene regulatory network and the metabolic
pathway are bridged by the gene-enzyme and metabolite-

gene interactions. The genes (such as Akt, p53, cMyc,
PTEN, HIF-1, and PDK), enzymes(such as G6P and F2,6BP),
metabolites and interactions (such as lactate, ROS, ATP,
and O2) among them compose a cancer gene-metabolism
integrative network.

The researchers quantified the driving force for the
network dynamics of the gene expressions or enzyme
concentrations by ODEs as below:

Ẋi = F(Xi) = Ai ∏
Ni

j=1
Hji − DiXi (14)

Hji =
Snji

Snji + Xn
j

+ γji
Xn
j

Snji + Xn
j

(15)

= (γji − 1) Xn
j

Snji + Xn
j

+ 1 (16)

= (1 − γji) Snji
Snji + Xn

j

+ γji

In Eq. (14), X represents the gene expression level or
concentration of enzyme. F represents the driving force of
the variable X. A and D represent the basic production rate
and degradation rate of the gene or the enzyme, respec-
tively. In Eq. (15), S is the Hill coefficient denoting the gene
expression level with half threshold of production. n is the
Hill coefficient which can represent the degree of the
cooperativity of the interactions. Hji is a non-linear func-
tion which is often named as shifted Hill function [66]. In

Figure 11: The changes of the landscape
topography of the gastric cancer upon the
influences of the H. pylori infection in two
dimensions (A) and three dimensions (B).
The two horizontal axes represent gene
expressions while the vertical axis
represents the degree of the H. pylori
infection H. The meaning of N, G and C are
normal, gastritis and gastric cancer,
respectively (Image source: Chong et al.
[82] with permission). VEGF, vascular
endothelial growth factor.

298 Yu and Wang: Data mining and mathematical models in cancer prognosis and prediction



Eq. (16), the parameter γji represents the regulation type of
Xi from Xj. If γ>1, γji represents the activation and if γ<1, γji
represents the inhibition. The parameters for this cancer
metabolism model are chosen carefully for producing the
results that are biologically relevant and reasonable.

The driving forces of the dynamics for the metabolite
concentration are described as below:

Ẏ i = F(Yi) = ∑
Ni

j=1
Xjrj (17)

In Eq. (17), the variable Y represents the metabolite
concentration and F represents the driving force of Y. The
force is the summation of enzyme kinetic velocity rj
multiplied by the related enzymes Xj.

In real dynamics, fluctuations cannot be ignored.
When including these effects, noises should be added to
the above deterministic equations. The steady state prob-
ability landscape and the corresponding probability flux
can be obtained by either the self-consistent mean field
approach or by the Langevin simulations [79, 85].

The researchers obtained the landscape of cancer meta-
bolism, using the self-consistent mean field approximation.
The landscape U is defined as U = −ln (Pss), which is directly
related to the steady state probability distribution Pss.

There are 53 variables(13 genes, 17 enzymes and 23
metabolites, with total of 53 nodes) in the cancer gene-
metabolism integrative network, so there are 53 dynamical
equations. The researchers choose two dimensions (LDH
and PDH) for display, as it is impossible to visualize the
landscape in 53-dimensions. Lactate dehydrogenase (LDH)
is a key enzyme for switching away from TCA cycle and can
reflect aerobic glycolysis flux. Pyruvate dehydrogenase
(PDH) is the first enzyme component of pyruvate dehy-
drogenase complex (PDC), which contributes to trans-
forming pyruvate into mitochondria for subsequential TCA
cycle and oxidative phosphorylation. Four steady state
attractors emerge on the landscape which are the
normal state (N), the cancer OXPHOS state (P), the cancer
glycolysis state (G) and the cancer intermediate state
(I) attractors, as shown in Figure 13 A and B. It is obvious

Figure 12: Cancer gene-metabolism integra-
tive network. Genes are marked with blue.
Enzymes are marked with red. Metabolites
are marked with black. Dark blue arrows
and bars represent gene-gene interactions.
Dark red arrows and bars represent and
gene-enzyme regulations. Purple arrows
and bars represent metabolite-enzyme
regulations. Black arrows represent
biochemical reactions. Double arrows
represent shared lines for multiple regula-
tions. Each of the same colored connec-
tions that start with double arrows and end
with solid arrows and bars represent one
regulation (Image source: Li et al. [78]). Glu,
glutamate; ATP, Adenosine triphosphate;
FBP, filtered backprojection; ALD, atomic
layer deposition; TPI, triosephosphate
isomerase; DHAP, dihydroxyacetone phos-
phate; NAD,nicotinamide adenine dinucle-
otide; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; PGK, phos-
phoglycerate kinase; PHGDH, phospho-
glycerate dehydrogenase; PGAM,
phosphoglycerate mutase; ENO, enolase;
PEP, positive expiratory pressure; PKM,
Pyruvate kinase muscle; PDH, pyruvate
dehydrogenase; OXPHOS, oxidative phos-
phorylation; PTEN, phosphatase and tensin
homolog; VEGF, vascular endothelial
growth factor.
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that the LDH/PDH level of the cancer intermediate state is
lower compared to either cancer glycolysis state or cancer
OXPHOS state. The red region represents the high potential
area, while the blue region represents the low potential
area. Between the two steady state attractors, there is a
saddle which is colored white in Figure 13B. The re-
searchers defined the saddle between the normal state and
the cancer intermediate state as s1, the saddle between the
normal state and the cancer OXPHOS state as s2, the saddle
between the cancer intermediate state and the cancer
OXPHOS state as s3, and the saddle between the cancer
intermediate state and the cancer glycolysis state as s4.

In different tissues, cancer cells show different meta-
bolic features [86]. As shown in Figure 13 (A and B), cells in
the normal state consume lower ATP than the cells in the
cancer state. The expression levels of both LDH and PDH
are low. The expression level of PDH in the cancer OXPHOS
state is much higher than that of the normal state. This is
mainly related to the oxidative phosphorylation produced
by the ATP and some cancer types such as mela-
noma and glioblastomata are oxidative phosphorylation-
dependent [87]. On the other hand, the expression level of
LDH in the cancer glycolysis state is much higher than that
of the normal state. This is mainly related to the glycolysis

Figure 13: Landscapeof cancer gene-metabolismand related geneexpressions fromGDC.N, P, G and I are normal state, cancerOXPHOSstate,
cancer glycolysis state and cancer intermediate state, respectively. s1, s2, s3 and s4 are saddle between normal state and cancer intermediate
state, saddle between normal state and cancerOXPHOSstate, saddle between cancer intermediate state and cancerOXPHOSstate and saddle
between cancer intermediate state and cancer glycolysis state, respectively. The yellowarrows represent the paths fromN to I, from I to P, from
N to P and from I to G; themagenta arrows represent the paths from I to N, fromP toN, fromP to I and fromG to I. Thewhite arrows represent the
directions of the steady state probability flux, and the red arrow represent the directions of the negative gradient of the potential landscape.
(A) The landscape of cancer gene-metabolism in 3D. (B) The landscape of cancer gene-metabolism in 2D. (C) Gene expression datawith normal
and cancer samples. (D) Gene expression data clustered by K-means (Image source: Li et al. [78]). PDH, pyruvate dehydrogenase; LDH, lactate
dehydrogenase; LUAD, lung adenocarcinoma; TCA, tricarboxylic acid; OXPHOS, oxidative phosphorylation.
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produced by ATP and some cancer types such as liver and
colorectal cancers are glycolysis-dependent [88]. The
cancer intermediate state has lower PDH expression level
than that of the cancer OXPHOS state and lower LDH
expression level than that of the cancer glycolysis state.
This state may correspond to the mixed cancer phenotype
such as prostate cancer [89]. The cancer intermediate state
can be seen as the bridge of the normal, the cancer
OXPHOS and the cancer glycolysis state. The normal,
OXPHOS and glycolysis states can therefore transform to
each other through the cancer intermediate state.

The results from the model have been observed in the
experiments in several cancer types. For example, the re-
searchers used the RNA-seq data of lung adenocarcinoma
(LUAD) from Genomic Data Commons Data Portal (GDC).
The researchers normalized and averaged the gene ex-
pressions in each group. In Figure 13C, it can be seen that
the glycolysis and OXPHOS levels of normal cells are much
lower than that of cancer cells. This corresponds to the
normal state (N) along with the cancer state(G, I, P) in the
results of the model. The researchers further cluster these
expressions into four groups as shown in Figure 13D. The
four groups are consistent with the four states(N, G, I, P) of
themodel. These trends and results can also been observed
in other cancer types.

Through the global sensitivity analysis of the under-
lying landscape topography, the researchers identified the
key regulations which can promote cancer OXPHOS and
glycolysis state. Moreover, the normal state to cancer state

transformation or the bifurcations can be observed which
is related to the peaks of the probability flux and the en-
tropy production rate [77]. This can give a physical origin
and a quantitative indicator of the cancer formation. In the
model, the underlying dynamical and thermodynamical
mechanism of cancer metabolism oscillations originated
from the rotational steady state probability flux is uncov-
ered. Based on the model, they provide some effectiveness
of various metabolic therapeutic targets.

In the study [90], the researchers used landscape
model to study the underlying mechanisms of the rela-
tionship between cancer and the immune system in
tumorigenesis and cancer development. The researchers
identified a network with cancer cells, 12 types of immune
cells and 13 types of cytokines which facilitate the cell-cell
communication. Figure 14 shows that the network includes
cell-cell interactions, cytokine-cell interactions as well as
cell-cytokine production. Due to the complexity of the
network, in order to view the whole mapmore clearly, only
the cell-cell interaction are shown in Figure 15. Based on
the network, the driving forces of the dynamics for the cell
or cytokine concentrations can be described and the cor-
responding landscape was shown in Figure 16.

The researchers analyzed the immune network quan-
titatively. Three steady state basins emerge based on the
landscape topography which are normal (N), low cancer
(L) and high cancer (H) state. The landscape model can
reveal the cancer development and evolution process as
the landscapes present different characteristics of the three
phases (elimination, equilibrium and escape) in immu-
noediting [91]. The researchers also quantified the origin
of cancer immune oscillations and predicted three types

Figure 14: The cancer–immune network which includes 26 nodes
and 107 regulations. The ellipses represent cells and yellow
diamonds represent cytokines. Black solid arrows and bars
represent cell-cell activation and inhibition, respectively. Red
dashed arrows and bars represent cytokine–cell activation and in-
hibition, respectively. Green dashed arrows are cell–cytokine pro-
ductions (Image source: Li et al. [90] with permission). MDSC,
myeloid-derived suppressor cell; mDC, myeloid dendritic cells.

Figure 15: The network of the cancer immune system for cell-cell
interactions. Black arrows and bars represent cell-cell activation
and cell-cell inhibition, respectively (Image source: Li et al. [90] with
permission). MDSC, myeloid-derived suppressor cell; mDC, myeloid
dendritic cells.
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of immune cells (mDCs, NK cells and CD8+) and two types
of cytokines (IL-10 and IL-12) which are important immu-
notherapy targets.

Comparison of the ordinary differential
equation and the stochastic differential
equation models

Both the ordinary differential equation and the stochastic
differential equation models are suitable for analyzing the
non-linear systems andnetwork dynamics. The twomodels
have similarities and differences.

First, both approaches are based on the gene regula-
tory network through experimental data and the gene
networks are all with directions and feed-back loops. The
extensive experimental literature can provide important
references for the selection of parameters and kinetic laws.
The gene regulatory network construction by text mining
can make full use of computing resources and establish a
relative large and reliable network.

Second, both approaches used the ODEs to describe
the variations of the gene expression levels in time.
Moreover, the Hill function can be used in the equations
to represent the activation or repression regulations
which can describe the network dynamics in a quanti-
tative way. In cellular environment, intrinsic and
external fluctuations cannot be ignored. The fluctua-
tions were taken into account in the stochastic dynam-
ical models.

Third, both approaches can give the stable steady
states of the system. The ODE models can give determin-
istic trajectory and the fix points (steady state points and
saddle points). The biological states can be defined as
stable states by the steady state fixed points. As shown in
Figure 6A, the stable states are represented by the steady
state points. This can help to perform analysis on the sta-
bility of different regions (on the stable states). When the
signals of the system change, the corresponding steady
states will shift accordingly (Figure 6B). It is sometimes
difficult to associate different steady states to one biolog-
ical function. Researchers integrated stochastic methods

Figure 16: The landscape of cancer innate immune (A and C) which is depicted by cancer cells and natural killer cells. The landscape of
adaptive immune system (B and D) which is depicted by cancer cells and CD8+ T cells. N, L and H represent normal state, low cancer state and
high cancer state, respectively. s1, s2 represent the saddle between normal state and low cancer state, saddle between normal state and high
cancer state, respectively (Image source: Li et al. [90] with permission).
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with RACIPE named sRACIPE to achieve the stochastic
analysis [67].

The SDEs models can capture the effects of both the
intrinsic and extrinsic noises in biological process through
the stochastic trajectory. In the SDEs, the term η can be
used to simulate the noise. When the noise is very small,
the steady states almost coincide with the ODE models.
Although the individual stochastic trajectories are unpre-
dictable, they can be described by the probability evolution
which satisfies linear equation and is predictable. The

resulting (steady state) probability distribution and the
associated potential landscape (U = −lnP) can characterize
the global stability of the system (As shown in Figures 7, 10
and 15).We give an example to demonstrate the differences
between ODEs and SDEs model in Figure 17. Figure 17A
shows a gene regulatory network, then we can use ODEs to
obtain Figure 17B starting from different initial values or
use SDEs to obtain Figure 17C run after sufficient time. Both
Figure 17B and C have two steady state points or stable
states. In Figure 17B we can see that the steady state points

Figure 17: The comparisons of ODEs and SDEs models.
(A) is a gene regulatory network. (B) is obtained by ODEs which starting from different initial values. (C) is obtained by SDEs and run after
suffificient time. (D) shows the deterministic trajectories and fixed points, where the red balls represent the steady state points and the blue
ball represents the saddle point. (E) shows the landscape of the state space.
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are 1 and 2.1, and in Figure 17C, the steady states are around
the two values with the fluctuations. Whenwe set the ODEs
to be zero, we can find the fix points of the ODEs. In
Figure 17D, the red balls represent the steady state points
and the blue ball represents the saddle point. In theory, we
can start froman initial value to the SDEswith certain noise
and run after sufficient time to quantified the landscape as
Figure 17E. In other words, while the ODEs give the deter-
ministic trajectories and fixed points, the SDEs give the
weight of the state or the landscape of the state space. For
example, in the long time, ODEs give the fixed points with
probability being equal to one while other point with zero
probability. For SDEs, one fixed point has relatively higher
probability, but other points in state space also have
probability. It is in this sense that SDEs can give a global
description of the state changes since each state is assigned
to a different weight or probability. Be chose of this, the
states can be connected and the description is global. This
is the contrast with the ODEs case that there is no apparent
connections between fixed points and the stability analysis
is all local. Both the landscape and flux provide the driving
force for the network dynamics. The landscape provides a
global view of each functional states rather than limiting to
the local changes such as gene mutations [92, 93]. Barrier
heights and transition speed can be quantified to charac-
terize the stability of each states [85]. The higher barrier
heights can be used to infer the more stable state attractor
and more difficulty to escape. The dominant paths can be
used to quantified the actual process of state switch-
ing [94]. The regulations can influence the landscape
topography, and the landscape topography can determine
the stability of each state. Therefore, the global sensitivity
analysis can help to find out key genes and key regulations
whichmost likely influence the landscape topography. The
landscape models can provide visualization and global
quantification for analyzing different gene regulatory
network at both the genetic and epigenetic levels.

Discussion

In this review, we reviewed several methods of machine
learning which are widely used on cancer prediction/
prognosis. The advantages and disadvantages of certain
classical methods are summarized and related applica-
tions are given to help beginners to understand the appli-
cation scenarios and the basic methods of the models. The
core functions of the models are also introduced in this
review which can help to understand the key ideas of the
algorithm and its development in related fields. When one
aims to predict cancer susceptibility, recurrence, survival

etc., the data mining and machine learning algorithms can
be applied to large data analysis. When and which algo-
rithm should be chose is determined by the nature and
quality of data, the specific problem for analysis and the
kind of the output one aims. We reviewed some applica-
tions on cancer studies which focused on the development
of predictivemodels. Thesemodels can help on cancer data
classification and prediction. Most of the studies applied
more than one algorithm to improve the prediction accu-
racy. Adding a priori information can also help to improve
the predictive accuracy of themodels. The datamining and
machine learning methods have become a useful tool on
diagnosis and treatment.

Then we discussed several computational approaches
which are commonly used on gene regulatory networks
identifications. Table 2 compared the advantages and dis-
advantages for each mentioned approach. When one aims
to build an undirected gene regulatory network, one can
use the Correlation method. This method can process large
scale dataset as the low consumption of computing re-
sources.When one aims to build a gene regulatory network
with regulatory directions and enable to detect linear and
non-linear interactions, one can use regression methods.
This methods can also process large scale dataset. Simple
Bayesian methods can build gene regulatory network with
regulatory directions and handle logical interaction com-
ponents with a small number of variables. When one used
simple Bayesian methods, the prior knowledge are often
integrated to strengthen the relationship between nodes.
When one aims to build a gene regulatory network with
with regulatory directions and feed-back loops, one can
use the dynamical Bayesianmethods. The input data of the
dynamical Bayesian methods should be time series data. If
there are missing values in the data, this will restrict the
performance of dynamical Bayesian. Therefor, the data
preprocessing, such as noise reduction, is very important
for dynamical Bayesianmethod. The networks constructed
by dynamical Bayesian are often small size networks.

At last, we introduced dynamics methods through
ODEs and SDEs to study cancer using gene regulatory
network. Both the twomethods can be used to describe the
network dynamics. The ODE methods can be used to
analyze the stability of different regions by calculating the
deterministic trajectory and the steady states of the system.
Unlike the ODEs, SDEs introduce an additional stochastic
force to describe the fluctuations of the system. While the
SDEs methods can characterize the global stability of the
system through the stochastic trajectories and the associ-
ated probability evolution of the system. These two
methods are both suitable for analyzing the non-linear
dynamics of gene regulatory networks.
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There is no doubt that the data mining and machine
learning technology can help to solve massive data anal-
ysis problems, it is still essential to discuss the limitations
of these technologies. A major limitation of data mining
and machine learning technology is that it is hard to
explain how and why these algorithms make their con-
clusions. For example, ANNs can be seen as a black box
which takes the inputs and produces outputs with no
explanation of how it comes to the conclusions. Moreover,
the accuracy of the results depends on the quality of the
input data. ‘Garbage in, garbage out.’ is a very vivid illus-
tration of the problem. If the input data are very poor, the
output predictions will be inaccurate. DBNs’ input data
often need to have time series. As the experimental data are
often pseudo time series data. Since the real time data are
some times challenge to obtain (Gene expression has a
high dimensional data structure, so dimensionality
reduction is needed in the segmentation process. Time
series are usually defined in terms of experimental in-
tervals or artificially. These time series may not have
logical links between the time points due to nature
RNA-seq, for example, the cells at one time point mea-
surement will not continue to bemeasured in the next time
point. After dimensionality reduction and artificial time
order, the data becomes pseudo time serials data), it is also
crucial to consider the bias in the algorithms which are
used to process these data. This limitation reinforces the
prediction results of the algorithms. The data mining and
machine learning can be a useful tool to supplement
diagnosis and treatment, but it should not replace de-
cisions based on clinical evidence. On the other hand, the
dynamics methods used ODEs or SDEs to describe the
biological process, the ‘black-box’ can be avoided. How-
ever, a simple biological process often requires many
dynamical variables and associated equations to describe.
Therefore, the analyzed systems are often very small or
only limited for a motif. In recent years, this problem has
been improved with the rise of parallel computing, but it
will still take efforts to solve practical medical problems
accurately and completely.

The success of data mining and machine learning
technology in practice not only depend on the develop-
ment of the new methods but also crucially rely on the
experts or researchers to preprocess data, select or
construct appropriate features or models, and evaluate the
model with regard to the generalization, model accuracy,
and risk profiles. The complexity of those mentioned can
be challenging which we need to make progress in the
future.
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