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There were obvious differences in biological behavior and prognosis between low- and
high-grade gliomas, it is of great importance for clinicians to make a right judgement for
preoperative grading. We conducted a comprehensive meta-analysis to evaluate the clini-
cal utility of arterial spin labeling for preoperative grading. We searched the PubMed, Em-
base, China National Knowledge Infrastructure, and Weipu electronic databases for arti-
cles published through 10 November 2017 and used ‘arterial spin-labeling’ or ‘ASL per-
fusion, grading’ or ‘differentiation, glioma’ or ‘glial tumor, diagnostic test’ as the search
terms. A manual search of relevant original and review articles was performed to identify
additional studies. The meta-analysis included nine studies. No obvious heterogeneity was
found in the data in a fixed-effect model. The pooled sensitivity and specificity were 90%
(95% confidence interval (Cl): 0.84-0.94) and 91% (95% CI: 0.83-0.96), respectively, and the
pooled positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were 10.40 (95%
Cl: 2.21-20.77) and 0.11 (95% CI: 0.07-0.18). The diagnostic odds ratio (DOR) was 92.47
(95% Cl: 39.61-215.92). The diagnostic score was 4.53 (95% Cl: 3.68-5.38). The area un-
der the curve (AUC) was 0.94 (95% CI: 0.91-0.96). Subgroup analyses did not change the
pooled results. No publication bias was found (P=0.102). The normalized maximal tumor
blood flow/normal white matter ratio obtained with the arterial spin labeling technique was
relatively accurate for distinguishing high/low-grade glioma. As a non-invasive procedure
with favorable repeatability, this index may be useful for clinical diagnostics.

Introduction

A glioma is a neuroepithelial tumor with glial cell phenotypic characteristics. Gliomas are the most com-
mon primary intracranial tumors in adults [1] and account for ~30% of all central nervous system tumors
and 80% of malignant brain tumors [2]. The incidence of glioma is increasing gradually amongst the el-
derly population [3]. Because of the large differences in biological behavior and prognosis between low-
and high-grade gliomas, it is important that clinicians accurately assess the preoperative grade, as this is in
turn important when selecting the surgery type and for predicting the treatment outcome [4,5]. Magnetic
resonance perfusion imaging is one of the most common method used for tumor grading [6,7]. Arte-
rial spin labeling, which uses water molecules as an endogenous tracer, is a non-invasive procedure with
favorable repeatability [8]. This technology has been drawing increasing attention in clinical practice. Sev-
eral studies have reported on the application of arterial spin labeling to glioma grading [9-12]. Individual
studies have some limitations because of small sample sizes and the pathology pattern, and thus cannot
fully delineate the diagnostic value of arterial spin labeling. Until now, no relevant meta-analysis has been
reported. Therefore, we conducted a comprehensive analysis to evaluate the clinical utility of arterial spin
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labeling for preoperative glioma grading using the normalized tumor blood flow (nTBF; maximal tumor blood
flow/normal white matter). Our results provide important diagnostic guidance for clinical practice.

Materials and methods

Search strategy

We conducted this meta-analysis based on an observational epidemiological protocol (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Checklist, Research Checklist). We searched the PubMed, Embase, Web of
Science, China National Knowledge Infrastructure, Wanfang, and Weipu electronic databases for articles published
through 30 April 2018 and used ‘arterial spin-labeling’” or ‘ASL perfusion, grading’ or ‘differentiation, glioma’ or ‘glial
tumor, diagnostic test’ as the search terms. A manual search of relevant original and review articles was performed to
identify additional studies. Our inclusion criteria were based on the study topic, design, participant characteristics,
exposure, control, and reported outcomes. We restricted the language of publication to Chinese and English. The
search strategy is presented in Supplementary material.

Selection criteria

All included studies met the following criteria: (i) differentiation between low- and high-grade gliomas using arterial
spin labeling; (ii) all patients confirmed pathologically; (iii) patients did not receive chemoradiotherapy; (iv) inclu-
sion of data on the true-positive (TP), false-positive (FP), false-negative (FN), and true-negative (TN) rates; and (v)
published in English or Chinese. Duplicates, reviews, comments, and animal experiments were excluded.

Data extraction and assessment of quality

For each study, the following information was extracted: author, year of publication, sample size, age, male/female
ratio, tumor stage (low or high), machine type, and method. Two investigators extracted the data independently and
disputes were settled by negotiation. We used the updated Quality Assessment of Diagnostic Accuracy Studies 2
(QUADAS-2) to assess the quality of the selected studies [13]. This tool comprises four main parts: patient selection,
index test, reference standard and patient flow, and timing of the index tests, and reference standard. The signaling
questions were answered as ‘yes, 1o, or ‘unclear, and are phrased such that ‘no’ denoted a high risk of bias, ‘yes’
indicated a low risk of bias, and ‘unclear’ indicated an unclear risk of bias.

Statistical analysis

The heterogeneity of the threshold effect was evaluated using the Spearman test [14]. The heterogeneity amongst
studies was assessed using Cochran’s Q and the I? statistic; I > 50% and P<0.05, respectively, indicated significant
heterogeneity [15,16]. The following data were pooled: sensitivity, specificity, positive likelihood ratio (PLR), nega-
tive likelihood ratio (NLR), diagnostic odds ratio (DOR), and the summary area under the curve (AUC) (and their
confidence intervals; CI). An AUC of 1.0 means perfect diagnostic ability, while an AUC close to 0.5 indicates poor
diagnostic ability. We used a linear regression analysis to examine publication bias [17]. Subgroup analyses were con-
ducted according to machine type and method. All analyses were conducted using Stata 14.0 (StataCorp LP, College
Station, TX, U.S.A.). P<0.05 indicated statistical significance.

Results

Literature search

Figure 1 outlines the study selection process. We obtained 416 records in the initial database search, from which 202
duplicates were removed. After screening, 168 records were excluded for different reasons and 46 potentially eligible
studies were identified. After scanning the full text, 37 studies were excluded for the following reasons: unrelated
to diagnostic value (n=4), insufficient data (n=8), duplicates (n=10), cases only (n=8), and reviews, comments, or
letters (n=7). Ultimately, the meta-analysis included nine studies [11,12,18-24]. A manual search of the references
listed in the following studies did not return any additional potential studies.

Study characteristics and quality assessment

Table 1 shows the general characteristics of the included studies. The nine studies included 339 glioma patients (142
low-grade and 197 high-grade gliomas). The following studies were published from 2011 to 2016. The mean and
median patient ages were more than 40 years, and there were 182 males and 157 females. All studies were conducted
in the Asian-Pacific region. One study used a Siemens 3.0 T scanner, seven used a GE 3.0 T, and one used a GE 1.5 T.
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Table 1 General characteristics of included studies in the meta-analysis
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Year of Tumor stage
Author publication = Sample size Age Male/female (low/high) Machine Methods Gold standard
Wang 2011 31 42.9 16/15 12/19 Seimens 3.0T PASL Pathology
Qiao 2015 28 50 21/7 1117 GE 3.0T 3D PCASL Pathology
Wang 2016 37 41 - 14/23 GE 3.0T 3D PCASL Pathology
Liao 2016 41 47 23/18 20/21 GE 3.0T 3D PCASL Pathology
Tian 2015 45 40.3 25/20 19/26 GE 3.0T 3D PCASL Pathology
Zheng 2014 21 42.7 13/8 5/16 GE 3.0T PASL Pathology
Jiang 2014 23 54 12/11 10/13 GE 3.0T PASL Pathology
Kim 2008 61 43 26/32 26/35 GE 1.5T PASL Pathology
Shen 2016 52 - - 25/27 GE 3.0T 3D PCASL Pathology
Abbreviation: PCASL, pulsed continuous arterial spin labeling
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Figure 2. Forest plot of pooled sensitivity of arterial spin labeling for preoperative grading of glioma

Five studies used 3D pseudo-continuous arterial spin labeling and four used the pulsed arterial spin labeling (PASL)
method. All patients and glioma grades were confirmed pathologically. All the included studies received moderately
high scores in the QUADAS-2 quality assessment. The included studies were relatively good in terms of patient se-
lection, index test, reference standard, and patient flow and timing of the index tests, and reference standard. The
quality assessment is presented in Supplementary Figures S1 and S2.

Diagnostic accuracy: pooled results

Spearman’s correlation showed that there was no heterogeneity caused by a threshold effect (r = 0.496, P=0.175).
Cochran’s Q showed no obvious heterogeneity in the meta-analysis data in a fixed-effect model. The pooled sensitivity
and specificity were 90% (95% CI: 0.84-0.94, Figure 2) and 91% (95% CI: 0.83-0.96, Figure 3), respectively. The
I? of heterogeneity for the sensitivity and specificity was 0.0 and 49.1% (P=0.770 and P=0.050, respectively). The
pooled PLR and NLR were 10.40 (95% CI: 2.21-20.77) and 0.11 (95% CI: 0.07-0.18), respectively. The DOR was 92.47
(95% CI: 39.61-215.92). The diagnostic score was 4.53 (95% CI: 3.68-5.38). Figure 4 shows the summary receiver
operating characteristic (SROC) curve for nTBF (AUC = 0.94, 95% CI: 0.91-0.96, Figure 4). Figure 5 shows Fagan’s
nomogram and indicates that the post-test probability was 72% if the pre-test probability was 20%. Subgroup analyses
were conducted according to the machine type and method. For machines, the pooled sensitivity was 89% (95% CI:
83-93%) and the specificity was 92% (95% CI: 83-96%). The pooled PLR and NLR were 11.01 (95% CI: 5.19-23.32)
and 0.12 (95% CI: 0.08-0.19), respectively. The DOR was 37.09 (95% CI: 21.37-64.36). The pooled AUC was 0.93
(95% CI: 0.91-0.95). For 3D pulsed continuous arterial spin labeling (PCASL), the sensitivity, specificity, PLR, NLR,
and DOR were 90% (95% CI: 82-94%), 94% (95% CI: 87-98%), 16.11 (95% CI: 6.86-37.84), 0.11 (95% CI: 0.07-0.19),
and 144.50 (95% CI: 48.96-426.46), respectively. The AUC was 0.97 (95% CI: 0.95-0.98). For PASL, the sensitivity,
specificity, PLR, NLR, and DOR were 91% (95% CI: 80-96%), 84% (95% CI: 60-95%), 5.66 (95% CI: 2.06-15.53),
0.11 (95% CI: 0.05-0.25), and 51.41 (95% CI: 14.20-186.08), respectively. The AUC was 0.94 (95% CI: 0.92-0.96).

Publication bias

We used linear regression to evaluate the publication bias. As shown in Figure 6, the P-value of the slope coefficient
for publication bias was 0.102. We also used the trim and fill method to assess the publication bias. The trim and
fill method has been presented in Figure 7. According to the results, only two studies were needed for symmetry of
funnel plot. No significant difference was observed for pooled effect size (before trim and filled: fixed: 4.58 (95% CI:
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Figure 3. Forest plot of pooled specificity of arterial spin labeling for preoperative grading of glioma
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Figure 4. The symmetric receiver operating characteristic curve of arterial spin labeling for preoperative grading of glioma

3.53-5.63); random: 4.58 (95% CI: 3.53-5.63)), and after filled: fixed: 4.30 (95% CI: 3.53-5.25); random: 4.30 (95%
CI: 3.53-5.25). No publication bias was found and our results were stable.

Discussion

Our results indicated that the normalized maximal tumor blood flow/normal white matter ratio determined using
arterial spin labeling aids in the pathology grading of gliomas (AUC = 0.94). The nTBF showed high sensitivity (90%)
and specificity (91%). These results indicate that nTBF is a useful diagnostic index for grading gliomas, especially as

high or low grade.

(© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).

«. 2 PORTLAND
09 press



K ° PORTLAND Bioscience Reports (2018) 38 BSR20180507
® PRESS

(X https://doi.org/10.1042/BSR20180507
Fagan's Nomogram
0171 799.9
02+ 199.8
031 199.7
051 199.5
0.7+ +99.3
1+ 99
Likelihood Ratio
21 198
4 1560° Lo
51 T 195
7t T %88 193
< 107 119 190 <
= - 120 1
2 209 R R 80 %‘
Z 30t 15 T70 3
T 40% 12 160 8
S 501 1 150 9
o 60t 10.5 140 %
g ol 18 [ &
o 10.05 "g
& gof 1992 110 o
93+ 10.005 17
957 10.002 13
97 + -0.001 23
981 12
gggg" L 4 Prior Prob (%)= 20 1 {1) ,
BT LR_Positive = T0.
99571 |~ Post_Prob_Pos (%) =72 | 105
ool . LR_Negative = 0.11 193
N Post_Prob_Neg (%)= 3 :
999+ +041
Figure 5. Fagan diagram evaluating the overall diagnostic value arterial spin labeling for preoperative grading of glioma (if
the pretest probability is 20% for a patient, the post-test probability will be 72% with a PLR of 10)
g _ Log Odds Ratio versus 1/sqrt(Effective Sample Size){Deeks)
° Study
___ _ _ PRegression
® Line
~ °
2 o T °
5 — .
- — -
o
9
@ °
=
e
8
010 0.5 1‘rr00t(ESS) 020 025
Figure 6. Line regression plot of publication bias
The treatment strategy and clinical prognosis differ markedly amongst different grades of glioma. Therefore, accu-
rate assessment of the grade of glioma is important for the treatment plan, which may include surgery, postoperative
radiotherapy, and chemotherapy [25]. Routine examination of asymptomatic patients includes computed tomogra-
phy (CT) and MRI. Head CT is used to determine whether there is an initial intracranial space and MRI shows the
characteristics and properties of a glioma better than CT. Consequently, MRI has become the preferred method for
6 (©) 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Filled funnel plot of publication bias

evaluating gliomas. However, preoperative grading of a glioma often relies only on conventional MRI, which is fre-
quently insufficient [26]. The degree of malignancy of a tumor is closely related to the microvessel structure and
tumor cell proliferation. Therefore, it is important to evaluate angiogenesis in a glioma to determine the degree of
malignancy. Because gliomas have rich vascularity, their vascular structure differs significantly from that of normal
brain tissue, in terms of both the intrinsic cerebrovascular structure and neovascularization. The new blood vessels of
a glioma are characterized by high density, severe distortion, and non-uniform vascular diameter. Therefore, the de-
gree of neovascularization is an important indicator of the glioma grade, which provides a theoretical basis for using
perfusion-weighted imaging (PWI) for the diagnosis and classification of gliomas. Current perfusion techniques using
tracer contrast agents proceed as follows: (i) intravenous rapid injection of an exogenous contrast agent, T1-weighted
dynamic contrast-enhanced MRI (DCE-MRI), and evaluation of the effects of lateral relaxation on T2*/T2-weighted
dynamic susceptibility contrast PWI (DSC-PWI); and (ii) the use of protons in water as an endogenous tracer [27,28].
DSC-PWTI is now the most commonly applied MRI perfusion technique. In recent years, progress has been made with
respect to application of DSC-PWI to the pathological grading of gliomas. However, DSC-PWI and DCE-MRI require
high-pressure injection of an exogenous contrast agent, and the technician must determine the scanning time accu-
rately. Therefore, their use is limited in patients with severe renal insufficiency or allergies to contrast medium, and
in those who cannot co-operate with the examination. High-pressure syringes and contrast medium are expensive
and repeated examinations can be an economic burden for patients [29].

As a non-invasive perfusion technique, arterial spin labeling is more sensitive than traditional DSC-PWI. Arterial
spin labeling can be used to evaluate the microvascular distribution and tumor blood perfusion, both qualitatively
and quantitatively. Moreover, arterial spin labeling is not affected by the blood-brain barrier, and truly reflects the
degree of perfusion. Arterial spin labeling can be applied repeatedly in children and restless patients [30] and assesses
cerebral blood flow, which represents blood flow in a specific organ per unit. Tumor angiogenesis usually occurs
during tumor progression from low to high grade and is characterized by increased blood flow. Although tumor blood
flow is useful for grading gliomas, this index is affected by age and patient factors. Compared with direct tumor blood
flow, the blood flow/normal blood flow ratio and nTBF enable more accurate assessment [31]. The nTBF consists of
three indexes: maximal tumor blood flow/normal white matter, maximal tumor blood flow/normal gray matter, and
maximal tumor blood flow/normal hemisphere. We used the maximal tumor blood flow/normal gray matter ratio for
the assessments because the other two indexes were not available in the included studies. Our results indicated that
the diagnostic accuracy was sufficiently high [32]. The DOR is a parameter that combines sensitivity and specificity,
and ranges from zero to infinity; the higher the value, the better the discriminatory ability [33,34]. The pooled DOR
was 92.47 (39.61-215.92), indicating that the overall accuracy was relatively high. The PLR and NLR represent the
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diagnostic ability in clinical practice. A PLR > 10 and NLR < 0.1 denote high accuracy [35]. We found that the pooled
PLR was 10.40 and the pooled NLR was 0.11, indicating high clinical diagnostic ability.

The major strength of this meta-analysis was as follows: first, we realized that the heterogeneity may be high
amongst the studies. That is why we first conducted a threshold effect test. The Spearman’s test indicated that there is
no threshold effect within studies (r = 0.496, P=0.175), which means the heterogeneity with studies is not induced
by the threshold effect. Moreover, the heterogeneity for sensitivity was 0.00%, and the specificity showed a moderate
heterogeneity (49.1%). This is under the range of control. We used the random-effects model to conduct such combi-
nation. We conducted sensitivity analyses through sequentially excluding certain studies, and the summary sensitivity
and specificity, PLR, NLR, and SROC were altered, indicating that the present pools estimated were stable. We fol-
lowed the PRISMA guidelines and the recommendations of the Cochrane collaboration. However, our meta-analysis
also had some limitations. First, we searched only four online databases and some unpublished data may exist. Sec-
ond, the included studies had small sample sizes, although a meta-analysis is more powerful than an individual study.
Third, other indexes of arterial spin labeling were not evaluated, such as the maximal tumor blood flow/normal gray
matter and maximal tumor blood flow/normal hemisphere ratios, because these data were not present in the included
studies. Finally, the included studies were of Asian populations, and other populations should be examined.

In conclusion, the normalized maximal tumor blood flow/normal white matter ratio determined using arterial
spin labeling is relatively accurate for distinguishing high- from low-grade glioma. As a non-invasive procedure with
favorable repeatability, this index may prove useful in clinical diagnostics.
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