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ABSTRACT

The identity and functions of specialized cell types
are dependent on the complex interplay between sig-
naling and transcriptional networks. Recently single-
cell technologies have been developed that enable
simultaneous quantitative analysis of cell-surface
receptor expression with transcriptional states. To
date, these datasets have not been used to system-
atically develop cell-context-specific maps of the in-
terface between signaling and transcriptional regula-
tors orchestrating cellular identity and function. We
present SPaRTAN (Single-cell Proteomic and RNA
based Transcription factor Activity Network), a com-
putational method to link cell-surface receptors to
transcription factors (TFs) by exploiting cellular in-
dexing of transcriptomes and epitopes by sequenc-
ing (CITE-seq) datasets with cis-regulatory informa-
tion. SPaRTAN is applied to immune cell types in the
blood to predict the coupling of signaling receptors
with cell context-specific TFs. Selected predictions
are validated by prior knowledge and flow cytometry
analyses. SPaRTAN is then used to predict the sig-
naling coupled TF states of tumor infiltrating CD8+

T cells in malignant peritoneal and pleural mesothe-
liomas. SPaRTAN enhances the utility of CITE-seq
datasets to uncover TF and cell-surface receptor re-
lationships in diverse cellular states.

INTRODUCTION

The reciprocal interplay between complex signaling inputs
and transcriptional responses dictate the generation of dis-
tinct cell types and their specialized functions. Dysregula-
tion of this interplay leads to the development and progres-

sion of disease, most clearly delineated in the context of cer-
tain cancers, chronic infections and autoimmune diseases.
Understanding these dynamic programs at the single-cell
level represents a formidable challenge. Emerging single-
cell genomic technologies (1–4) provide a transformative
platform to characterize, in a comprehensive and unbiased
manner, the full range of cell types and their genomic pro-
gramming in health and disease.

The computational prediction of gene regulatory pro-
grams based on single-cell genomic datasets is a relatively
new field. There is still a large methodological gap be-
tween generating single-cell datasets and delineating cell-
specific regulatory programs orchestrating cellular iden-
tity and function. Early gene regulatory program infer-
ence methods use single-cell RNA-seq (scRNA-seq) data
alone or in combination with TF motifs in annotated pro-
moter regions (5–9). These methods primarily depend on
co-expression of TFs and their potential target genes (6)
and thus are not suitable for many TFs whose transcripts
are expressed at low levels or whose activities are post-
transcriptionally regulated. Moreover, co-expression may
not always imply co-regulation. With the recent availabil-
ity of single-cell epigenomic datasets, the tools of regula-
tory genomics are being applied to infer TFs associated
with accessible chromatin regions (10) at both promoter-
proximal as well as distal regions and in turn with gene ex-
pression (11). However, these approaches do not compre-
hensively consider the relationships between signaling sys-
tems (e.g. from proteomic data) and transcriptional states
of individual cells. Recent breakthroughs in single-cell ge-
nomics have linked single-cell gene expression data with
quantitative protein measurements using index sorting (12)
and barcoded antibodies (1,2), in particular cellular index-
ing of transcriptomes and epitopes by sequencing (CITE-seq)
(1). CITE-seq adds a step in which barcoded antibodies––a
second set of barcodes––are incubated with the single-cell
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suspension into droplet based scRNA-seq protocol. These
barcodes, which have polyA tails, are then linked to the
barcodes from beads at the same time mRNAs are linked.
Reads containing barcodes associated with each bead are
separated by cell. Then, reads that align to transcripts
are used to quantify mRNA levels while those from bar-
coded antibodies (antibody-derived tags (ADTs)) are used
to quantify protein levels. To date, the datasets generated
by this powerful platform have not been used to link the ex-
pression of cell surface proteins, for example, signaling re-
ceptors, with the activities of TFs and gene expression pro-
grams in individual cells.

Here, we describe a computational framework for ex-
ploiting single-cell proteomic (scADT-seq) and correspond-
ing single-cell transcriptomic (scRNA-seq) datasets, both
obtained using CITE-seq, to link expression of surface pro-
teins with inferred TF activities. Our framework, SPaRTAN
(Single-cell Proteomic and RNA based Transcription fac-
tor Activity Network), advances our prior algorithmic ap-
proach based on bulk tumor datasets (13–15). SPaRTAN
model views expression of surface proteins (ADT counts)
as a proxy of their activities; signaling emanating from these
proteins converges on particular TFs, whose activities, in
turn, regulate the expression of their target genes (Figure
1). More specifically, we use a regularized bilinear regres-
sion algorithm called affinity regression (AR) (16) to learn a
cell-type specific interaction matrix between upstream cell-
surface receptor proteins and downstream TFs that predicts
target gene expression. The trained SPaRTAN model can
then infer the TF activity given a cell’s surface protein ex-
pression profile or infer the cell-surface receptor expression
given a cell’s gene expression profile. We apply and experi-
mentally test SPaRTAN using CITE-seq datasets from pe-
ripheral blood mononuclear cells (PBMCs) and then illus-
trate its broader utility by predicting signaling coupled TF
activities in tumor infiltrating CD8+ T cells in the context
of malignant peritoneal and pleural mesothelioma.

MATERIALS AND METHODS

Data and preprocessing

CITE-seq data for 5k (Chemistry v3), 5k (Nextgen) PBMC
obtained from 10x Genomics website (Supplementary Ta-
ble S1). A total of ∼5000 cells from a healthy donor
were stained with 29 TotalSeq-B antibodies, including CD3,
CD4, CD8a, CD11b, CD14, CD15, CD16, CD19, CD20,
CD25, CD27, CD28, CD34, CD45RA, CD45RO, CD56,
CD62L, CD69, CD80, CD86, CD127, CD137, CD197,
CD274, CD278, CD335, PD-1, HLA-DR and TIGIT. Cell-
matched scRNA-seq data are available. To further evalu-
ate the validity of our method, we also generated an in-
house CITE-seq dataset of human malignant peritoneal
and pleural mesothelioma under IRB approval from the
University of Pittsburgh. Cells were stained with TotalSeq-
C from BioLegend and are prepared using the 10x Ge-
nomics platform with Gel Bead Kit V2 (as described
below). Forty-six surface markers are measured for ev-
ery cell: adt-CD274 (B7-H1, PD-L1), adt-CD273, adt-
CD30, adt-CD40, adt-CD56, adt-CD19, adt-CD14, adt-
CD11c, adt-CD117, adt-CD123, adt-CD194 (CCR4), adt-
CD4, adt-CD25, adt-CD279, adt-TIGIT, adt-CD20, adt-

CD195 (CCR5), adt-CD185 (CXCR5), adt-CD103 (Inte-
grin �E), adt-CD69, adt-CD62L, adt-CD197, adt-CD161,
adt-CD152 (CTLA-4), adt-CD223 (LAG-3), adt-CD27,
adt-CD95, adt-CD134 (OX40), adt-HLA-DR, adt-CD1c,
adt-CD11b, adt-CD141, adt-CD314, adt-CD66b, adt-
CD366, adt-CD278, adt-CD39, adt-KLRG1, adt-CD137,
adt-CD254, adt-CD357, adt-CD28, adt-CD38, adt-CD127
(IL-7R�), adt-CD15 and adt-TCRVdelta2.

Normalization and initial explanatory analysis of CITE-
seq datasets were performed using the Seurat R package
version 3.1.5 (17). During quality control, we excluded cells
with <300 and >5000 expressed genes, the latter to avoid
doublets. Antibody-derived tags (ADTs) for each cell were
normalized using a centered log ratio (CLR) transforma-
tion across cells. We performed log-normalization for all
scRNA-seq datasets using a size factor of 10,000 molecules
for each cell. Seurat ‘FindClusters’ was applied to the first
50 principal components, with the resolution parameter set
to 1. Cell labels were assigned using marker genes’ protein
and gene expression levels.

To construct the TF–target gene prior matrix, we down-
loaded a gene set resource containing TF target–gene in-
teractions from DoRothEA (18). Those interactions were
curated and collected from different types of evidence such
as literature curated resources, ChIP-seq peaks, TF bind-
ing site motifs, and interactions inferred directly from gene
expression. This TF–target gene prior matrix (D) defines a
candidate set of associations between TFs and target genes.
Further, we filtered TFs that were not expressed across all
cell-types. Processed data files have also been made available
at the supplementary website for the paper (see URLs).

Tissue processing of malignant mesothelioma

Tumor samples were washed in RPMI containing antibi-
otics such as amphotericin B and penicillin–streptomycin
for 30 min followed by mechanical and enzymatic digestion
and further passage via a 100 �m filter. Isolated tumor infil-
trating lymphocytes (TIL) were then washed in RPMI me-
dia twice, and stained with aforementioned TotalSeqC anti-
bodies, and CD45-PE, EpCAM, and cell viability dyes. Af-
ter washing, immune cells were sorted based on CD45 and
utilized for sequencing library preparation.

Simultaneous protein and transcriptomic single cell profiling
of malignant mesotheliomas via CITE-seq

Combined surface protein and mRNA expression single cell
analysis was performed using CITE-seq methodology as
previously described (1).

Generation of scRNAseq libraries: Live CD45+,
EpCAM– cells (i.e. all immune cells) and live EpCAM+

(tumor cells) were sorted from tumor tissue. Single-cell
libraries were generated utilizing the chromium single-cell
5′ Reagent (V2 chemistry). Briefly, sorted cells were re-
suspended in PBS (0.04% BSA; Sigma) and then loaded
into the 10× Controller for droplet generation, targeting
recovery of 5000 cells per sample. Cells were then lysed and
reverse transcription was performed within the droplets
and cDNA was isolated and amplified in bulk with 12
cycles of PCR. Amplified libraries were then size selected
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Figure 1. Integrative computational model linking cell-surface receptors to transcriptional regulators––application to peripheral blood mononuclear
cells (PBMC). (A) Our integrative model (SPaRTAN, Single-cell Proteomic and RNA based Transcription factor Activity Network) utilizes single-cell
multi-omics data from cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) datasets and infers the flow of information from cell-
surface receptors to transcription factors (TFs) to target genes by learning interactions between cell surface receptors and TFs that best predict target gene
expression. (B) SPaRTAN trains on mRNA and surface protein expression data from a set of cells, along with curated TF target-gene interactions, to learn
a model that links upstream signaling to downstream transcriptional response. Specifically, the algorithm learns a weight matrix W between cell-surface
proteins and TFs that predicts gene expression (Y) from cell-specific surface protein levels (P) and TF target-gene interactions (D) by solving the bilinear
regression problem shown. (C) Using the trained interaction matrix (W), one can predict TF activities from the cell surface protein expression profile, or
protein activities from the cellular mRNA expression data and the TF-target gene hit matrix.

utilizing SPRIselect beads, and adapters were ligated
followed by sample indices. After another round of SPRIs-
elect purification, a KAPA DNA Quantification PCR
determined the concentration of libraries. The supernatant
after first SPRIselect beads, containing ADTs, was used to
generate an ADT library.

Sequencing of single-cell libraries: Libraries were diluted
to 2nM and pooled for sequencing by NextSeq500/550

high-output v2 kits (UPMC Genomic Center) for 150 cycles
(parameters: Read 1: 26 cycles; i7 index: 8 cycles, Read 2: 98
cycles). The prepared assay is subsequently sequenced on a
NextSeq500/550 with a depth of 50K reads per cell. Raw
sequence data were processed via CellRanger 3.0 (10× Ge-
nomics) and aligned to GRCh38 to generate UMI matrix
for the downstream analysis. Cell barcodes with fewer than
3 UMI counts in 1% of cells were removed.
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Training cell-type specific SPaRTAN models

We trained cell-type specific SPaRTAN models using an
affinity regression (AR) algorithm for efficiently solving
a regularized bilinear regression problem (13,16), defined
here as follows. For a data set of M cells profiled using
scRNA-seq across N genes, we let Y ∈ RNxM be the log-
normalized gene expression matrix where each column of Y
corresponds to a cell. We defined each gene’s TF attributes
in a matrix D ∈ RNxQ, where each row represents a gene
and each column is a binary vector representing the target
genes of a TF. We used curated TF target-gene interactions
(D) (18) to determine the set of TFs that potentially regulate
each gene. We defined the cell surface protein attributes of
cells as a matrix P ∈ RMxS where each row represents a cell
and each column represents log-normalized surface protein
expression profile for the cell based on scADT-seq. To im-
prove computational stability, columns of P, Y and D were
all normalized to have a unit norm before training. Next,
we set up a bilinear regression problem to learn the weight
(interaction) matrix W ∈ RQxS between TFs and cell surface
proteins that predicts TF-target gene expression by

DWPT ∼ Y. (1)

An illustration of the model is given in Figure 1B. To find
the optimal solution of the Equation (1) that has the mini-
mal residual, one can solve the following optimization prob-
lem:

argminW‖DWPT − Y‖2
2 (2)

where D, P and Y are known. For the ease of computation,
we transformed the system to an equivalent linear system
of equations by reformulating the matrix products as Kro-
necker products:

DWPT ≈ Y ⇔ (P ⊗ D)vec (W) ≈ vec (Y) (3)

where ⊗ is a Kronecker product, and vec(.) is a vector-
izing operator that stacks a matrix and produces a vector,
yielding a standard (large-scale) regression problem. Since
the number of samples (cells) and features (genes) is large,
we reduced Equation (3) to a smaller system of equations
by left-multiplication of by YT:

YTDWPT ≈ YTY ⇔ (P ⊗ YTD)vec (W) ≈ vec(YTY) (4)

and the corresponding unregularized optimization prob-
lem has form below:

argminW
(‖vec

(
YTY

) − P ⊗ YTD
)
vec (W)‖2

2 (5)

The multiplication in Equation (4) creates a new output
space as products YTY, which effectively measures the dis-
tance between the gene expression profiles of all pairs of
cells. Pelossof et al. (16) has shown this compressed affinity
regression reduces a large-scale problem to a very compact
approximate problem and effectively learns a model W that
predicts the similarity between any pairs of samples.

To avoid overfitting, we added additional regularizes to
Equation (5):

argminW
(‖vec

(
YTY

) − P ⊗ YTD)vec (W)‖2
2

+ λ2‖W‖2
2 + λ1‖W‖1

)
(6)

We further reduced the dimension for larger CITE-seq
datasets by subjecting the feature matrix P to singular value
decomposition prior to training. Full details and a deriva-
tion of the reduced optimization problem are provided else-
where (16). We fit the elastic-net regression model using the
SLEP MATLAB package and evaluated performance with
5-fold cross-validation.

We used the trained W to obtain different views of a
CITE-seq data set: to infer the TF activities in each cell,
we right-multiply the surface protein expression profiles
through the model by WPT; to infer protein activities in
each cell, we left-multiply the gene expression profile and
TF target-gene interaction matrix through the model by
YTDW (Figure 1C). We refer to these operations as ‘map-
pings’ onto the TF space and the surface protein space, re-
spectively.

Significance analysis for TF activities

To assess the statistical significance of the inferred TF ac-
tivities obtained from the model via the WPT mapping, we
developed an empirical null model as follows. First, we gen-
erated random permutations of the gene expression pro-
files Y for each cell type. For each permuted Y response
matrix, we trained an AR model using true D and P in-
put matrices and computed the corresponding inferred TF
activities via the WPT mapping. Using this permutation
and model fitting procedure 5000 times, we generated an
empirical null model for activity distribution for each cell.
To identify significant TF activities, we assessed the nom-
inal P-value for each cell relative to the empirical null
model for the particular regulator TF, and we corrected for
multiple hypothesis testing of non-independent hypothe-
ses using the Bonferroni correction procedure. Then, we
reported the significant regulators using an adjusted P-
value of 0.15. We calculated, for each TF regulator, the
frequency over samples where the regulator passed its sig-
nificant threshold for a given cell type. We used this ap-
proach to identify significant TF regulators in each cell
type to identify the shared and cell type-specific roles
TFs.

Pathway analysis

We obtained pathway annotations from MSigDB (19)
(c2.all.v7.1.symbols.gmt). This collection is curated from
various sources, including online pathway databases
(e.g. canonical pathways from BIOCARTA, KEGG, PID,
REACTOME and WikiPathways) and the biomedical
literature. Using these reference pathway annotations, we
constructed a pathway co-occurrence matrix between TFs
and surface proteins. For cell-type, we filled a two-way con-
tingency table, with rows representing TF-surface protein
pairs that are present in at least one pathway or absent in
all pathways based on our pathway co-occurrence matrix,
and the columns representing TF-surface protein pairs
that are correlated (absolute value of correlation >0.4) or
not correlated (absolute value of correlation <0.2). Then
we performed enrichment analysis using hypergeometric
test based on this contingency table and calculated a
P-value.
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Clustering cells

Hierarchical clustering of surface protein expression and
SPaRTAN-predicted TF activities was performed us-
ing pvclust (2.2–0) (20), and command pvclust (data,
nboot = 1000, method.hclust = ‘ward.D2’, method.dist =
‘correlation’). To identify sub-clusters, we initially split the
dendrogram into 10 groups and performed differential pro-
tein expression analysis between cells in a given group vs.
those in all other groups using Wilcoxon signed rank test
for each surface protein and we corrected for multiple hy-
potheses across surface proteins. We repeated the process
and decreased group size until all clusters had at least two
differential surface protein (FDR < 0.05) compared to all
other clusters.

Running SCENIC

SCENIC (6) is a computational framework that predicts
TF activities from scRNA-seq data. We inferred cell-
specific TF activities using the SCENIC (R implementation
(1.1.2)). We used the cis-regulatory DNA-motif database
(hg19-500 bp-upstream-7species.mc9nr.feather, from https:
//resources.aertslab.org/cistarget/) with default parameters.
We computed correlation between SCENIC inferred TF ac-
tivities and surface protein expression for each cell-type and
performed pathway enrichment analysis as outlined above.

Flow Cytometry validation

Single cell suspensions were stained with antibodies against
surface proteins (list of ab markers and clone; Supplemen-
tary Table S3) for 30 min at 4◦C. Dead cells were discrim-
inated by staining with Fixable Viability Dye (eBioscience)
in PBS. The cells were washed, and fixed, and permeabi-
lized) for 1 h followed by two wash steps with permeabi-
lization buffer (eBioscience). Then, intracellular staining of
transcription factors was conducted for 30 min at 4◦C. Flow
cytometry analysis was performed by using a Fortessa II
(BD Bioscience). Flow cytometric data analyses were per-
formed with FlowJo (Tree Star).

Immunohistochemistry

The population considered for this study consisted of two
patients diagnosed with MPeM. These FFPE MPeM sur-
gical specimens were obtained from the National Mesothe-
lioma Virtual Bank (NMVB). The slides are deparaffinized
at 60ºC for 30 min and rehydrated using a standard his-
tology protocol. Antigen retrieval was performed using
an EDTA buffer (#14747, Cell Signaling, Danvers, MA)
in Decloaking chamber at 120◦C for 2 min. The slides
were stained using an Autostainer Plus (Agilent Dako)
platform with TBST rinse buffer (#9997, Cell Signaling).
The IHC slides were treated with 3% hydrogen peroxide for
5 min. The primary antibody, BCL-3 (Rabbit Polyclonal,
Proteintech Group, Rosemont, IL) was applied using a di-
lution of 1:100, at room temperature for 45 min. The de-
tection applied, consisted of SignalStain Boost HRP Rab-
bit (Cell Signaling) for 30 minutes at room temperature.
The substrate, 3,3-diaminobenzidine + (# K3468, Agilent

Dako), was applied for 8 minutes. The slides were then in-
cubated in Denature solution (Biocare Medical, Pacheco,
CA). Following that step, the second primary antibodies,
PD-1 (Mouse monoclonal, NAT105, Abcam, Cambridge,
MA) was applied at a dilution of 1:50 for 60 min was applied
at a dilution of 1:200 for 60 min. The secondary antibodies
were followed by Mach 2 Mouse AP (Biocare Medical) de-
tection and Mach 2 Rabbit AP (Biocare Medical), respec-
tively for 45 min. The second chromogen, Warp Red (Bio-
care Medical) was applied for 10 min. The slides were then
counterstained with Hematoxylin (#K8018, Agilent Dako).
Digital images of these slides (stained with 2 antibodies)
were scanned at 400× magnification on an Aperio AT2 (Le-
ica, Buffalo Grove, IL). After scanning, the third antibody,
CD8 (Rabbit monoclonal, SP16, Invitrogen, Carlsbad, CA)
was applied using a 1:100 dilution for 60 min at room temp.
The detection, Mach 2 Rabbit HRP (Biocare Medical) was
applied for 45 min at room temperature. The third chro-
mogen used was Vina Green (Biocare Medical) for 10 min.
Digital images of the final stained slides (stained with three
antibodies) were similarly generated as before.

Statistical analysis and visualization

Statistical tests were performed with the R 4.0.2 statistical
environment. For population comparisons of inferred TF
activities and surface protein expression, we performed two-
tailed Wilcoxon signed rank test and determined the direc-
tion of shifts by comparing the mean of two populations.
We corrected raw P-values for multiple hypothesis testing
based on two methods: Bonferroni and false discovery rate
(BH method).

Graphs were generated using RColor-Brewer (version:
1.1 2), ggplot2 (version: 3.3.3) and ComplexHeatmap (ver-
sion: 2.4.3), ggrepel (version: 0.9.1), circlize (version: 0.4.13)
packages. For general data analysis and manipulation,
dplyr (version: 1.0.7), matrixStats (version: 0.59.0) and
data.table (version: 1.14.0) were used.

RESULTS

SPaRTAN learns a cell-type specific interaction model for
cell-surface receptors and transcription factors

SPaRTAN integrates parallel single-cell proteomic and
transcriptomic data (based on CITE-seq) with cis-
regulatory information (e.g. TF:target–gene priors) for
predicting cell-specific TF activities and surface protein
expression for linking surface receptor signaling to down-
stream TFs (Figure 1A). Formally, we used an affinity
regression (AR) (16) algorithm, a general statistical frame-
work for any problem where the observed data can be
explained as interactions between two kinds of inputs,
to establish an interaction matrix (W) between surface
receptors/proteins (P) and TFs (D) that predicts target
gene expression (Y) (Figure 1B). To determine the set of
TFs that potentially regulate each gene (D), we utilized
curated TF target-gene interactions (18). We trained inde-
pendent SPaRTAN models for each cell type that explain
gene expression across cells (Y) in terms of surface protein
expression (P) and TF target-gene interactions (D) (see
Materials and Methods for details).

https://resources.aertslab.org/cistarget/
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We use the trained interaction matrix (W) to obtain dif-
ferent views of a CITE-seq data set; for example, to predict
TF activity from a cell’s surface protein expression profile
(WPT) or to predict surface protein expression from a cell’s
gene expression profile (YTDW) (Figure 1C). Intuitively, in-
formation flows down from observed surface protein levels
through the learned interaction matrix to infer TF activi-
ties and observed mRNA expression levels or propagates
up through the TF target-gene edges and interaction net-
work to infer surface protein expression. Importantly, we
use these predicted TF activities and surface protein expres-
sion to gain biological insights into different cell types and
states as described below.

To evaluate our approach, we first trained cell-type spe-
cific SPaRTAN models using an existing peripheral blood
mononuclear cells (PBMCs) CITE-seq dataset (Supple-
mental Table S1). Cell types were identified using both
protein and gene expression data, the latter with marker
genes (see Materials and Methods, Supplementary Figures
S1 and S2). For statistical evaluation, we computed the
mean Spearman correlation between predicted and mea-
sured gene expression profiles on held-out samples using 5-
fold cross-validation for each cell-type specific SPaRTAN
model using equal numbers of cells. We obtained signif-
icantly better performance than a nearest-neighbour ap-
proach (P < 0.001, one-sided Wilcoxon signed-rank test)
(Supplementary Figure S3A), where the training domain
that is most similar to each test example on the basis of sur-
face protein expression is considered the nearest neighbour,
and this neighbor’s gene expression is used for prediction
as shown in Figure 2A. We used Euclidean distance in the
surface protein profiles to identify the nearest neighbour.
We next evaluated the approach using an independently
generated PBMC CITE-seq dataset (see validation PBMC
dataset, Supplemental Table S1) and attained similar per-
formance results (Supplementary Figure S3B). We also used
the PBMC-trained SPaRTAN cell-type specific models, to
infer surface protein expression (YTDW) for each cell type
in training and validation CITE-seq PBMC data sets (see
Supplemental Table S1). For surface proteins whose Spear-
man correlations between measured and inferred activi-
ties were above 0.3 on training dataset, we found similarly
strong correlations between measured and predicted surface
protein levels on the validation CITE-seq data (Supplemen-
tary Figure S4).

SPaRTAN identifies cell type-specific TFs

Next, we used our approach to predict cell-type specific ac-
tivities of TFs (WPT) in PBMCs. To assess the statistical sig-
nificance of inferred TF activities, we developed an empir-
ical null model based on randomly permuted gene expres-
sion profiles for each cell-type (see Materials and Methods).
Then, we asked whether the value of individual TF activities
for each cell were significantly low or high relative to the cor-
responding distribution over permuted data. We corrected
for multiple hypotheses across TFs and identified signifi-
cant shared and cell-type specific TFs. Figure 2B shows the
fraction of cells per cell-type where each TF was identified
as a significant regulator; the representation encompasses
the top 8 most prevalent significant TFs for each indicated

cell type. Figure 2C and D show the inferred activity dis-
tribution of four TFs identified from our analysis: BACH1,
IRF8, GATA3 and SPI1 with overlay of CD19, CD56, CD4
and CD11b surface protein expression. These inferred TFs
are known regulators of several of the cell types within the
PBMCs including GATA3 (21) for naı̈ve CD4+ and CD8+

T cells; SPI1 (PU1) (22,23) for B, CD14+/CD16+ mono-
cytes and dendritic cells; BACH1 (24) for B, NK and CD 4
T cells; PRDM1 (BLIMP1) (25) for B, CD16+ monocytes
and T cells; IRF8 for monocytes (26). TFs involved in cel-
lular activation and proliferation like EGR1 and MYC were
shared across all cell types (Figure 2B). Importantly, in spite
of accurately inferring their activities we did not reliably de-
tect mRNAs for many cell-type-specific TFs, given their low
levels of transcript expression (Supplementary Figure S5).

SPaRTAN delineates cell type-specific TFs coupled with cell-
surface receptors

To explore the associations between inferred TF activities
and surface protein expression at a single-cell level, we first
computed Pearson correlation coefficients (PCC) between
(inferred) TF activity and surface protein expression for
each TF-surface protein pair within each cell-type. Figure
3A–C shows the two-way clustering of TFs and proteins
by these pairwise PCC in B, CD8+ and CD4+ T memory
cells (see Supplemental Figure S6 for other cell types). We
identified several novel as well as known TF-surface pro-
tein relationships for each cell type (e.g. EOMES-CD27
(27), STAT6-CD27 (28) STAT5-TIGIT (29), STAT3-ICOS
(CD278) (30–32), SMAD3-CD127, STAT1-CD127 (33,34)
in CD8+ T cells; STAT1/STAT4/STAT5-CD27 (35–37),
PRDM1-HLA-DR in B cells (38); SMAD5-ICOS (CD278)
(39), STAT5-CD27 (40), MEF2-PD1 (41) in CD4+ Mem-
ory T cells). We next evaluated the known pathway over-
lap between TF and surface proteins. Correlated pairs were
enriched for known pathways for most cell types (P < 10–3

by the hypergeometric test, minimum one overlapping path-
ways) compared to the SCENIC (6) which uses only single-
cell gene expression measurement for identification of cell-
type specific TF activities (Supplemental Table S2). Im-
portantly, the analysis suggests that cell-surface receptors
can couple with shared and context-dependent downstream
transcriptional regulators in different cell types (Figure
3D-F). For example, SPaRTAN-predicted FOSL2 activ-
ity was correlated with CD27 (member of the TNF re-
ceptor super family (42)) protein expression in B, CD8+

and CD4+ memory T cells. Recent studies have shown that
FOSL2 represses Treg development and controls autoim-
munity (43) and can also control autoreactive B cells in pa-
tients with Systemic lupus erythematosus (SLE) (44). More-
over, SPaRTAN-predicted STAT5A activity was highly cor-
related with CD27 protein expression in B and CD4+ mem-
ory T cells and with TIGIT (inhibitory immunoreceptor
targeted in antitumor immunotherapy (45)) protein expres-
sion in CD8+ T cells.

To directly test SPaRTAN predicted relationships be-
tween cell surface signaling proteins and TF activities in
specific cell types, we performed flow cytometry analy-
sis for select surface receptor-intracellular TF pairs using
PBMCs from healthy donors (Figure 3G–I, Supplementary
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A

B

C

D

Figure 2. SPaRTAN identifies cell-type specific TFs in peripheral blood mononuclear cells (PBMC). (A) SPaRTAN accurately predicts relative gene
expression on held-out PBMC (10× Genomics, Next GEM, training dataset) cells for each cell-type. Performance of the SPaRTAN models for each PBMC
cell type compared to nearest neighbor method. Boxplots showing mean Spearman correlations between predicted and actual gene expression using the
SPaRTAN model (light blue); nearest neighbor by surface protein expression profile (blue) (y-axis) for PBMC CITE-seq data from 10× Genomics (Next
GEM) each cell-type (P < 0.001, one-sided Wilcoxon signed-rank test). (B) Dot plot showing the median TF activity z-score of TFs across different cell
types. The dot size indicates a fraction of cells for which indicated TF is identified as a significant regulator within designated cell type. For clarity, the
union of the top 8 most prevalent significant TFs in each cell type-specific model is shown. (C) t-SNE on the inferred TF activity matrix. Cells are colored
according to major cell types. (D) BACH1, IRF8, GATA3, and SPI1 inferred TF activity and CD19, CD56, CD4 and CD11b protein expression overlay
on t-SNE of TF activities.
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Figure 3. Analysis of SPaRTAN inferred TF activities with cell surface receptor expression in PBMCs––validation with multiparameter flow cytometry.
Heatmap revealing correlations between inferred TF activities (rows) and surface protein expression (columns) in (A) B cells, (B) CD8+ T cells and (C)
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Figure S7). We selected TFs for testing of predictions based
on prior knowledge of their functional importance in a
given cellular context and the availability of validated anti-
bodies for flow cytometry. Consistent with our predictions
and in spite of the variation among individual donors, we
observed increased expression of FOSL2 (transcriptional
repressor) and decreased expression of NFKB in CD27+

CD8+ T and CD4+ memory T cell subsets compared with
their CD27− counterparts; increased expression of STAT5,
SMAD2 in CD27+ B cells compared with their CD27−
counterparts; increased expression of MYC and BCL6 in
CD25+ (IL-2 receptor) B cells compared with compared
with their CD27− counterparts; increased expression of
STAT5 and HIF1A in TIGIT+ CD8+ T cells compared
with their TIGIT− counterparts, and increased expression
of MEF2C and BACH2 in PD-1+ (inhibitory immunorecep-
tor (46)) CD4+ memory T cells compared with their PD-1–

counterparts. Importantly, these experimentally validated
relationships were not predicted by SCENIC (6) for identi-
fication of cell-type specific TF activities using only single-
cell gene expression measurements (Supplementary Figure
S8) as well as using only TF mRNA levels (Supplementary
Figure S9).

SPaRTAN identifies cell state specific TFs coupled with cell-
surface receptors

Next, we asked whether our method could be used to
analyze distinct cellular states within a given cell type.
Figure 4A shows the clustering of cells by cell surface
protein expression (excluding cell lineage marker sur-
face proteins), together with inferred TF activities for
the same cell ordering, as derived from the CD8+ T
cell model. Unsupervised clustering by the surface pro-
tein (ADT) expression profiles identified five major cellu-
lar states of CD8+ T cells. In particular, Cluster 1 was
distinguished by high expression for CD45RA and low
expression for CD45RO which is characteristic of naı̈ve
CD8+ T cells (47,48). Among the most significant differ-
ences in inferred TF activity associated with this cluster
were KLF13, FOSL1, USF2, FOXO3, ZEB1 and SMAD5
(FDR-corrected P < 10–5, t-test; Figure 4B). Cluster 2
was distinguished by cells with high expression of CD27
and CD127 which are characteristic of memory CD8+

T cells (49,50). Among the most significant differences
in inferred TF activity associated with this cluster were
RUNX1, SMAD3, and BCL11A (FDR-corrected P < 10–5,
t-test, Figure 4B).

We performed similar analyses for other cell types (Sup-
plementary Figures S10–S15). For example, unsupervised
clustering by surface protein expression identified five major
cellular states within the B cell compartment (Supplemen-

tary Figure S10). In particular, Cluster 2 was distinguished
by B cells with high expression of CD80 which is charac-
teristic of activated B cells (51). Among the most signifi-
cant differences in inferred TF activity associated with this
cluster were ARID3A, TFDP1 and TP63 (FDR-corrected
P < 10–5, t-test; (Supplementary Figure S10B). Cluster 3
was distinguished by B cells with high expression of CD34
and low expression of CD27 and CD80 which are charac-
teristics of naı̈ve B cells. Among the most significant dif-
ferences in inferred TF activity associated with this cluster
were TEAD1, RFX5, JUNB, PBX2, FOXO3 and HMBOX1
(FDR-corrected P < 10–5, t-test (Supplementary Figure
S10B). Moreover, Cluster 4 was distinguished by B cells
with high expression of CD28 and CD27 and low expres-
sion of CD20 which are characteristics of plasmablasts.
Among the most significant differences in inferred TF ac-
tivity associated with this cluster were MITF, STAT5A, and
FOS (52–54) (FDR-corrected P < 10–5, t-test, figure (Sup-
plementary Figure S10B)).

To illustrate the broader utility of our approach, as a
discovery platform, we applied it to the tumor microen-
vironments (TMEs) of malignant peritoneal (MPeM) and
pleural (MPM) mesothelioma. Malignant mesothelioma is
a rare and aggressive cancer, that has not previously sub-
jected to extensive single-cell profiling and computational
analyses. CITE-seq data sets for cells within these TMEs
were generated (Supplementary Figures S16 and S17) with
a focus on delineating the regulatory states of tumor in-
filtrating CD8+ T cells, given key role in immune surveil-
lance and their manifestation of activated effector or ex-
hausted cell states (55). Unsupervised clustering using cell
surface protein expression patterns identified five major
populations of MPeM CD8+ T cells (Figure 4D). We tested
for statistical differences in inferred TF activities and sur-
face protein expression in a given cluster vs. those in all
other clusters (Figure 4E). In particular, Cluster 1 was dis-
tinguished by MPeM CD8+ T cells with high expression
for checkpoint inhibitors PD-1, TIM3, and TIGIT which
are characteristic of exhausted MPeM CD8+ T cells (56).
Among the most significant differences in inferred TF ac-
tivities associated with this cluster were increased values for
TCF7 (57,58), STAT6, BCL3, and FOS (52–54,56) (FDR-
corrected P < 10–50, t-test), some of which have previously
been reported as TFs downstream of PD-1 (52–54,56–58)
(Figure 4E). Similarly, unsupervised clustering using cell
surface protein expression patterns identified five major
populations of MPM CD8+ T cells (Figure 4G). Cluster
4 was distinguished by MPM CD8+ T cells with high ex-
pression for checkpoint inhibitors PD-1, TIM3, and TIGIT
which is characteristic of exhausted MPM CD8+ T cells
(56). Similar to MPeM CD8+ T cells, among the most sig-

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CD4+ memory T cells. For clarity, surface proteins with Pearson’s correlation coefficient (PCC) values with TFs below 0.75 are filtered, and then the
union of the top 10 most correlated TFs with each surface protein is shown for each cell type. Representative sorted correlation plots between (D) CD27
(top) CD25 (bottom) protein expression and inferred TF activities across B cells; (E) CD27 (top) TIGIT (bottom) protein expression and inferred TF
activities across CD8+ T cells; (F) CD27 (top) PD-1 (bottom) protein expression and inferred TF activities across CD4+ memory T cells. (G–I) Validation
of predictions using flow cytometry analysis. Briefly, B, CD8+ and CD4+ memory T cells were isolated from peripheral blood (PBL) from healthy donors
(n = 9) and stained for indicated surface receptors and intracellular TFs. Paired analysis of TF expression was assessed on surface-protein+ and surface-
protein– cells. P-values are calculated using paired Wilcoxon signed rank test. Representative validation results are shown in each case with two TFs showing
high correlation and a control TF showing low correlation.
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Figure 4. SPaRTAN modeling and analysis of regulatory states of circulating and tumor infiltrating CD8 T cells. (A) SPaRTAN model trained on 319
CD8+ T cells from the 10x Genomics PBMC dataset. The top heat map shows cells clustered by the surface protein expression (excluding cell lineage
maker surface proteins) The bottom panel shows inferred TF activities for each cell based on clustering by surface protein expression. (B) Heatmap shows
the mean surface protein expression and inferred TF activity between cells in a given cluster versus those in all other clusters. For each comparison, the
absolute value of the mean surface protein expression and inferred TF activity (effect sizes) are ranked and the union of the top 20 TFs for each comparison
is shown in the heatmap. (C) Sorted correlation plots between PD1 (left) CD278 (ICOS) (right) protein expression and inferred TF activities across PBMC
CD8+ T cells. (D) We trained a SPaRTAN model on MPeM CD8+ T cells. The top heat map shows cells clustered by the surface protein expression
(excluding cell lineage maker surface proteins) The bottom panel shows TF activities for each cell based on clustering by surface protein expression. (E)
Heatmap shows the mean surface protein expression and inferred TF activity between cells in a given cluster vs. those in all other clusters. For each
comparison, the absolute value of the mean surface protein expression and inferred TF activity (effect sizes) are ranked and the union of the top 20 TFs for
each comparison is shown in the heatmap. (F) Sorted correlation plots between CD279 (PD1) (left) CD278 (ICOS) (right) protein expression and inferred
TF activities across MPeM CD8+ T cells. (G) SPaRTAN model trained on MPM CD8+ T cells. The top heat map shows cells clustered by the surface
protein expression (excluding cell lineage maker surface proteins) The bottom panel shows TF activities for each cell based on clustering by surface protein
expression. (H) Heatmap shows the mean surface protein expression and inferred TF activity between cells in a given cluster vs. those in all other clusters.
For each comparison, the absolute value of the mean surface protein expression and inferred TF activity (effect sizes) are ranked and the union of the top
20 TFs for each comparison is shown in the heatmap. (I) Sorted correlation plots between CD279 (PD1) (left) CD278 (ICOS) (right) protein expression
and inferred TF activities across MPM CD8+ T cells.

nificant differences in inferred TF activity associated with
this cluster was increased TCF7 (57,58) (FDR-corrected
P < 10–50, t-test) (Figure 4G and H).

Our analysis suggests that cell-surface receptors includ-
ing those targeted by checkpoint inhibitors in tumor im-
munotherapy (e.g. PD-1) or T-cell co-stimulatory molecules
(e.g. ICOS (inducible T-cell COStimulator (59)) can cou-

ple with common and context-dependent downstream TFs
within a given cell type but in different tissue contexts (Fig-
ure 4C,F,I). For example, SPaRTAN-predicted HIF1A ac-
tivity was correlated with PD-1 (CD-279) protein expres-
sion in PBMC, MePM and MPM CD8+ T cells (60,61).
Whereas, SPaRTAN-predicted CTCF, CREB3, NR2F6,
TCF7 (58) and STAT5B (62) activities were highly corre-
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lated with PD-1 protein expression in MPM and MPeM
CD8+ T cells. There were also novel TFs correlated with
PD-1 protein expression in CD8+ T cells only in one tissue
type, including FOS, MYC, RARA, CEBPB, TBP, BCL3,
SREBF1, GATA6, KLF5, ZHX2, TFAP4, NR2C2, MAF
(63) and ZNF217 for MPeM; MAFF, THAP11 and RFXAP
for MPM (Supplementary Figure S18, Table S4).

Most of the identified TFs lack prior reports of a link to
PD-1, making them potential candidates for follow-up stud-
ies. For example, SPaRTAN-predicted BCL3 activity was
correlated with PD-1 protein expression in MePM CD8+ T
cells. BCL3 induces survival and proliferation in cancer cells
(64). However, its role in CD8+ T cells as well as in other
immune cells has not been studied. To further explore PD-1
coupling with BCL3 in MPeM CD8+ T cells, we performed
immunohistochemistry on MPeM specimens. Indeed, we
found co-expression of PD-1 and BCL3 in MPeM CD8+

T cells at the protein level (Figure 5).

DISCUSSION

SPaRTAN is a generally applicable method for exploit-
ing parallel single-cell proteomic and transcriptomic data
(based on CITE-seq) with cis-regulatory information
(e.g. TF–target gene priors) to predict the coupling of
TF activities with signaling receptors and pathways. Once
SPaRTAN is trained using cell-type specific datasets, we uti-
lize the context-specific models to represent individual cells
in terms of surface protein expression and TFs’ activities.
These representations generate hypotheses focused on sig-
naling regulated TF expression and function that can be
testable in the laboratory or in the clinic. Application of
SPaRTAN to CITE-seq datasets helps to (i) decipher crit-
ical regulators (e.g. TFs, surface receptors) underlying cel-
lular identities (e.g. naı̈ve versus memory T cells); (ii) de-
termine whether given cell types have different or common
regulators across tissues (e.g. B cells in spleen versus lung);
(iii) determine commonalties as well as differences of cell-
specific regulatory programs across healthy individuals and
those manifesting a disease.

We used SPaRTAN to delineate surface receptors and TF
relationships in various types of immune cells in the blood
of healthy individuals. SPaRTAN was also used to analyze
CITE-seq datasets generated from malignant peritoneal
and pleural mesotheliomas. Malignant mesothelioma is a
rare and aggressive cancer, that has not previously been sub-
jected to extensive single-cell profiling and computational
analyses. Our combined analyses of immune cells in the
blood and the tumor microenvironment suggests that sig-
naling receptors e.g., CD27 and PD-1 can be coupled to
common or distinct downstream TFs in different cell types
and tissues. For example, SPaRTAN-predicted BCL3 activ-
ity was correlated with PD-1 protein expression in MePM
CD8+ T cells but not in MPM and PBMC CD8+ T cells.
We validated co-expression of PD-1, BCL3 and CD8 in the
protein level using independent MPeM patient specimens.
Future validation experiments can evaluate the role of PD-1
coupling with BCL3 in MPeM CD8+ T cells. BCL3 expres-
sion can be evaluated in the setting of PD-1 modulation in
cultured MPeM CD8+ T cells. Ultimately, in vivo validation

of the role of PD-1 and BCL3 in CD8+ T cells can be stud-
ied using malignant peritoneal mesothelioma mouse mod-
els through silencing of PD1 and/or BCL3 and measuring
the functional activity of CD8+ T cells.

The method we describe has several limitations. First,
our analysis uses curated TF target-gene interactions (18)
to determine the set of TFs that potentially regulate each
gene. Those interactions were curated and collected from
different types of evidence such as literature curated re-
sources, ChIP-seq peaks, TF binding site motifs, and in-
teractions inferred directly from gene expression. There-
fore, they are noisy, incomplete, and not context-specific.
The SPaRTAN framework can be extended using scATAC-
seq or bulk ATAC-seq from sorted cells for more accurate
representation in both promoter and enhancer regions as
performed in our context of patient-specific predictive reg-
ulatory models (65)). Furthermore, we do not represent di-
rectionality in the TF–gene interaction matrix (i.e. whether
a gene is activated or repressed by a TF). Hence, negative
values of inferred TF activities can be meaningfully inter-
preted by prior knowledge of whether the TF is acting as
an activator or as a repressor (e.g. for the case of an activa-
tor positive inferred TF activity will correspond to upreg-
ulation of its target genes and negative values with down-
regulation of the target genes. On the other hand, for a TF
that is functioning as a repressor, an increase in its posi-
tive values will correspond with the downregulation of its
target genes whereas increased negative values will trans-
late into upregulation of the targets). Our model currently
rests on the assumption that a TF either induces or re-
presses its targets, but some TFs may play either role de-
pending on their coordination with co-factors. These limi-
tations may confound the interpretation of activities of TFs
with context-specific activator and repressor roles. We have
a fixed gene-target gene representation, where the activity
of TFs is inferred by correlation with target expression in
a linear model; more complex combinatorics of TF bind-
ing are not currently modelled. Thus, cooperatively binding
TFs (e.g. AP-1−IRF complexes (66)) which can function in
signal integration and combinatorial control of gene expres-
sion are not modelled. Additionally, individual signalling
receptors may modulate the activities of many TFs, some
of which are shared with other receptor systems. Such com-
plexity of receptor-TF signal-transduction crosstalk is not
explicitly considered.

SPaRTAN analysis is limited to ∼200 surface proteins
(for which CITE-seq-validated barcoded antibodies are
commercially available from Biolegend). However, the com-
bination of TFs and surface proteins recovers a broad and
extensive array of pathways associated with immune cell
states in peripheral blood and in the tumor microenvi-
ronment. CITE-seq is currently limited to detect surface-
protein and gene expression but antibodies directed against
intracellular proteins will be added to future iterations of
this system (67,68) and can be easily integrated into our
approach. Further, we can identify regulators by query-
ing known pathways for upstream and downstream com-
ponents of the surface protein - TF axis/connection.

Despite these limitations, SPaRTAN will accelerate the
analysis of regulatory states of cells that are controlled by
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Figure 5. Representative images of immunohistochemistry (IHC) staining of malignant peritoneal mesothelioma tumors using BCL3, PD-1 antibodies
(brown and red chromagens, respectively, top) and BCL3, PD-1, CD8 antibodies (brown, red, and green chromagens, respectively, bottom). For illustration
doubly (upper panels) or triply (lower panels) stained cells with the indicated antibodies were circled for a cell.

the reciprocal interplay of signaling systems and signal-
regulated TFs. It can be used to discover new molecular
connections in signal regulated gene expression programs
as well as to analyze the cross-talk between signaling path-
ways. There is substantial variation in immune cell states
in healthy individuals depending on age, sex, infection and
vaccine history, environmental exposures, diet as well as co-
morbidities. Our current analysis is a proof-of-concept but
is not large or diverse enough to serve as a reference set.
However, extension of our approach with larger datasets
can serve to generate a valuable human immune system re-
source.

DATA AVAILABILITY

The software for SPaRTAN is available from
https://github.com/osmanbeyoglulab/SPaRTAN/. Pro-
cessed data files, inferred TF activities and surface
protein and TF activity correlations have been made
available the supplementary website for the paper:
http://www.pitt.edu/~xim33/SPaRTAN. The published
human PBMC CITE-Seq dataset that supports the finding
of this study can be downloaded from the 10× Genomics
website (https://support.10xgenomics.com/single-cell-
gene-expression/datasets/3.1.0/5k pbmc protein v3; https:
//support.10xgenomics.com/single-cell-gene-expression/
datasets/3.1.0/5k pbmc protein v3 nextgem). The in-house
MPeM and MPM CITE-seq data is available in GEO
(https://www.ncbi.nlm.nih.gov/geo/, GSE172155).
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