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Abstract: Bronchiolitis has a high morbidity in children under 2 years old. Respiratory syncytial
virus (RSV) is the most common pathogen causing the disease. At present, there is only a costly
humanized monoclonal RSV-specific antibody to prevent RSV. However, different immunization
strategies are being developed. Hence, evaluation and comparison of their impact is important for
policymakers. The analysis of the disease with a Bayesian stochastic compartmental model provided
an improved and more natural description of its dynamics. However, the consideration of different
age groups is still needed, since disease transmission greatly varies with age. In this work, we
propose a multivariate age-structured stochastic model to understand bronchiolitis dynamics in
children younger than 2 years of age considering high-quality data from the Valencia health system
integrated database. Our modeling approach combines ideas from compartmental models and
Bayesian hierarchical Poisson models in a novel way. Finally, we develop an extension of the model
that simulates the effect of potential newborn immunization scenarios on the burden of disease. We
provide an app tool that estimates the expected reduction in bronchiolitis episodes for a range of
different values of uptake and effectiveness.

Keywords: infectious diseases; bronchiolitis; respiratory syncytial virus; stochastic Bayesian model;
multivariate age-structured model; immunization programs

1. Background

Bronchiolitis is a common lower respiratory tract infection (LRTI) that mainly affects
children under 2 years old, with the greatest burden occurring in infants younger than
6 months [1]. Respiratory syncytial virus (RSV) is by far the most common cause of viral
bronchiolitis [2]. Previous data from the Valencia region of Spain showed that approxi-
mately 2 out of 10 children younger than 2 years of age are diagnosed of bronchiolitis, 3
out of 100 are hospitalized and 1.6 out of 100 are hospitalized with RSV bronchiolitis [3,4].

At present, palivizumab is the only prophylactic therapy available for RSV. This is a
costly humanized monoclonal RSV-specific antibody that is given monthly to infants at
increased risk of severe RSV infection: premature babies, infants with chronic lung disease
and infants with congenital heart disease [5,6]. However, different RSV immunization
strategies, including maternal immunization, immunoprophylaxis with new monoclonal
antibodies (mAbs) and pediatric immunization, are currently under development and
could be available soon [7,8].

Immaturity of the infant’s immune system does not allow active immunization until
2 months of age. However, this population subgroup is more susceptible to severe RSV
infection. Therefore, passive immunization practices (maternal vaccination and mAbs
administered at birth) have the potential to be the most effective strategies to protect
individuals at an early age. ResVax is the most advanced maternal vaccine in clinical
development. In a phase III multi-country, randomized, placebo-controlled trial evaluating
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its efficacy against RSV-LRTI in infants from birth to 90–180 days of life, ResVax showed
44% efficacy in reducing RSV-LRTI hospitalization. However, it failed to meet the primary
outcome of prevention of medically significant LRTI [9]. A phase III trial showed the
potential of mAb nirsevimab to protect infants for an entire RSV season with just one
injection. A single dose of this mAb with an extended half-life resulted in a lower incidence
of medically attended RSV-associated LRTI and hospitalizations than with a placebo in
healthy preterm infants entering their first RSV season. They were approximately 70% and
80% lower, respectively [10].

Before the licensure of these products for RSV and the implementation of a particular
preventive strategy, policymakers will need to assess their potential health and economic
benefits. This requires an exhaustive evaluation of the real burden of disease and the
simulation of disease incidence under different immunization scenarios.

Different studies have been proposed to analyze either bronchiolitis or RSV dynam-
ics. Most of these studies consider classical regression models to describe causal rela-
tionships between risk factors (baseline characteristics or clinical features) and disease
counts [4,11–15]. Deterministic compartmental models based on differential equations
have also been commonly implemented to model RSV dynamics [16–19]. Deterministic
models assume that every individual has an equal probability of contacting every other
individual in the population, so they may fail if the sizes of the compartments are not large
enough to ensure homogeneous mixing. The incorporation of stochasticity into epidemic
models is necessary for considering heterogeneous mixing of individuals in the population
and also the inherent stochasticity in the transmission of disease [20–23]. A Bayesian
stochastic compartmental model in discrete time has improved the description of RSV
disease [24].

Alternative stochastic approaches for the analysis of time series of infectious disease
counts have been described by Held et al. [25]. They explain disease counts by means
of a Poisson (or negative binomial) model with two components: a parameter-driven
component that describes endemic seasonal patterns and an observation-driven component,
which is an autoregression on past counts that explains localized epidemics. This model
can be extended in a multivariate setting to analyze time series that correspond to disease
counts in different spatial units or different age groups jointly [26].

Systematic reviews of model-based evaluations of immunization strategies against
RSV have been presented in [27,28]. Many of these studies use mathematical models
based on ordinary differential equations (see, for instance, [17,29,30]). Bayesian stochastic
compartmental models have also been extended to simulate and assess the effect of a
vaccination strategy that consists of vaccinating a proportion of newborns [31]. Since
clinical data are not yet available, models exploring the epidemiological and economic
outcomes of potential RSV interventions adopt different assumptions regarding the target
population, uptake rates, effectiveness and duration of immunity. Therefore, the estimates
that are obtained vary considerably.

In this paper, we present a Bayesian multivariate age-structured model in discrete
time to describe bronchiolitis dynamics in the region of Valencia in a population of children
under 2 years of age. In particular, the population is divided into four age groups, and new
infections are described considering interaction among these groups. We base our formula-
tion on a Poisson model (or a negative binomial model if the data exhibit overdispersion).
The main innovation is that the mean of the distribution at each time point can be seen as
an observation-driven component where the autoregressive parameter varies stochastically
over time. A parameter allowing for heterogeneous mixing of individuals in the popula-
tion is also introduced to capture different contact patterns. This modeling approach does
not require information on susceptibles, and it also provides a simplified framework to
describe disease counts, since it avoids the modeling of complex transitions between the
different compartments. To estimate the impact of potential prevention strategies for RSV,
an extension of the model including simulation of bronchiolitis episodes under different
passive immunization scenarios is considered.
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2. Data
2.1. Population of Interest

The region of Valencia, one of the 17 autonomous regions of Spain, has approximately
4,900,000 inhabitants. Around 2% of the Valencia population is younger than 2 years
old (approximately 100,000 children). The Regional Health System (RHS) is divided into
241 health care districts structured into 24 health departments. It includes 34 public
hospitals, 24 of them attending acute pediatric patients. This study includes children under
the age of 2 years who were born in the region of Valencia between January 2009 and
December 2012 and are covered by the RHS.

2.2. Data Sources

The region of Valencia has a health system integrated database (VID) that gathers
health and sociodemographic data from 98% of the population [32]. In particular, we used
the population information system (an administrative database that collects and updates
sociodemographic data from both residents and non-residents with access to public health
services) to determine the population of interest. Primary care electronic medical notes
(SIA) were implemented in 2006, and all medical visits are registered and ICD-coded.
Hospitalizations were obtained using discharge reports from the Spanish Minimum Basic
Data Set (MBDS).

2.3. Age-Structured Bronchiolitis Cases

Because around 90% of bronchiolitis cases in children less than 2 years of age are
treated in primary care offices and very few cases have a RSV microbiological confirmation,
the analysis of laboratory-confirmed cases of RSV bronchiolitis is less useful for incidence
estimation due to underreporting. Hence, it is more practical to analyze bronchiolitis-
associated outpatient visits and hospitalizations to evaluate the potential impact of RSV
immunization strategies.

In particular, we analyze bronchiolitis episodes identified from hospitalization and
primary care attendance through a search of the first appearance of the following ICD-9-
codes 466.1, 466.11 and 466.19, in MBDS and SIA. Based on the McConnochie criterion, only
the first health care encounter (either outpatient visit or hospitalization) with a bronchiolitis
ICD-9-MC code was counted as a case of bronchiolitis.

Considering that children aged less than 6 months have an elevated morbidity, we
consider four age groups: 0–5, 6–11, 12–17 and 18–23 months of age. This grouping allows
us to analyze in greater detail both transmission dynamics and the impact of potential
immunization measures. Weekly aggregated cases from July 2010 (week 28 June–4 July) to
December 2012 (week 24 December–30 December) are considered (T = 131 weeks in total).
Since this is a population-based cohort study, data for all the age groups were not available
until July 2010, so data from January 2009 to June 2010 are excluded in the analysis. In total,
the study includes 30,555 cases of bronchiolitis: 14,635 (47.90%) of them are in children
aged less than 6 months, 10,600 (34.69%) cases in the age group of 6–11 months, 3462
(11.33%) in the age group of 12–17 months and 1858 (6.08%) in the age group of 18–23
months. Figure 1 shows the time plot of the series for the four age groups. As can be
seen, there is a higher incidence for younger children and a clear seasonal pattern, with
more cases during the weeks of autumn and winter. These data can be downloaded from
https://rotapp.shinyapps.io/APP_IMPACTO_RSV, (accessed on 14 May 2021).

https://rotapp.shinyapps.io/APP_IMPACTO_RSV
https://rotapp.shinyapps.io/APP_IMPACTO_RSV
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Figure 1. Weekly counts of bronchiolitis for the four age groups from July 2010 (week 28 June to 4
July) to December 2012 (week 24 December to 30 December).

3. Model Description
3.1. Background

The most commonly used models in the analysis of infectious disease counts are com-
partmental models, which divide the population being studied into different compartments
according to disease status and describe the evolution of infection through changes in the
number of individuals in each compartment. Corberán et al. [24] proposed a Bayesian
stochastic compartmental model in discrete time to describe RSV dynamics in the Region
of Valencia. Let yt, t = 1, 2, . . . , T, be the number of newly infected individuals at week t.
The model assumes that:

yt ∼ Bi(St−1, pt), (1)

where St−1 is the susceptible population at time t− 1, which is updated weekly using some
recursion equations, and pt is the probability of becoming infected at time t. To take into
account the transmissible nature of the infection, pt is modeled as:

pt =
yh

t−1 · exp(rt)

1 + yh
t−1 · exp(rt)

, (2)

where the mixing parameter h allows for heterogeneous mixing of individuals in the
population and rt = α0 + ∑W

w=1
(

βw · sin
( 2·π·w·t

52
)
+ γw · cos

( 2·π·w·t
52

))
+ εt. By allowing the

transmission rate exp(rt) to vary over time, the stochastic model provided an improved
and accurate description of the pattern of disease.

When the focus is on describing counts of new infections, the use of a Bayesian
hierarchical model provides an alternative framework. Held et al. [25] proposed a stochastic
model for the analysis of disease counts based on a Poisson (or negative binomial) model
with two components, which describe endemic seasonal patterns and localized epidemics.
The starting point was a simple branching process model, which was later extended to
include seasonal terms in the endemic rate or to adjust for overdispersion. In particular,
weekly new counts of disease yt, t = 1, 2, . . . , T, are modeled as:

yt ∼ Poisson(νt + λt · yt−1), (3)

where νt is the parameter-driven (or endemic) component and λt · yt−1 the observation-
driven (or epidemic) component, which allows for occasional outbreaks. A main feature of
the proposed model is that the autoregressive parameter λ is allowed to vary over time.
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To do this, a Bayesian changepoint model with an unknown number of changepoints is
used to capture sudden changes in infectiousness. The endemic component is described as
follows:

νt = exp
(

α0 + β · sin
(

2 · π · t
52

)
+ γ · cos

(
2 · π · t

52

))
. (4)

Multivariate extensions of that model can be found in [26] for the joint analysis of
multiple time series of counts, where each component corresponds to a geographical region
or a certain age group. Let yj

t denote the count of disease in age group j at week t. In the
multivariate scenario, counts of disease can be described as:

yj
t ∼ Poisson

(
ν

j
t + λ · yj

t−1

)
,

ν
j
t = exp

(
α

j
0 + α1 · t +

W

∑
w=1

(
βw · sin

(
2 · π · w · t

52

)
+ γw · cos

(
2 · π · w · t

52

)))
,

where parameters α
j
0 allow for different incidence levels in the different age groups. The epi-

demic component here depends only on previous counts in the corresponding age group.
A more general model considering previous counts in other age groups as potential

explanatory variables is formulated as:

yj
t ∼ Poisson

(
ν

j
t + λ · yj

t−1 + φ ·∑
i 6=j

yi
t−1

)
,

where the additional parameter φ captures the autoregressive effect of the other age groups.
Paul et al. [33] extended this multivariate model by allowing the autoregressive parameters
to depend on the age-group; that is, λj and φj for each time series. However, in these
multivariate models, the autoregressive parameters λ and φ are not allowed to vary over
time.

3.2. Our Proposal

Let yj
t denote the count of disease in age group j, j = 1, 2, 3, 4, observed at week t,

t = 1, 2, . . ., T = 131. We use a Bayesian hierarchical model, which provides a straightfor-
ward framework to describe counts of new infections at each week. Our model assumes
that the probability governing the counts is a Poisson distribution or a negative binomial
distribution if the data exhibit overdispersion. In those situations in which the population
size is not large enough in comparison with the observed counts of disease, the binomial
distribution could be used in a similar way.

Seasonal variation in disease transmission that is persistent with a stable pattern is
modeled through sine–cosine waves, which are common for all groups. This is a sensible
assumption since annual epidemic peaks occur simultaneously in the different age groups.
On the other hand, it is reasonable to assume that contacts among the different age groups
considered here are equally likely to occur. Hence, counts of disease at time t − 1 are
summed up to describe new infections. In addition, heterogeneous mixing of individuals in
the population is allowed. Finally, due to the epidemiology of bronchiolitis, it is important
to consider a different transmission rate for each age group.

Taking into account these considerations, the proposed model is given by the follow-
ing equations:

yj
t ∼ Poisson

(
µ

j
t

)
, (5)

µ
j
t = exp(λj

t) ·
(

4

∑
i=1

yi
t−1

)h

, (6)

λ
j
t = α

j
0 + β · sin

(
2 · π · t

52

)
+ γ · cos

(
2 · π · t

52

)
+ εt, (7)
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where the autoregressive parameter exp(λj
t) is allowed to vary stochastically over time

by means of random effects
{

εt ∼ N(0, σ2
ε )
}

that represent unspecified features of week
t. To avoid overfitting, these random effects are common for all the age groups; that is, if
counts of disease at a particular week are higher (or lower) than expected for some age
groups, that increase (or decrease) should also be observed in the remaining age groups.
h ∈ [0, 1] is the mixing parameter (h = 1 would correspond to the assumption of mass
action). Non-informative flat prior distributions are considered for parameters α

j
0, β and γ.

The uniform distribution in the interval [0,1] is considered as a prior for h, and the uniform
distribution in the interval (0,2) is considered for the standard deviation σε.

To adjust for overdispersion, the negative binomial distribution can be used instead.
In that case, the model can be formulated as

yj
t ∼ NegBin(pj

t, k), (8)

pj
t =

k

k + µ
j
t

, (9)

where µ
j
t is defined as in Equation (6). Hence, the mean of the distribution is equal to

µ
j
t and the variance is given by µ

j
t +

(µ
j
t)

2

k . The second parameter k > 0 incorporates the
extra-Poisson variation (the limiting case k = ∞ corresponds to the Poisson distribution).
As a prior distribution for parameter k, we consider the Gamma distribution Ga(1, 0.01).

It is important to emphasize that our formulation can be seen as a Poisson model
with only one component, the observation-driven component [25,26], modified in a novel
way to allow for contact heterogeneity. By considering a time-varying autoregressive
parameter, the model properly describes both endemic an epidemic periods. As shown
in the next section, this formulation will allow us to simulate disease incidence in a
scenario with immunization measures. On the other hand, the mean of the distribution is
equivalent to that proposed in [24], where the process intensity mean was dependent on the
product of St−1, yh

t−1 and the transmission rate exp(rt). In our modeling framework, where

information on susceptibles is not incorporated, the autoregressive parameter exp(λj
t)

describes how infected individuals in the previous week produce new infections.

3.3. Our Extension with Immunization Strategies

We show here how the proposed model can be used to simulate the impact of passive
immunization through maternal vaccination or mAb administered at birth. The main
parameters to consider when estimating the effects of a particular immunization strategy
are the uptake, the efficacy and the duration of protection.

Based on vaccination coverage data provided by the Ministry of Health, Consumer Af-
fairs and Social Welfare of Spain (https://www.mscbs.gob.es/profesionales/saludPublica/
prevPromocion/vacunaciones/calendario-y-coberturas/coberturas/home.htm, accesed
on 14 May 2021) and the clinical trial results presented in [9,10], the following assumptions
are incorporated into the simulation process:

In the case of maternal vaccination:

1. A range of vaccine uptake from 50 to 85%;
2. 40% efficacy in reducing RSV bronchiolitis episodes;
3. Duration of protection of 6 months.

With respect to the use of mAb:

1. The uptake parameter can be considered to be 95%;
2. 70% efficacy in reducing RSV bronchiolitis episodes;
3. 6 months of induced immunity.

Because the duration of protection is assumed to be 6 months, children are immune
from birth to 6 months, when they move to the next age group. Hence, in our modeling
scheme, the evaluation of these two strategies come down to a decrease in the number of

https://www.mscbs.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/calendario-y-coberturas/coberturas/home.htm
https://www.mscbs.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/calendario-y-coberturas/coberturas/home.htm
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cases in the first age group (0–5 months) throughout the simulation study. Since we analyze
total counts of bronchiolitis, it is also important to take into account that approximately
70% of bronchiolitis cases are due to RSV.

Table 1 shows the percentage of children in the age group 0–5 months that should
be removed according to the specified values for the uptake and the efficacy parameters.
These values are also in accordance with the assumptions made in some of the studies
discussed in [27].

Table 1. Possible scenarios in the evaluation of immunization strategies.

Maternal Vaccination mAb at Birth

Uptake Efficacy % Removed Uptake Efficacy % Removed

50% 40% 20% 95% 70% 66.50%
85% 40% 34%

Let πrsv represent the proportion of bronchiolitis cases due to RSV and πim the propor-
tion of children in the age group 0–5 months that are immune as a result of the implemen-
tation of an immunization strategy. For age group 1 (0–5 months), the number of infected
children at week t can be estimated from our model as:

ŷ1
t = (1− πim) · πrsv ·

exp(λ1
t ) ·
(

4

∑
i=1

ŷi
t−1

)h
+ (1− πrsv) ·

exp(λ1
t ) ·
(

4

∑
i=1

ŷi
t−1

)h
; (10)

that is, a proportion πim is removed from the number of RSV bronchiolitis cases that
would be expected from contacts with infected children at week t− 1. Note that, under the
immunization scenario, contacts of immune children will not end in contagion.

For the age groups j = 2, 3, 4, infected children at week t can be estimated as:

ŷj
t = exp(λj

t) ·
(

4

∑
i=1

ŷi
t−1

)h

. (11)

In the previous equations, exp(λj
t) ·
(

∑4
i=1 ŷi

t−1

)h
represents the mean µ

j
t of the dis-

tribution governing the counts, which is either the Poisson or the negative binomial
distribution, based on the simulated counts under the immunization scenario. Parameters
{exp(λj

t)} and h are, respectively, the autoregressive parameters and the mixing param-
eter of the model without a immunization strategy (see Equation (6)). It is important to
emphasize that these parameters represent features of bronchiolitis dynamics (how the
disease spreads at each time point for the different age groups) and contact patterns that
do not depend on the number of infected children in previous weeks. Hence, they can be
used to simulate the number of infections after a particular preventive intervention has
been implemented.

4. Results

R Statistical Software (Foundation for Statistical Computing, Vienna, Austria) and
WinBUGS program [34] were used to perform the analysis using MCMC simulation meth-
ods. A total of 25,000 iterations were used as the burn-in period of the MCMC. After that,
75,000 iterations were run, and only 1 in every 150 of them was kept to reduce correlation.
Two chains were simulated, so M = 1000 values were simulated in total from the posterior
distribution. MCMC convergence was assessed by visual inspection of the trace plots, the
Brooks–Gelman–Rubin scale reduction factor (Rhat equal to 1 means good convergence)
and the effective sample size (n.eff above 100 means good convergence). All statistical
analyses of the study are completely reproducible. The BUGS code used can be found as
supplementary material to the paper.
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4.1. Results without Immunization Strategies

We fitted both the Poisson and the binomial negative model to the bronchiolitis data.
The corresponding DIC [35] values are, respectively, 3811.77 (pD 105.89) and 3710.97
(pD 83.96), so adjusting for overdispersion provides a better fit. The posterior mean of
parameter k is 44.45, which is the 95% credible interval [32.65,59.41]. Figure 2 displays the
posterior mean bronchiolitis temporal profile (red line) together with real counts of disease
(black line). As can be seen, the proposed model is able to accurately recover disease
dynamics in all the age groups.
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Figure 2. Model accuracy. Bronchiolitis counts (black line) together with posterior mean estimates (red line) from July 2010
to December 2012 (T = 131 weeks) obtained with the proposed model based on the negative binomial distribution.

Figure 3 shows the estimated autoregressive parameter exp
(

λ
j
t

)
in each age group

and time point together with its seasonal component, which is given by:

exp
(

α
j
0 + β · sin

(
2 · π · t

52

)
+ γ · cos

(
2 · π · t

52

))
.

As expected, previous counts of disease have a higher impact on the youngest chil-
dren. In fact, the transmission of disease decreases as the age increases. This figure also
demonstrates that seasonality has a strong influence on transmission dynamics. However,
because the seasonal pattern varies slightly from year to year, the incorporation of random
effects accounting for stochasticity in the transmission is fundamental to providing a more
accurate description of the data. These results agree with those obtained in [24]. In that
paper, the proposed model with a stochastic transmission rate led to an improved goodness
of fit in comparison with its counterpart where the seasonal pattern repeated over time; that
is, there were no weekly random effects in the model assumed for the transmission rate.
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Figure 3. Estimated autoregressive parameter (red line) together with its seasonal component (black line).

Model Comparison

In order to assess the performance of our model, we also analyzed the bronchiolitis
data with a Poisson model whose mean is given by the sum of an endemic and an epidemic
components. Taking into account the assumptions made in this particular case study
(common seasonality for all ages and contacts among the different age groups that are
equally likely to occur), the Poisson model with two components is formulated as:

yj
t ∼ Poisson

(
ν

j
t + λj ·

4

∑
i=1

yi
t−1

)
(12)

ν
j
t = exp

(
α

j
0 + β · sin

(
2 · π · t

52

)
+ γ · cos

(
2 · π · t

52

))
. (13)

To ensure that the mean of the Poisson is non-negative, parameter λj is modeled as
λj = exp(δj), with δj ∼ N(0, σδ).

Figure 4 displays the posterior mean bronchiolitis temporal profile (red line) corre-
sponding to this Poisson model with two components together with real counts of disease
(black line). The DIC value for this model is 4506.18 (pD 9.88).
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Figure 4. Bronchiolitis counts (black line) together with posterior mean estimates (red line) obtained with a Poisson model
with two components.

This two-component model is able to describe the overall dynamics of bronchiolitis.
However, the Poisson model proposed here provides a better fit, as judged by a lower DIC
(3811.77 against 4506.18). This may be due to the fact that the epidemic component, which
depends on a time-constant autoregressive parameter, cannot explain the stochasticity
inherent in transmission dynamics.

4.2. Results with Immunization Strategies

Once we have obtained a sample from the posterior distribution of the parameters
of our model without a immunization program, we can evaluate the effect of the immu-
nization strategies previously described. We assume here that the immunization strategy
started six months before the first week of July 2010 (week 28 June to 4 July), so that the
specified percentage (see Table 1) of children in the age group of 0–5 months can be assumed
to be immune at time t = 1 of our analysis. We simulate the evolution of bronchiolitis
counts using Equations (10) and (11), assuming πrsv = 0.7. Note that for each iteration of
the MCMC simulation, we have one simulated value of the regression parameters and the
mixing parameter {exp(λj(m)

t )} and h(m), m = 1, 2, . . . , M = 1000, so we have M simulated
values for the number of infections for each age group and week. Using these values, we
can get point estimates (for instance, the mean of the simulated values) as well as credible
intervals.

Figure 5 shows real counts of bronchiolitis and point estimates (mean values) for three
simulation scenarios, corresponding to πim = 0.2 (green line), 0.34 (blue line) and 0.67 (red
line). As expected, the number of bronchiolitis cases decreases as the proportion of immune
children in the age group of 0–5 month increases. Because of herd protection, the decrease
can be observed in all the age groups. The decrease expected in each age group and the
total decrease are shown in Table 2.
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Figure 5. Bronchiolitis counts (black line) together with simulated counts (mean values) for three different immunization
proportions: πim = 0.2 (green line), 0.34 (blue line) and 0.67 (red line).

Table 2. Expected decrease in the number of bronchiolitis counts for three different immunization
proportions: πim = 0.2, 0.34 and 0.67.

πim 0–5 Months 6–11 Months 12–17 Months 18–23 Months Overall

0.2 28.94% 14.63% 15.48% 16.25% 21.68%
0.34 47.48% 28.75% 29.78% 30.03% 37.92%
0.67 76.32% 54.17% 54.56% 54.84% 64.87%

We also developed an R Shiny application ( https://rotapp.shinyapps.io/APP_IMPACTO_
RSV, accessed on 14 May 2021) that simulates the evolution of bronchiolitis that would be
obtained by varying the uptake and the efficacy parameters, as well as the percentage of
bronchiolitis cases due to RSV.

5. Conclusions

We have developed an age-structured stochastic model that allows us to accurately
explain bronchiolitis dynamics in the region of Valencia. Our modeling approach combines
ideas from compartmental models and Bayesian hierarchical Poisson models in a novel
way. By using a hierarchical Poisson (or a binomial negative) model, we do not require
information on susceptibles and we avoid the modeling of complex transitions between the
multiple compartments. Unlike standard formulations, the main innovation of our model is
that the mean of the distribution at each time point depends only on an observation-driven
component where the autoregressive parameter is allowed to vary stochastically over time.
A mixing parameter is also introduced to capture heterogeneous mixing of individuals
in the population. By modeling the dynamics of disease as a function of previous counts,
we can simulate disease incidence under different immunization scenarios. Note that
the incorporation of a parameter-driven component would hinder simulation of disease
evolution when a decrease in the number of cases at previous weeks has been obtained as
a result of the assumed immunity.

https://rotapp.shinyapps.io/APP_IMPACTO_RSV
https://rotapp.shinyapps.io/APP_IMPACTO_RSV
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Even though we have developed the model for the analysis of bronchiolitis, it can be
adapted for other infectious diseases with (or without) a seasonal pattern, replacing the
transmission rate according to the nature of disease.

The extension proposed in this paper provides a useful framework to address one
of the important needs in RSV bronchiolitis incidence control: the implementation of
an immunization strategy. We have assessed here the effects of passive immunization
through maternal vaccination or mAb administered at birth. In our modelling scheme,
the evaluation of these two strategies come down to a decrease in the number of cases
in the first age group (0–5 months) throughout the simulation study. We have simulated
the evolution of bronchiolitis counts for different values of the uptake and efficacy. The
duration of immunity has been assumed to be equal to 6 months. If immunity lasts more
than 6 months, the model can be adapted so that a percentage of children in the age
group of 6–11 months is also removed, since children would move to this age group being
immune for a certain number of weeks. On the other hand, if immunity lasts less than
6 months, the percentage of children removed in the age group 0–5 months should be
reduced accordingly.

The results obtained show that newborn immunization contributes to a substantial
decrease in the number of bronchiolitis infections. Because of herd immunity, this decrease
is also observed in all the age groups considered. As expected, the decrease is greater when
the uptake and/or the efficacy increase. As the profiles of the products under development
become better defined, further alignment will be possible.

We have developed an R Shiny application that simulates the evolution of bronchiolitis
episodes for different values of the uptake and efficacy, as well as the percentage of
bronchiolitis cases due to RSV. This application is an easy tool that allows users and
decision makers to interact with the simulation analysis and improves visualization of the
results.

We have not assessed here the impact of immunization of high-risk children, such as
preterm infants or children with high-risk comorbid conditions. It may be important to
consider a separate analysis for these groups most at risk.

Another fruitful area for further research would be the consideration of smaller age
groups so that different immunization strategies such as vaccination of infants older than
3 months could also be tested. Stratification by gestational age may also be important
when evaluating maternal vaccination strategies, since transfer of maternal antibodies for
preterm infants may be incomplete.
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