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Telomere maintenance is essential for maintaining genome integrity in both

normal and cancer cells. Without functional telomeres, chromosomes lose

their protective structure and undergo fusion and breakage events that

drive further genome instability, including cell arrest or death. One means

by which this loss can be overcome in stem cells and cancer cells is via re-

addition of G-rich telomeric repeats by the telomerase reverse transcriptase

(TERT). During aging of somatic tissues, however, insufficient telomerase

expression leads to a proliferative arrest called replicative senescence, which

is triggered when telomeres reach a critically short threshold that induces a

DNA damage response. Cancer cells express telomerase but do not entirely

escape telomere instability as they often possess short telomeres; hence

there is often selection for genetic alterations in the TERT promoter that

result in increased telomerase expression. In this review, we discuss our

current understanding of the consequences of telomere instability in cancer

and aging, and outline the opportunities and challenges that lie ahead in

exploiting the reliance of cells on telomere maintenance for preserving gen-

ome stability.

1. Introduction

Telomeres are nucleoprotein complexes at the ends of

chromosomes that protect cells from the loss of genetic

information and from chromosomal fusions and other

abnormalities caused by the untimely activation of the

DNA damage response. In most eukaroytes, telomeric

DNA is comprised of long tracts of a conserved,
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G-rich repeat that is represented by the general

sequence Tx(Ax)Gx(C). In humans and mice, telomeres

consist of 50-TTAGGG-30 repeats that vary in length

between < 20 kbp in humans and can exceed 50 kbp

in mice [1,2]. The conserved nature of telomeres sug-

gests that they play an essential role that originated in

our primitive ancestors [3–6].
Telomeric DNA repeats are double-stranded but

end with a single-stranded, G-rich 30 overhang, typi-

cally 150 nucleotides (nt) in length. As this overhang

contains the same sequence as telomeric DNA that is

more distal to the chromosome terminus, it can loop

back and invade the double-stranded DNA region to

form a displacement loop (D-loop); when localized at

the telomere, this structure is also called a telomere

loop (T-loop) [7–10]. This unusual looped DNA struc-

ture serves as a docking site for shelterin, a six-subunit

complex (containing TRF1, TRF2, TIN2, RAP1,

POT1 and TPP1) that binds to telomeres [11,12]. Shel-

terin interacts together with other complexes, such as

CST (CTC1, TEN1, STN1) [13–16] and the multi-

subunit complex, shieldin (SHLD1, SHLD2, SHLD3,

REV7) [17] to regulate telomere DNA replication and

suppress inappropriate telomere processing or recom-

bination [9,18–21]. In addition to structural protection

there is a need for telomere replenishment because the

50 terminus of each DNA molecule is incompletely

replicated. This so-called ‘end replication problem’,

together with nucleolytic trimming of chromosome

ends, leads to progressive loss of telomeric sequence

during each round of DNA replication [22–25].
Without a means to counterbalance this loss, inex-

orable telomere erosion results in a critically short

threshold of telomere length that triggers a DNA dam-

age response and cell cycle arrest (in normal cells that

retain an intact DNA damage checkpoint) or cell death

due to mitotic catastrophe. In human fibroblasts in cul-

ture, this response limits cellular lifespan – a phe-

nomenon called replicative senescence or the Hayflick

limit [26,27]. In vivo, adult somatic cells from highly pro-

liferative or minimally proliferative tissues often undergo

telomere attrition at a similar rate [28]. In many eukary-

otic cells, including stem cells and cancer cells, this loss

is often counteracted by the expression of the telomerase

reverse transcriptase (TERT) and its integral RNA tem-

plate component hTR (encoded by TERC). This telom-

erase complex and its associated co-factors are recruited

to telomeres during S-phase and serve to elongate the 30

telomeric overhang [29–31]. Despite retaining low levels

of telomerase activity, telomere erosion nonetheless

occurs in most human stem and progenitor cells [32,33].

Emerging evidence underscores that there are impor-

tant similarities in how telomere integrity affects aging,

normal stem cells (as discussed below), and cancer cells

(as discussed later). In this review, our goal is to high-

light these common themes and the opportunities and

challenges that lie ahead in exploiting this information

in the development of new cancer treatments.

2. Telomeres in aging and stem cells

Telomere shortening is one of the main hallmarks of

aging and is commonly observed in most cell types

[34]. Telomere shortening can occur through the well-

known end-replication problem or as a result of inde-

pendent stochastic events.

In aging, the impact of telomere erosion on human

and organismal lifespan is an extant question. While

telomere length decreases with age in all cell types, the

average telomere length varies between species signifi-

cantly and does not strictly correlate with lifespan

[35,36]. One such example is that of mice and humans;

mice have longer telomeres than do humans but a

shorter lifespan [2]. However, mice that lack sufficient

levels of telomerase activity undergo telomere erosion

and eventually reach an average length similar to some

normal human tissues. As such, they provide a power-

ful genetic model in which to assess the role of eroded

telomeres in aging and cancer [37,38]. In marine ani-

mals, it is the body size of marine mammals, rather

than telomere length, that dictates life expectancy [39].

In contrast, in some species, such as the wild Soay

sheep, shorter average leukocyte telomeres are associ-

ated with an increased risk of early mortality

[27,40,41]. In humans, females have been reported to

possess longer blood cell telomere lengths than do

males [42], and shorter average telomere lengths corre-

late with several human disorders [43,44].

Other biological clocks have been established that

reflect chronological age, such as the methylome clock,

which is defined as age-associated changes in the pat-

tern and extent of methylated DNA [45,46]. The

telomere clock appears to more closely reflect a ‘repli-

cation clock’ rather than a chronological clock [46–48].
For example, only a weak correlation between telom-

ere length and chronological age has been found in

two independent studies [48,49]. A relationship

between the methylated status of 140 CpG islands and

telomere length has also been described but might

more closely reflect the population doubling time of

the cell population [48].

2.1. Telomere erosion: a harbinger of senescence

Telomere attrition to a critical threshold length that is

no longer able to sustain telomere integrity is one of
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several known inducers of cellular senescence [50]. This

type of senescence, termed telomere-induced or replica-

tive senescence, can be triggered by the well-known

tumour suppressor p53 and its downstream effector

p21, a cyclin-dependent kinase inhibitor that represses

the cell cycle (as discussed in an accompanying article

in this special series [51,52]). Mathematical models and

studies of budding yeast have suggested that the short-

est telomeres are responsible for senescence induction

[53,54]. In human cancer cells, the minimum length of

a functional telomere is 12 bp [55], beyond which

telomere-telomere fusions are observed. Importantly,

damage at a single telomere is enough to induce cell

cycle arrest in budding yeast [56] and to induce cycles

of chromosome breakage-fusion-bridge in cancer cells

[57–60] (Figs 1 and 2).

Telomere shortening is not the only telomeric dam-

age that leads to senescence. The oxidation of telom-

eric DNA (to form 8-oxoguanosine) induces

senescence without telomere shortening, underlining

the critical contribution of the DNA damage response

in this process [61]. Moreover, cellular senescence can

be induced by factors other than telomere erosion,

including by persistent DNA damage across the

genome, oncogene activation, loss of a tumour sup-

pressor or other stressors, and thus critically short

telomeres are not the sole hallmark of senescent cells

[62]. Senescence is also triggered by two different path-

ways, one through p53, which is reversible, and the

other through Rb, which is permanent [63,64].

The presence of senescent cells in a tissue profoundly

modifies tissue function. Senescent cells secret specific

small molecules or exosomes (EV) that interact

with and influence the nearby environment. This phe-

nomenon is known more generally as the Senescence-

Associated Secretory Phenotype (SASP) and is a

phenotype common to many senescent states, including

that induced by eroded telomeres (please see accompa-

nying review) [51,52,62,65,66] (Fig. 2). Among the

molecules secreted by senescent cells exhibiting a SASP

are pro-inflammatory cytokines that promote the

recruitment of immune cells to clear the growth-

arrested cells [67]. Senescence is thought to represent a

normal process for somatic cells, as the presence of the

SASP stimulates tissue regeneration by encouraging

stem cell proliferation and differentiation [68,69]. This

rejuvenation process is important for ensuring tissue

function, as it enables growth-arrested somatic cells to

(A)

(B)

(C)

Fig. 1. Overview of mammalian telomere structure. (A) Schematic representation of the chromosome end, or telomere in mammals.

Telomeric DNA is composed of the hexanucleotide sequence TTAGGG with a single stranded G-rich 30 overhang that is looped back into the

telomeric DNA to form a telomeric loop (T-loop). The shelterin complex (composed of the proteins TRF1, TRF2, TIN2, RAP1, TPP1 and

POT1) protects telomeres from being recognized as a DNA double-stranded break. (B) During the S-phase of the cell cycle, the T-loop is

opened and the G-rich strand becomes accessible for extension by telomerase. After telomerase has extended the G-rich strand, the CST

complex (composed of the subunits CTC1, STN1, TEN1) together with the DNA replication machinery carries out fill-in DNA synthesis of the

complimentary C-rich strand. (C) Critically short telomeres exhibit defects not only in telomere integrity (due to a DNA damage response)

but can also perturb the epigenetic state (reducing CpG methylation and increasing Nanog expression).
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be cleared away and replaced by newly differentiated

cells.

However, the accumulation of senescent cells that

arise via a telomere induced DDR or other stresses

can also negatively affect nearby cells, promoting

aging and tissue dysfunction. For instance, the Von

Zglinicki lab has shown that the xenotransplantation

of senescent cells into mouse muscle or skin induces

senescence in cells near the transplantation site [70]. In

addition, more recent studies have shown that the

accumulation of senescent cells during aging can

impact cells far from their location. EV and other

microvesicles in circulation in the body carry small

molecules, such as miRNA, that can affect the behav-

ior of cells along their journey. With age, the composi-

tion of such vesicles changes. For example,

microRNA-183-5p has been shown by Davis et al. [71]

to increase in microvesicles with age, resulting in the

suppression of bone marrow stromal stem cell prolifer-

ation and accompanied by senescence. These and other

studies suggest that the in vivo removal or manipula-

tion of senescent cells could have physiologically rele-

vant benefits in ameliorating aging and age-associated

disease [72].

As senescence is generally driven by cellular dys-

function, a logical, proposed role for senescence is to

suppress cancer [73,74]. Oncogene-induced senescence

is one such example of a suppressive mechanism (re-

viewed in [75]). While senescence and SASP induction

is tumor-suppressive in many contexts, it can also

drive tumorigenesis (reviewed in [76]). For instance,

cancer incidence increases with age, concomitant with

a rise in tissue senescence [64]. Among the SASP

secreted molecules, VEGF and tissue inhibitors of

(A)

(C)

(B)

Fig. 2. Consequences of telomere shortening. (A) Senescence is referred to as an irreversible exit from the cell cycle. This state can occur

via a variety of mechanisms that include eroded telomeres. When telomeres reach a critically short threshold, cells undergo telomere-

induced (or replicative) senescence, which is triggered by p53 and its downstream effector p21, a cyclin-dependent kinase inhibitor that

arrests the cell cycle. Senescent cells can secrete factors that modify neighbouring tissues and cells and enhance aging, via a process ter-

med the senescence-associated secretory phenotype (SASP). (B) If a cell bypasses senescence and continues to divide, telomere fusions

can occur, leading to a cycle of chromosome breakage-fusion-bridge formation and genetic instability. (C) Epigenetic modifications are also

linked to telomere shortening. Such modifications can influence transcriptional activity and cell fate. In the left image, DNA wrapped around

the histones (represented by the green spheres) may contain extensive post-translational modifications (red sphere) on the histone tail, and

the DNA itself can be methylated (small black sphere). Murine embryonic stem cells are particularly sensitive to epigenetic modifications dri-

ven by telomere shortening, which can reduce stem cell renewal potential (middle image). Telomere shortening can also affect the ability of

stem cells to maintain a functional pluripotent state and/or differentiated state (right image).
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metalloproteinases (TIMP) promote cellular migration,

including the potential of cancer cells to undergo

metastasis [77,78]. Other recent studies have shown

that the presence of senescent cells, whether via pertur-

bations in the DNA damage response or loss of telom-

ere integrity, can modify tissue homeostasis during

aging, which could also act to promote cancer [79,80].

2.2. Telomeres and stem cells

Adult stem cells remain in the body throughout life,

mainly in a protected environment called the stem cell

niche, and can regenerate tissues via self-renewal and dif-

ferentiation. Thus, the sustained presence of functional

stem cells is essential for tissue homeostasis, and the loss

of the stem cell pool can lead to disease (Fig. 2).

Despite the ongoing expression of telomerase in cer-

tain stem cell and progenitor populations, telomere

lengths, on average, are shorter in cells from older indi-

viduals than in cells from younger individuals. This

telomere erosion can have varying effects on stem cells,

from limiting their proliferation potential to inducing

severe cell dysfunction [81–83]. Perturbations in stem cell

function can impact the stem cell pool that is available

to rejuvenate tissue, which in turn can contribute to age-

associated issues like stem cell depletion [84]. Similar

age-associated impacts on stem cells pools have been

observed in diseases driven by telomere or telomerase

insufficiencies. For example, some symptoms observed

in dyskeratosis congenita or pulmonary fibrosis occur

due to defects in the stem cell compartment and via the

loss of cellular self-renewal potential [85–87].
In some instances, these barriers to stem cell prolif-

eration that develop with age can lead to the senes-

cence of adult stem cells. For example, stem cell

senescence has been described in bone marrow stromal

stem cells and in mesenchymal stem cells [88]. More-

over, senescence impairs pluripotent cell reprogram-

ming [89]. This limit on stem cell proliferation with

age could have implications for stem cell therapy and

its use of amplified stem cells. In addition, the presence

of senescent cells in the stem cell niche could induce

senescence in neighboring cells or could increase

inflammation in the niche [71,90–92].
In addition to limiting their capacity to proliferate,

telomere attrition in stem cells can lead to the genera-

tion of dysfunctional differentiated cells (Fig. 2). For

example, in aged hematopoietic stem cells, some progen-

itor cells differentiate inappropriately, therefore reducing

the number of functional blood cells [93]. Other studies

also suggest a differentiation bias during aging, i.e. the

skewing of certain subpopulations in a manner that per-

turbs overall tissue function and resiliency [94].

Several unanswered questions remain as to the pre-

cise mechanisms by which telomeres influence stem cell

behaviour. As mentioned earlier, the arrest of cell pro-

liferation once a critical level of telomere attrition is

reached is mainly instigated by DNA damage signal-

ing. However, the signals that regulate differentiation

are more complex and are tighly regulated by epige-

netic mechanisms. For example, the chromatin of stem

cells is known to be open and dynamic. However, dur-

ing the process of differentiation, chromatin acquires

repressive marks and a closed conformation, with the

exception of particular lineage-specific genetic regula-

tory elements, which become decorated with chromatin

marks associated with either transcriptional activity or

repression [95,96]. Telomere erosion itself is also linked

with marked alterations in the epigenetic state [94,97–99].
For example, when telomere protection or telomere

erosion are perturbed in mice, genome-wide transcrip-

tional and epigenetic alterations ensue [82,100–108].
Furthermore, during senescence, or upon the distrup-

tion of telomere maintenance or Trf1 function, associ-

ated changes in the chromatin landscape occur that

are linked to the dysregulation of the chromatin modi-

fying complex, Polycomb Repressive Complex 2 (PRC2)

and/or to changes in histone or DNA methylation status

[81,82,109].

To elaborate on one such example, in mESCs with

critically eroded telomeres (via prolonged propaga-

tion in the absence of Tert), cells fail to fully consoli-

date a differentiated state upon treatment with a

differentiation-inducing agent (all-trans retinoic acid,

ATRA). These cells are also prone to re-acquire a

transcriptional and chromatin landscape similar to that

of undifferentiated cells [81,82]. In this experimental

context, the overexpression of the DNA methyltrans-

ferase Dnmt3b or the chemical/genetic modulation of

PRC2 activity partially rescues the ability of Tert�/�

mESCs to differentiate in response to the appropriate

cues such as ATRA [81,82]. Telomere erosion or per-

turbed telomere protection complexes are also associ-

ated with genome-wide epigenetic alterations in

budding yeast [110], which underscores the evolution-

ary conservation of this complex interrelationship.

A better understanding of the ways in which telom-

ere erosion is linked to the genetic and epigenetic alter-

ations that underlie the aging process has important

implications for cancer, which leads us to the topics

we discuss in the next section. For example, Ideker

et al. [45] have shown that the methylome of older

individuals shares similarities with the methylomes of

patient-derived cancers. Cancer stem cells share impor-

tant characteristics with normal stem cells, such as

unlimited proliferation, self renewal and differentiation
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capacity. Emerging evidence suggests that some cancer

types, particularly glioblastoma and acute myeloid leu-

kemia (AML), have reverted to a more primitive cell

state via genetic and epigenetic alterations that exhibit

striking similarities [111]. Thus, as seen in normal stem

cells, the epigenetic alterations of cancer stem cells

should not necessarily be considered in isolation from

other cancer-associated characteristics, such as short

telomeres [112,113].

3. Telomeres and telomerase in
cancer

As mentioned above, the co-existence of eroded telom-

eres and telomerase activity in cancer cells is similar to

that observed during aging of stem cells. While telom-

erase is re-activated in 85% of cancers [114], telomeres

are relatively short in these cells [33,115]. The upregu-

lation of telomerase is a common occurrence in human

cancers and occurs via multiple mechanisms [116]. In

10–15% of human cancers, telomerase is not reacti-

vated, and cancer cells can survive without telomerase,

usually via mechanisms that involve alternative length-

ening of telomeres (ALT) (reviewed in [117]). These

alternative mechanisms are more prevalent in certain

types of tumours, such as in osteosarcomas [118], soft

tissue sarcomas [119], glioblastoma [120] and neurob-

lastoma [121]. One of the most common mechanisms

of telomerase upregulation in tumours is the presence

of mutations at the TERT promoter. Indeed, muta-

tions at the TERT promoter region are the most fre-

quent, non-coding mutation in cancer [122]. These

mutations create binding motifs for the Erythroid

Transformation Specific (ETS) transcription factors,

which result in increased expression of TERT [123–
126]. Even a modest increase in TERT expression,

which results in slightly more telomerase activity, is

sufficient to confer a proliferative advantage. These

TERT promoter mutations are thought to act as driver

mutations because they confer a fitness advantage and

thus may promote or drive cancer progression. Such

mutations were first identified in two unrelated cohorts

of melanoma patients [123,124] and have subsequently

been identified in subsets of glioblastoma, gliomas,

thyroid cancer, hepatocellular carcinomas, bladder

cancers and mantle cell lymphomas [127–130].

3.1. TERT expression and telomere length:

clinical indicators

Rare, somatic mutations within the TERT promoter

region are also found in non-malignant diseases, such

as in idiopathic pulmonary fibrosis and aplastic

anemia [131,132]. In these instances, these mutations

are often found in cis to the wild-type TERT allele,

and it is thought that that compensatory upregulation

of the wild-type allele may promote somatic gene res-

cue [131]. As in cancer, these mutations at the TERT

promoter increase TERT transcription only marginally

(by twofold or less), but nonetheless this increase is

still sufficient to delay replicative senescence in human

fibroblasts [123–125].
Epigenetic modifications can also increase TERT

expression. For example, a hypermethylated region of

the TERT promoter known as THOR (TERT Hyper-

methylated Oncological Region) was first detected in a

group of pediatric brain tumours and later shown to

drive the expression of the TERT locus in various

tumour types, such as in brain tumours, and in blad-

der, breast, colon, lung and prostate cancers [133–135].
Although present in a wide range of tumour types, this

hypermethylation pattern is rare in normal tissues

[135], and is considered a potential tumour biomarker.

As yet, the correlation between THOR hypermethyla-

tion and prognosis remains to be elucidated. In

patients with bladder cancer and melanoma, THOR

hypermethylation combined with TERT promoter

mutations are associated with an increased risk of

tumour progression and with a decreased progression-

free survival [136,137]. However, THOR hypermethy-

lation does not correlate with disease progression and/

or survival in medulloblastoma, esophageal cancer or

in meningioma, among other tumour types (reviewed

in [138]).

Another distinguishing feature of adult cancers is

their relatively short average telomere lengths, which

have been linked to disease outcome. For example,

patients with a range of cancers (including chronic

lymphocytic leukemia, breast cancer, non–small cell

lung cancer, myelodysplastic syndromes and multiple

myeloma), whose leukocytes have short telomeres,

have an unfavourable prognosis relative to those

whose telomere lengths are within the normal range

(reviewed in [139]). One might thus assume that short

telomeres would always be detrimental. However in

the case of esophageal cancer [140], prostate cancer

[141], clear renal cell carcinoma [142], melanoma [143]

and hepatocellular carcinoma [144], longer telomeres

are associated with a poorer prognosis, possibly

related to difficulties in replicating long telomeric

tracts. As Rivera and colleagues showed, long telom-

eres might also be detrimental to cell fitness [145].

Using human embryonic stem cells and human

induced pluripotent stem cells, the group showed that

long telomeres led to the formation of C-circles (the

C-rich single-stranded telomeric DNA complimentary
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to the G-rich strand; also a common biomarker of the

ALT pathway [146]). Excessively long telomeres can

lead to increased sensitivity to replication stress [145],

increased sensitivity to DNA damage [147] and telom-

ere fragility [145,148]. Altogether, these studies suggest

that there exists an optimal telomere range for cancer

cell fitness, that was referred to as the telomere ‘Goldi-

locks Zone’ [149].

3.2. Therapeutic approaches to telomerase

inhibition

The effects of telomerase inhibition have been widely

studied in different cell types. Telomerase inhibition

leads to telomere shortening, followed by a reduction

in cancer cell growth and/or apoptosis [150–152]. Even
in proliferating tumour cells, genome rearrangements

such as chromothripsis (numerous clustered chromoso-

mal rearrangements that arise in a single event) and

hypermutational regions (kataegis) appear to be dri-

ven, in part, by telomere instability [153–156].
Unfortunately, an FDA-approved telomerase inhibi-

tor is not yet available. Currently, numerous

approaches are being pursued that target telomerase

or telomere integrity in preclinical and clinical settings,

including telomerase inhibitors, the targetting of

telomere replication, vaccines, and other immunologi-

cal approaches (reviewed in ref. [157]). The only direct

telomerase inhibitor used in clinical trials so far, Ime-

telstat, is a modified 13-mer oligonucleotide that shares

complementarity to the human TR (telomerase RNA

component) template region [158,159]. Imetelstat com-

petes with the telomeric DNA substrate, leading to

telomerase inhibition and consequently to telomere

shortening [159]. Currently, Imetelstat is being used in

phase II/III clinical trials in myelodysplastic syn-

dromes and refractory myelofibrosis. In a phase II

study in patients with intermediate/high-risk myelofi-

brosis, treatment with Imetelstat exhibited a better

response in patients bearing the JAK2-V617F muta-

tion [160]. However, the molecular mechanism behind

this response is unclear, and there was no significant

reduction in telomere length in the patients who exhib-

ited a partial or complete response [160].

Another inhibitor that is not clinically approved but

is widely used in preclinical models is the small mole-

cule BIBR1532, a synthetic and non-competitive inhi-

bitor that shares some similarities to non-nucleosidic

inhibitors of HIV1 reverse transcriptase [161,162]. The

mechanism-of-action of this small molecule occurs via

the non-competitive inhibition of the catalytic site

[162]. BIBR1532 binds to the C-terminal region of

TERT, in a hydrophobic motif named FVYL, that is

close to the region important for the interaction of

TERT with telomerase RNA (TR) [163]. BIBR1532

showed promising effects in preclinical models of solid

and hematological malignancies [164–168]. Other

telomerase inhibitors have also been found to induce

telomere-induced cell death in cell-based models,

including the nucleoside analogues azidothymidine

(AZT) [169,170] and 6-thio-dG [171]. Several com-

pounds that specifically destabilize telomeric DNA

have also been identified that induce apoptosis in

human cancer lines, such as pyridostatin, telomestatin,

BRACO-19 and RHPS4 [172–175] (Fig. 3). Also, pep-

tide vaccines against TERT are under active investiga-

tion. One of these vaccines, called GV1001, is already

in phase III clinical trials (see refs [157,176] for a more

detailed information on immunotherapies against

telomerase).

3.3. Therapeutic challenges to modulation of

telomerase activity

As telomere erosion is one of the hallmarks of aging

and is associated with other deleterious age-associated

phenotypes [177], one strategy being considered is

telomerase reactivation. The re-expression of telom-

erase reverse transcriptase in normal human cells is

sufficient to avert senescence and leads to the capacity

to divide indefinitely, called immortalization [178,179].

Immortalized cells can maintain a relatively stable

karyotype even after prolonged culture [180–182].
However, reactivation of telomerase can be detrimen-

tal in other contexts. For example, in Tert null mice

bred for successive generations until telomeres reached

a critically eroded state, Tert reintroduction led to a

marked increase in tumorigenesis [183]. Thus, while

the reactivation of telomerase rescues phenotypes asso-

ciated with aging in certain cell-based and animal

models [87,184–186], it could have deleterious conse-

quences if used as a therapy in older individuals who

have acquired somatic mutations in blood or other tis-

sues or in those with genetic predispositions that affect

genome integrity (e.g. familial cancer syndromes).

Conversely, what are the prospects for telomerase

inhibition as a viable treatment for cancer? The crystal

structure of TERT shows that the enzyme has a cat-

alytic core that is similar to HIV and should, in princi-

ple, be druggable [187–191]. Aside from the usual

issues of bioavailability and toxicity, there are at least

two challenges that arise with the clinical use of a

telomerase inhibitor. The first challenge is the possibil-

ity of drug resistance. So far, no study has established

whether genetic alterations in telomerase would lead to

resistance to Imetelstat (currently in phase II/III
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clinical trials) or BIBR1532 (used in preclinical studies)

[168,192–194]. It is possible that amino acid alterations

in TERT or nucleotide substitutions in hTR could

promote drug resistance; however, many of these sub-

stitutions would also be likely to reduce enzyme activ-

ity [195,196]. For example, in TERT, mutations at the

FVYL pocket (the predicted binding site of

BIBR1532) reduce telomerase activity [163]. In terms

of disease, there are known alterations in TERT that

are generally loss-of-function mutations and that are

found in patients with telomere biology disorders, such

as dyskeratosis congenita and pulmonary fibrosis [197–
199]. It is worth mentioning that BIBR1532 is an allos-

teric inhibitor [163] and, thus, we cannot rule out the

possibility that mutations outside the FVYL pocket

might affect sensitivity to BIBR1532 inhibition. If

resistant mutations are identified, presumably the inhi-

bitors could be refined to act against these new variants,

in the same manner as there are now later-generation

EGFR or BRAF inhibitors that specifically target their

respective protein variants that led to the acquired resis-

tant phenotype [200–202].
The second challenge is the time delay required for

a telomerase inhibitor to elicit cell death or arrest, that

is, the fact that several cell divisions are needed before

telomere erosion triggers a DNA damage response.

This is known as the lag period, and evidence suggests

that initial telomere length can affect the time required

to elicit cell death in response to telomerase inhibition

[150–152]. In other words, tumours with short telom-

eres would require fewer cell doublings to trigger

growth arrest or cell death. By contrast, tumours

(A)

(B)

(C)

Fig. 3. Current and emerging telomere-targeting treatments. (A) Therapeutic strategies that target telomerase use compounds (such as Imetelstat

and BIBR1532) that can directly inhibit the catalytic core of the telomerase enzyme, or they may also affect telomere DNA replication (such as the

nucleotide analogue AZT or the nucleoside analogue 6-thio-dG). The telomeric DNA sequence is indicated (TTAGGG repeats in the 50 to 30 direction).
Telomerase is a multi-subunit complex that contains TERT (orange), the telomerase RNA (hTR), and associated subunits (GAR, NOP10, NHP2, and

dyskerin). For simplicity only 1 telomeric repeat of the hTR template motif is shown; the full template contains 1.5 telomeric repeats (CAAUCC-

CAAUC) that is reverse-transcribed in an iterative process. (B) More recently, compounds that affect telomere structure, such as G-quadraplex (G4)

stabilizers, have been investigated, as they induce immediate cell death upon telomere uncapping and do not exhibit a therapeutic lag, as is the case

with telomere attrition. The telomeric G-quadruplexes are located at the 30 end of the G-rich strand. The yellow circle represents the G4-stabilizers

as indicated. (C) As the expression of TERT is regulated by DNA methylation status (through the THOR region), chromatin-modifying agents might

also have therapeutic benefit in the treatment of telomerase-positive tumours. THOR stands for TERT Hypermethylated Oncological Region. Red

spheres indicate methylated CpG dinucleotides at the THOR region that may be a potential target site for the use of hypomethylating agents. TPM

indicates the promoter region where the TERT promoter mutations are commonly found, upstream of the coding sequence (TERT CDS).
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possessing longer telomeres would require a prolonged

treatment period before the telomeres reach a critical

threshold. In one study, the removal of telomerase

from engineered human tumor cells with long telom-

eres did not significantly impact cell proliferation or

tumour formation for several months in culture, until

telomeres eventually reached critically shortened

lengths [203]. This study underscores the issues sur-

rounding the lag phase, and further raises a concern

that longer periods of treatment with an inhibitor

might facilitate the development of drug resistance.

The third challenge in the use of telomerase inhibi-

tors is the checkpoint status of the cancer cells. For

example, cells with critically short telomeres activate a

DNA damage response and, potentially, trigger cell

death (e.g. via activation of the Rb or p53 checkpoint

pathway) [204,205]. Conversely, if a tumor lacks the

p53 checkpoint, the cells can continue to proliferate at

the expense of genomic instability [205]. Hence, the

use of telomerase inhibitors in tumors p53-deficient

could, in principle, increase the mutational burden of

the tumors.

One approach to address these issues, which is now

commonly employed in cancer treatment, is to combine

telomerase inhibitors with inhibitors that target a gene

or network whose function is critical for proliferation

in the absence of telomerase. This approach of target-

ting synthetic-sick-lethal (SSL) interactions might

shorten the lag period required to elicit tumour cell

death upon telomere erosion and forestall the emer-

gence of drug resistance. This approach has been used

successfully in the development of poly-ADP-ribose

polymerase (PARP) inhibitors, which are specifically

lethal to tumour cells with BRCA1/2 mutations

[206,207]. Indeed, the factors to which cells with eroded

telomeres are sensitized overlap with many of the other

hallmarks of aging. One example of a newly identified

target that is SSL with telomerase loss is the previously

unannotated gene C16orf72/TAPR1 [208]. C16orf72/

TAPR1 acts to taper p53 activation in response to

eroded telomeres, and its loss was also identified as

SSL in the presence of oxidative damage or DNA dam-

age, and in a genome-wide screen for deletions that

sensitize cells to ATR inhibition [209–211].
Telomerase inhibitors might also be SSL with epige-

netic regulators. As an example, murine stem cells with

eroded telomeres are unable to stably differentiate.

Inhibitors of the enzyme that deposits methyl groups

on H3K27, PRC2, further exacerbate this unstable dif-

ferentiation state, and inhibitors that repress the de-

methylation of H3K27me3 partially rescue the unsta-

ble differentiation phenotype [82]. Thus, one might

imagine that treatments that target the epigenetic

vulnerabilities of cancer, many of which are now in

clinical trial, could be effective in combination with

telomerase inhibitors. The only exception would be

tumours that do not rely on telomerase but instead

use ALT, in which case telomere replication fidelity or

stability could be targeted rather than telomerase

itself.

4. Conclusions and perspectives

Evolutionary studies in multiple organisms, including

mammals, have established that telomerase and

telomere-associated factors are under positive selective

pressure [212–217]. Scientists examining this question

posit that such selective pressures could arise as a

result of adaptive mechanisms [217,218]. This is also a

relevant question with respect to age-associated dis-

eases, including cancer, whose incidence increases later

in life after the reproductive period. Thus, scientists

have pondered whether short telomeres later in life are

the result of antagonistic pleitropy (i.e. a trait under

selective pressure to be beneficial earlier in life, that

later in life that becomes deleterious) [219], or of other

adaptive measures independent of early-life selection.

Interesting models have been proposed to account

for how mammals have evolved to cope with coun-

terselective pressures (e.g. long versus short telom-

eres) in relation to aging and cancer [73]. In this

post-genomics era, there will now be an opportunity

to put some of these theories to test at the molecu-

lar level, and to determine how the modulation of

these selective pressures during cell/tissue aging and

cancer can be exploited therapeutically to ameliorate

disease.

We are at a watershed in our understanding of the

molecular underpinnings of aging and cancer. The

ongoing challenge is to understand how to best apply

these new insights in the diagnosis, treatment, and

management of cancer and other age-associated dis-

eases. Indeed, age is the largest single risk factor for

cancer (cruk.org/cancerstats). Therefore, interventions

that ameliorate age-associated disease must be consid-

ered carefully in the context of cancer incidence and

prognosis. These questions are at the nexus of the

challenges and opportunities that lied ahead for those

pursuing the mechanisms of telomere integrity, aging

and cancer.
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