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Abstract

Sensory processing occurs in neocortical microcircuits in which synaptic connectivity is highly 

structured– and excitatory neurons form subnetworks that process related sensory information,. 

However, the developmental mechanisms underlying the formation of functionally organized 

connectivity in cortical microcircuits remain unknown. Here we directly related patterns of 

excitatory synaptic connectivity to visual response properties of neighbouring layer 2/3 pyramidal 

neurons in mouse visual cortex at different postnatal ages, using two-photon calcium imaging in 
vivo and multiple whole-cell recordings in vitro. Although neural responses were highly selective 

for visual stimuli already at eye opening, neurons responding to similar visual features were not 

yet preferentially connected, indicating that the emergence of feature selectivity does not depend 

on the precise arrangement of local synaptic connections. After eye opening, local connectivity 

reorganised extensively, as more connections formed selectively between neurons with similar 

visual responses, and connections were eliminated between visually unresponsive neurons, while 

the overall connectivity rate did not change. We propose a unified model of cortical microcircuit 

development based on activity-dependent mechanisms of plasticity: neurons first acquire feature 

preference by selecting feedforward inputs before the onset of sensory experience – a process that 

may be facilitated by early electrical coupling between neuronal subsets– – after which patterned 

input drives the formation of functional subnetworks through a redistribution of recurrent synaptic 

connections.

Intrinsic and experiential factors guide the patterning of neural pathways and the 

establishment of sensory response properties during postnatal development–. During this 

time, neural circuit refinement is thought to depend on the elimination of initially exuberant 
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projections and/or selective formation of new connections,. However, the mechanisms 

governing the emergence of structured connectivity in local cortical microcircuits, where 

dendrites and axons overlap extensively, remain uncertain. Moreover, it is not clear whether 

the organisation of synaptic connections between nearby neurons is established early and 

inherently linked to the formation of receptive fields (RFs) before the onset of sensory 

experience or whether the mature patterns of recurrent connectivity appear only after the 

formation of RFs as a result of correlated activity induced by feedforward drive from the 

sensory periphery. Here we investigate these questions in networks of layer 2/3 pyramidal 

cells in mouse primary visual cortex (V1) — where neighbouring neurons exhibit a diversity 

of preference for visual features,– — by determining how local synaptic connectivity relates 

to visual response properties during development.

Stimulus selective responses in V1 are observed at eye opening–, but the extent to which 

detailed RFs are established by this time remains unclear. To characterize the spatial RF 

structure of L2/3 neurons in V1 at eye-opening (P14 – 15) and in more mature mice (P28 – 

35), we used in vivo two-photon calcium imaging in monocular V1 to obtain spatial RFs by 

reverse correlation,, of static natural images and spiking responses inferred from calcium 

signals (see Methods, Fig. 1a,b), and fitted a two-dimensional Gabor function to the RFs 

(Supplementary Fig. 1). At eye-opening, L2/3 neurons exhibited a diversity of RF spatial 

structures that resembled those of mature V1 neurons (Fig. 1c, Supplementary Fig. 1a). The 

proportion of neurons with significant linear RFs was similar between the two age groups 

(Fig. 1d, P14 – 15, 60%, 191 out of 317; P28 – 35, 58%, 201 out of 348, P = 0.51, Chi-

squared test), as was the angle of visual space subtended by RFs (Fig. 1e, mean visual angle 

along the long RF axis ± s.d., P14 – 15, 29.3 ± 13.6°; P28 – 35, 29.4 ± 10.3°, P = 0.12, rank-

sum test; see also Supplementary Fig. 1b,c). The similarity of RF structures was shown by 

the overlapping distributions of standard RF measures of nx(=σxf) and ny(=σyf), which, 

respectively, express the width and length of the fitted Gabor in units of the underlying 

grating period (see Methods, Supplementary Fig. 1d, median nx, P14 – 15, 0.31; P28 – 35, 

0.32, P = 0.14; median ny, P14 – 15, 0.20; P28 – 35, 0.20, P = 0.41, rank-sum test). For 

comparison, the orientation tuning of neurons responsive to drifting gratings was slightly but 

significantly broader at eye-opening than in more mature V1 (Supplementary Fig. 2a,b; 

median orientation selectivity index (OSI), P13 – 15, 0.62 vs P 22 – 26, 0.68, P = 2.39 × 

10−34, rank-sum test). Neuronal responses at eye-opening, however, exhibited higher 

variability to repeated presentation of the preferred grating stimulus (coefficient of variation) 

than in more mature animals (Supplementary Fig. 2c; mean CV ± s.d., P13 – 15,: 0.93 

± 0.36 vs P22 – 26, 0.71 ± 0.30, P=1.17 × 10−304, rank-sum test), indicating that responses 

in immature animals were less reliable despite the presence of clearly defined RFs and 

orientation selectivity.

The similarity of spatial RF properties in immature and older V1 suggests that the 

organization of feedforward connections was largely established by the time of eye-opening. 

We next tested whether synaptic connectivity of neurons in the local cortical network is 

functionally specific when vision begins. We combined in vivo two-photon calcium imaging 

in V1 and subsequent multiple whole-cell recordings in slices of the same tissue (Fig. 2). We 

first imaged calcium signals at consecutive depths within L2/3 to characterize the responses 

to natural movies and drifting gratings of all neurons within a volume of approximately 
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285×285×40–120 μm3. We then carried out simultaneous whole-cell recordings in vitro 
from two to six neighboring L2/3 pyramidal neurons separated by less than 50 μm (Fig. 

2a,b; mean distance ± s.d., P13 – 15, 24 ± 9 μm; P22 – 26, 25 ± 10 μm). We recorded from a 

total of 143 and 140 neurons in the slice at P13 – 15 and P22 – 26, respectively, which were 

identified in the in vivo image stack by image registration based on affine transformation

(Fig. 2a). Synaptic connectivity was assessed by evoking action potentials in each neuron 

sequentially while searching for the presence of excitatory postsynaptic potentials (EPSP) in 

the other neurons (Fig. 2b) This approach allowed us to relate the probability of finding 

connections between pairs of L2/3 neurons to the correlation of their average responses to 

natural movies (signal correlation, Fig. 2c,d,f,h) and to the differences in their preferred 

orientation (Fig. 2g,i). We used natural-movie signal correlation for comparison of response 

similarity not only because it was a good predictor of the similarity of their linear RFs 

(Supplementary Fig. 3), but because it also likely captures the similarity of feature 

selectivity in neurons with nonlinear RFs, which could not be estimated by reverse 

correlation.

The overall rate of connectivity was not significantly different between the two age groups 

(Fig. 2e, P13 – 15, 16.4%, 58 of 353 connections tested; P22 – 26, 21.7%, 64 of 295 

connections tested, P = 0.09, Chi-squared test). Among the recorded neurons, 73% (104 out 

of 143) and 56% (79 out of 140) exhibited significant responses to the natural movie (see 

Methods). As we reported previously, among responsive L2/3 pyramidal cells, the 

connection probability increased steeply with increasing signal correlation at P22 – 26 (Fig. 

2f, P = 4.6 × 10−4, Cochran-Armitage test). This was not the case at P13 – 15 (P = 0.092), 

when a much weaker trend was observed. Specifically, there were twice as many 

connections between highly correlated neuronal pairs (signal correlation ≥ 0.1) in older V1 

than at eye opening (Fig. 2f, P13 – 15, 19.4%, 19 of 98 tested vs P22 – 26, 41.5%, 22 of 53 

tested, P = 0.0035, Chi-squared test). Therefore, the functional selectivity of synaptic 

connections increased in the period after eye-opening, as more connections formed 

selectively between neurons responding to similar stimulus features.

We further examined the refinement of connection specificity by relating the connection rate 

between reliably responsive and orientation tuned neurons (Fig. 2g, P13 – 15, 43.4%, 62 out 

of 143; P22 – 26, 57.9%, 81 out of 140, see Methods) to the difference in their preferred 

orientation. A significant decreasing relationship between connection probability and the 

difference in preferred orientation was present in more mature V1 but not at eye-opening 

(Fig. 2g; P13 – 15, P = 0.27; P22 – 26, P = 0.034, Cochran-Armitage test). Together, these 

results indicate that at eye-opening the organization of synaptic connections between nearby 

L2/3 pyramidal neurons exhibits only weak functional specificity. After the onset of visual 

experience, connectivity increases specifically between neurons coding for similar visual 

features.

Previous studies suggest that bidirectional recurrent connections are overexpressed in some 

cortical networks, and they are most frequent between L2/3 pyramidal cell pairs with similar 

visual responses in mature V1. We examined whether a similar organization of bidirectional 

motifs is already present at eye-opening. In contrast to mature mice, visually naive mice did 

not exhibit a larger proportion of bidirectionally connected pairs between neurons with 
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highly correlated responses to the natural movie (Fig. 2h; P13 – 15, P = 0.27; P22 – 26, P = 

0.01, Cochran-Armitage test). Similar trends were found between neurons preferring similar 

orientations (Fig. 2i; P13 – 15, P = 0.13; P22 – 26, P = 0.11, Cochran-Armitage test). 

Therefore, this statistical feature of pairwise connectivity also refines after eye-opening, 

such that a greater proportion of neurons with similar visual responses become 

bidirectionally connected (Fig. 2h,i).

We next tested for developmental changes in recurrent connectivity between neurons not 

reliably responsive to visual stimuli, which were encountered at similar proportions at both 

age groups (fraction of non-significantly responsive neurons to repeated presentations of the 

natural movie: P13 – 15, 39%, 4133/10509 neurons; P22 – 26, 44%, 4691/10662). At P22 – 

26, non-responsive neurons connected to each other at much lower rates than responsive 

neurons (Fig. 3a, P < 0.01, Tukey’s HSD multiple comparison test among proportions). At 

P13 – 15, however, both responsive and non-responsive neurons formed recurrent 

connections at similar rates (Fig. 3a, P > 0.05). These data suggest that connections between 

L2/3 neurons not driven effectively by visual stimuli are selectively eliminated after eye-

opening (Fig. 3a, P < 0.01). This non-specific connection scheme at eye-opening is 

consistent with the statistics of population activity during visual stimulation, which showed a 

two-fold higher total pairwise firing rate correlation at P13 – 15 than at P22 – 26 (Fig. 3b, 

median correlation, P13 – 15, 0.044 vs P22 – 26, 0.021, P < 10−307, rank-sum test). Higher 

activity correlations at eye-opening may allow connections to be maintained between 

neurons not reliably driven by visual stimuli. These connections are then lost as activity in 

the V1 network becomes progressively less correlated.

To obtain a mechanistic insight into the refinement of local recurrent connectivity after eye-

opening, we constructed a network model of the neocortex based on activity-dependent 

synaptic plasticity. The model consists of a recurrently connected cortical network of 18 

excitatory and five inhibitory integrate-and-fire neurons (see Methods). Cortical neurons 

received feedforward input from 500 presynaptic neurons, a subset of which exhibited 

spatially correlated activity during each iteration of the simulation (Fig. 4a). The weights of 

both recurrent and feedforward synapses were updated by a voltage-based spike-timing-

dependent plasticity (vSTDP) learning rule. Initially, neurons were seeded with RFs (see 

Methods) while the weights of the recurrent network were drawn randomly from a uniform 

distribution (Fig. 4b, upper panels). Excitatory neurons in the recurrent network with the 

same RFs developed strong, mostly bidirectional connections (Fig. 4b,c; 93.2%; proportions 

taken across 50 simulations). There was a strong decrease in connectivity between neurons 

that were not responsive to feedforward input (Fig. 4d; from 20.5% near the beginning to 

0.6% at the end of the simulation) but not between neurons which were both responsive to 

feedforward input (from 26.0% to 20.7%), consistent with experimental observations (Fig. 

3a). To further compare the model’s behaviour with our experimental data we froze the 

feedforward and recurrent weights at three time points and measured the signal correlation 

between all responsive neuronal pairs. Higher signal correlations between neurons predicted 

a higher rate of connectivity at later but not earlier stages of network development (Fig. 4e, 

Fig. 2f). The model also predicted the increase in bidirectional connections between neurons 

with high signal correlations at later stages of development (Fig. 4e, Fig. 2h). These 
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simulations suggest that feedforward connection patterns determine the structure of 

recurrent connectivity by activity-dependent mechanisms of synaptic plasticity.

Our results indicate that RFs exist before mature patterns of recurrent connectivity. However, 

transient electrical coupling via gap junctions (GJs) between clonally related neurons 

contributes to shared feature selectivity and raises the possibility that intracortical 

connectivity may precede and instruct RF formation,,. We extended our network model 

earlier in time to examine the mechanisms by which GJ coupling may influence the 

emergence of RFs and recurrent connectivity. In this model, early recurrent connectivity in 

the cortical network was provided by electrical gap junctions (Fig. 4f,g) while recurrent 

excitatory chemical synapses did not exist, approximating the organization of the mouse 

neocortex in the first postnatal week. Early feedforward connections were randomly 

assigned (Fig. 4f,g) and their weights were updated according to the vSTDP rule. Cell pairs 

were more likely to stabilize the same set of feedforward inputs (i.e. develop the same RF) if 

they had been connected by gap junctions (Fig. 4h; GJ coupled, 31.6%, 79/250 pairs; not GJ 

coupled, 4.1%, 305/7400; P < 0.001, Chi-squared test; 50 simulations). We then removed the 

gap junctions, which disappear by the second postnatal week in mouse V1, and assigned 

random recurrent synaptic connections to neurons in the cortical network (Fig. 4f,g). 

Neurons sharing the same RF formed strong synaptic connections (Fig. 4c,g). Therefore, the 

functional specificity of recurrent connections was influenced indirectly by early GJ motifs 

(Fig. 4i), as electrically coupled neurons were first likely to develop the same RFs before 
becoming synaptically connected. Separate simulations initiated with chemical connections 

revealed that modifiable bidirectional chemical connections had no influence on either the 

formation of RFs or recurrent connectivity at the end of the simulation (Fig. 4h,i; probability 

of developing same RF: not connected, 5.5%, 270/4918; bidirectional chemical connections, 

3.8%, 11/288; P = 0.22, Chi-squared test; 50 simulations). Therefore, early initial biases in 

cortical connectivity may only influence functional circuit development if they exist as 

strong and stable connections when feedforward inputs are being selected. Although the 

absolute connectivity rates found experimentally were not perfectly replicated (Fig. 2f 

versus Fig. 4e), the connection probability between cells with similar visual responses was 

higher when assessed deeper in the acute slice, where connections are more likely to be 

preserved during cutting (Supplementary Fig. 6 of ).

We found that the functional specificity of local connections in mouse V1 was not apparent 

at eye-opening despite the occurrence of highly selective responses to visual features. While 

the overall rate of synaptic connectivity did not change after eye-opening, connections 

redistributed according to the following rules: more connections were added preferentially 

between neurons responding most similarly to visual stimuli, while connections were 

eliminated between cells not reliably responsive to visual stimulation. This result is 

surprising given existing theories of neural circuit formation, which suggest either that 

connections are initially exuberant and subsequently ‘prune’ away, or that synapse number 

increases after the onset of sensory experience,. Instead, in local L2/3 networks we find a 

balanced restructuring of connectivity after eye-opening. It remains to be seen whether 

similar mechanisms contribute to the elaboration of long-range connections in visual cortex 

of rodents and higher mammals,,.
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Functionally specific connection patterns between L2/3 pyramidal cells appear to be 

instructed by feedforward input (e.g. from layer 4 or the visual thalamus) only after RF 

formation. Our network model suggests that correlated firing driven by feedforward activity 

increases the functional specificity of recurrent connections by activity-dependent 

mechanisms of synaptic plasticity, which leads to the preferential formation of synapses 

between any neurons sharing similar RFs. The model can additionally explain how 

electrically coupled neurons early in development first develop similar feature selectivity 

and then preferential recurrent connectivity,, (Fig. 4g-i).

Our data suggest that functionally organized connectivity between L2/3 pyramidal neurons 

is not necessary for establishing elemental RF properties at eye-opening. Instead, it may 

contribute to the amplification of visually driven responses and thereby increase the 

robustness and reliability of cortical representation of sensory input with age 

(Supplementary Fig. 2c), which may be facilitated by the preferential formation of 

bidirectional connections between neurons with similar stimulus preferences (Fig. 2h,i). The 

role of inhibition for the maturation of visual responsiveness remains to be determined.

In conclusion, the patterning of recurrent cortical connectivity through the feedforward-

driven activity-dependent redistribution of connections may be a fundamental rule by which 

neurons link up into assemblies that process related information.

Methods

Animals and surgical procedures

All experimental procedures were carried out in accordance with institutional animal welfare 

guidelines and licensed by the UK Home Office. Experiments were performed on C57Bl/6 

mice aged postnatal days 13 – 15 and 22 – 35. Mice were initially anesthetized with a 

mixture of fentanyl (0.05 mg/kg), midazolam (5.0 mg/kg), and medetomidin (0.5 mg/kg). At 

the time of imaging, the injectable anesthetic had mostly worn off and light anesthesia was 

maintained by isoflurane (0.3 −0.5%) in a 60:40% mixture of O2:N2O delivered via a small 

nose cone. Surgery was performed as described previously. Briefly, a small craniotomy (1 – 

22mm) was carried out over primary visual cortex and sealed after dye injection with 1.6% 

agarose in HEPES-buffered artificial cerebrospinal fluid (ACSF) and a cover slip.

In vivo two-photon calcium imaging

For bulk loading of cortical neurons, the calcium-sensitive dye Oregon Green BAPTA-1 AM 

(OGB-1 AM, Molecular Probes) was first dissolved in 4 μl DMSO containing 20% Pluronic 

F-127 (Molecular Probes), and further diluted (1/11) in dye buffer (150 mM NaCl, 2.5 mM 

KCl, and 10 mM HEPES [pH 7.4]) to yield a final concentration of 0.9 mM. 

Sulforhodamine 101 (SR 101, 50μM, Molecular Probes) was added to the solution for 

experiments in C57Bl/6 mice to distinguish neurons and astrocytes. The dye was slowly 

pressure injected into the monocular region of right visual cortex at a depth of 170 – 200 μm 

with a micropipette (3–5 MΩ, 3 – 10 psi, 2–4 min) under visual control by two-photon 

imaging (×10 water immersion objective, Olympus). Activity of cortical neurons was 

monitored by imaging fluorescence changes with a custom-built microscope and a mode-
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locked Ti:sapphire laser (Mai Tai, Spectra-Physics) at 830 nm or 930 nm through a ×40 

water immersion objective (0.8 NA, Olympus). Scanning and image acquisition were 

controlled by custom software written in LabVIEW (National Instruments).

Visual stimuli were generated using MATLAB (Mathworks) Psychophysics Toolbox,, and 

displayed on a LCD monitor (60 Hz refresh rate) positioned 20 cm from the left eye, roughly 

at 45 degree to the long axis of the animal, covering ~105 × 85 degrees of visual space. At 

the beginning of each experiment, the appropriate retinotopic position in visual cortex was 

determined using small grating stimuli at 12 – 24 neighboring positions. The monitor was 

repositioned such that the preferred retinotopic position of most imaged neurons was 

roughly in the middle of the monitor.

Imaging frames of 256×256 pixels were acquired at 7.6 Hz while presenting different visual 

stimuli, including naturalistic images and movies, and drifting gratings (see sections below 

for details). After each recording, the focal plane and imaging position was checked and 

realigned with the initial image if necessary. In combined in vivo functional imaging and in 
vitro connectivity assaying experiments, to obtain visually evoked responses from all 

neurons in a cortical volume of approximately 285×285×40 – 120 μm3, images were 

recorded at 7 to 18 cortical depths with a spacing of 7 μm, starting at ~110 μm below 

cortical surface, corresponding to superficial layer 2/3 in mouse V1.

Image sequences were aligned for tangential drift and analyzed with custom programs 

written in MATLAB and LabVIEW. Recordings with significant brain movements, vertical 

drift, or both, were excluded from further analysis. Cell outlines were detected using a semi-

automated algorithm based on morphological measurements of cell intensity, size, and 

shape, and subsequently confirmed by visual inspection. After erosion of the cell-based 

regions of interest (ROIs) (to minimize influence of the neuropil signal around the cell 

bodies), all pixels within each ROI were averaged to give a single time course (ΔF/F), which 

was additionally high-pass filtered at a cut-off frequency of 0.02 Hz to remove slow 

fluctuations in the signal. Spike trains were inferred from calcium signals using a fast non-

negative deconvolution method which approximates the maximum a posteriori spike train 

for each neuron, given the fluorescence observations. This method yields spike probabilities 

(or inferred firing rate) that linearly related to the number of action potentials per imaging 

frame.

Receptive field measurement

Receptive field data were acquired from four mice at eye-opening (P14 – 15) and five 

mature mice (P28 – 35). Naturalistic image sequences (between 1440 and 2700 individual 

images) were presented on the monitor during two-photon calcium imaging. Images were 

shown at 2s intervals (0.5s presentation time, interleaved by 1.5s grey screen) for a total 

presentation time of between 0.83-1.5 hrs. After the onset of each natural image, 15 imaging 

frames were recorded at 7.6Hz before presenting the next image. For each cell in the imaged 

region, the response to an image was calculated in the following way. Spike probabilities 

were inferred from calcium signals using the fast non-negative deconvolution method 

described above. For each visual stimulus, k (=1,…,N), and each cell, i (=1,…,C), the 

response to the stimulus can be expressed r(k,i,j) where j=1,…,15 are the 15 imaging frames. 
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An average population response was calculated . If the imaging 

frame J denotes the frame during which the peak average population response occurred (so 

that R(J)=maxj{R(j)}), then the response of cell i to stimulus k was defined .

To estimate linear receptive fields, a regularized pseudoinverse method was used for reverse 

correlating neuronal responses with images of natural scenes. This algorithm regularizes the 

inverse problem by introducing a two-dimensional smoothness constraint on the linear 

receptive field; namely, the constraint is that the Laplacian of the RF should be close to zero 

at all points (▽2RF = 0). This method introduces a regularization parameter, λ, which 

balances the emphasis to be placed on fitting the data and the emphasis to be placed on the 

smoothness constraint.

Since this method introduces a free parameter λ, we performed the following analysis to 

choose the regularization parameter. For each cell and each regularization parameter, the 

naturalistic images and associated responses were separated into training (75% of the data) 

and test (remaining 25% of the data) data sets. Training data sets were chosen randomly and 

the remaining 25% of the data was placed into the test data set. Linear RFs were then 

calculated using the training data, and a sigmoid nonlinearity, described by the equation

(where A is the amplitude, α determines the slope, and β determines the offset of the 

sigmoid) was then fit to the training data to convert the linear predictions made by the RF 

into neuronal spike probabilities. Response predictions to the naturalistic images of the test 

data set were then made and the correlation coefficient between the actual and predicted 

responses was taken as a measure of RF prediction performance. This procedure was carried 

out for each cell and each regularization parameter 100 times. For each cell, the 

regularization parameter that maximized the RF prediction performance was chosen.

To assess whether the receptive field for a particular cell was significant, the response vector 

to the naturalistic image sequence was randomly shuffled and the reverse correlation was 

performed again using the same regularization parameter, λ. This procedure was repeated 

100 times to produce 100 shuffled receptive fields, RFshuffled. From these shuffled receptive 

fields the mean, μshuffled, and standard deviation, σshuffled across all pixels were calculated. A 

receptive field was defined to be significant if there were pixels which had absolute values > 

μshuffled + 6σshuffled.

For Gabor fitting we used only the RFs determined as significant by the previous analysis. 

The RF was parameterized in MATLAB by fitting a two-dimensional Gabor function using 

the Levenberg-Marquardt algorithm. The Gabor function is described by:
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where,

These equations describe an underlying two-dimensional cosine grating parameterized by θ 

(orientation), f (spatial frequency) and φ (phase), which is enveloped by a two-dimensional 

Gaussian function parameterized by A (amplitude), (cx,cy) (centre of the Gaussian) and and 

σx and σy (standard deviations of the Gaussian perpendicular to and parallel to the axis of 

the grating, respectively). Gabor fits were individually inspected to make sure they matched 

the RF (some Gabor fits were excluded at this point since they did not provide a good match 

to the RF: juveniles 3/191 (1.6%), adults 6/201 (3%)).

To quantify the shape of RFs, the dimensionless measures nx = σxf and ny = σyf were used. 

These values express the size of the Gaussian envelope in terms of the wavelength of the 

underlying cosine grating. For instance, nx = 1 indicates that the standard deviation of the 

Gaussian perpendicular to the grating is equal to half a cycle of the underlying cosine 

grating. To get a measure of the size of the RF (Fig. 1, Supplementary Fig. 1), the visual 

angle subtended by the Gabor fit along the axis perpendicular to the direction of the cosine 

grating was calculated. That is, if the eye of the mouse is located at (0,0,0)cm in space, the 

centre of the monitor at (0,0,d) (where d is the shortest distance of the mouse eye from the 

screen), the centre of the Gabor fit to the RF at (cx,cy,d), and the angle of orientation of the 

cosine grating on the screen is θ, then the visual angle, α, subtended by the Gabor was 

calculated as:

where u = (cx – σx cosθ, cy + δx sinθ,d), v = (cx + σx cosθ, cy – σx sinθ,d). RF similarity was 

calculated as the pixel-pixel correlation coefficient.

Natural-movie signal correlation

Natural movies consisted of 40 s sequences of either moving scenes in a mouse cage or 

compilations David Attenborough’s Life of Mammals (BBC), adjusted to 70 % mean 

contrast, continuously looped 6 times. Visual responsiveness to natural movies was 

determined by the following procedure. For all stimulus repetitions, inferred spike trains 

were moving-average filtered with a time window of 3 frames (~0.394 s). The smoothed 

firing rates at corresponding points of the stimulus were then treated as groups and tested for 
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differences by one-way ANOVA. Neurons with P-value less than 0.01 (i.e. those that 

exhibited consistently elevated firing during at least one period of stimulus presentation) 

were considered significantly visually responsive. For pairs of significantly responsive 

neurons, the signal correlation was calculated as the Pearson’s correlation coefficient of the 

averaged responses to the stimulus.

Orientation tuning

To measure the orientation preference and selectivity of neurons, square-wave gratings 

(0.035 cycle/degree, 2 cycle/s, 100% contrast) drifting in eight different directions were 

randomly interleaved, with the grating standing for 1.4–1.9 s before moving for 0.9–1.5 s 

(six repetitions per grating). Responsive neurons that exhibited consistently elevated firing 

during at least one time point of presentation of each grating were identified by one-way 

ANOVA. Among cells responsive to grating stimuli (P-value < 0.05), the mean of inferred 

firing rate of during the presentation of a drifting grating was taken as the response to each 

stimulus. From each trial, we obtained one orientation tuning curve, and neurons were 

defined as reliably responsive if the mean cross-correlation between all pairs of curves 

obtained from different trials was above 0.1. Responses from different trials were then 

averaged to obtain the average orientation tuning curve for each neuron. This orientation 

tuning curve was then Fourier interpolated to 360 points, and the preferred direction was 

determined by the angle at which the interpolated tuning curve attained its maximum. The 

preferred orientation was taken as the modulus of the preferred direction to 180 degrees. 

Orientation selectivity index (OSI) was calculated as (Rbest − Rortho)/(Rbest + Rortho), where 

Rbest is the interpolated response to the preferred direction, and Rortho is the average of 

interpolated responses to the directions orthogonal to best responding direction. When 

relating connection probability to orientation selectivity, neurons were defined as orientation 

selective if OSI >0.4. For quantifying neuronal response reliability we calculated the 

coefficient of variation (standard deviation/mean) from responses to the optimal grating 

direction.

In vitro whole-cell recording

We carried out imaging experiments followed by whole-cell recordings in vitro at P13 – 15 

and P22 – 26, using approach as described previously. After two-photon calcium imaging of 

visual responses in vivo, small volumes of red fluorescent microspheres (Lumafluor) were 

injected into the imaged region to facilitate identification of the region in the slice tissue. 

The mouse brain was then rapidly removed to and dissected in ice-cold artificial 

cerebrospinal fluid (ACSF) containing 125 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 1.25 mM 

NaH2PO4, 2 mM CaCl2, 26 mM NaHCO3, 25 mM Dextrose; osmolarity 315-325 mOsm, 

bubbled with 95% O2/5% CO2, pH 7.4. Visual cortex slices (300 μm) were cut coronally 

(HM 650 V Vibration Microtome, MICROM) and were incubated at 34 °C for thirty minutes 

before they were transferred to the recording chamber. The slice containing the imaged 

region was identified by the presence of OGB-1 green fluorescence and the red microsphere 

injection site. To reveal the relative locations of cells, a detailed morphological stack of the 

slice was acquired with a custom-built microscope and a mode-locked Ti:sapphire laser 

(Chameleon, Coherent) at 830 nm through a ×16 water immersion objective (0.8 NA, 

Nikon). Scanning and image acquisition were controlled by custom software written in 
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LabVIEW (National Instruments). Whole cell recordings from two to six cells were carried 

out in regions identified by visually comparing image stacks obtained in vivo and in vitro, 

using red fluorescent microspheres and the pial surface as reference. Recordings were 

carried out in 28°C ACSF, using Multiclamp 700B amplifiers (Axon Instruments) and data 

was acquired using custom software running in Igor Pro (WaveMetrics Inc.) or MATLAB. 

Recording pipettes were filled with internal solution containing 5 mM KCl, 115 mM K-

Gluconate, 10 mM K-HEPES, 4 mM MgATP, 0.3 mM NaGTP, 10 mM Na-Phosphocreatine, 

0.1% w/v Biocytin, 40 μM Alexa Fluor 594; osmolarity 290–295 mOsm, pH 7.2. Junction 

potential was not corrected for. The chloride reversal potential was ~−85.2 mV. Cells were 

approached under visual guidance using laser-scanning Dodt contrast. After breakthrough, 

the presence of synaptic connections was tested by evoking five spikes at 30 Hz in each cell, 

repeated 30 to 120 times, while searching for postsynaptic responses. PPR was calculated as 

the amplitude of the second evoked EPSP over that of the first one. After connectivity 

mapping, step currents from −125/250 pA to 350/700 pA were injected at 25/50 pA 

increments. Pyramidal neurons were identified according to morphology in Alexa 594 filled 

image stacks (Fig. 2a), regular-spiking pattern on current injection and spike half-width (> 1 

ms), and in the presence of connections, depolarizing postsynaptic potentials (Fig. 2b). To 

match the same neurons imaged in vivo and recorded from in vitro, we performed three-

dimensional image registration of in vivo and in vitro image stacks by affine transformation 

using custom-written MATLAB software subsequent to the experiment.

Connection probabilities were calculated as the number of connections detected over the 

number of potential connections assayed. Probability of unidirectional and bidirectional 

connections were calculated as the number of unidirectionally and bidirectionally connected 

pairs over the total number of pairs respectively. To relate connectivity to functional 

properties, the asymptotic Cochran-Armitage test for trend was used to test for significance 

of linear trends. Pairs in which a high quality recording was achieved in only one cell (e.g. 

the other cell was too depolarized/unhealthy, or the seal resistance was less than 1 GΩ) 

connectivity was assayed only in the direction from the unhealthy cell to the healthy cell 

only, given that spikes could be evoked in both cells. Data from these pairs were included in 

the analysis of connection probability, but not in the analysis of probability of finding 

bidirectional or unidirectional pairs. Only neuronal pairs in which both neurons were located 

at >60 μm depth from slice surface and with an inter-soma distance of <50 μm were 

included in the analysis.

The strength and short term plasticity of synapses were also measured because these 

synaptic parameters affect the efficacy of presynaptic firing on postsynaptic partners. 

Connections between L2/3 pyramidal cells in P13 – 15 mice were significantly stronger 

(Supplementary Fig. 4a; median EPSP amplitude, P13 – 15, 0.41 mV vs P22 – 26, 0.20 mV, 

P = 2.9 × 10−4, rank-sum test), and paired-pulse ratio (PPR) significantly lower 

(Supplementary Fig. 4b; median PPR, P13 – 15, 0.87, vs P22 – 26, 1.13, P = 6.2 × 10−4, 

rank-sum test) than in P22 – 26 mice, in line with previous reports. However, in both age 

groups there was no significant correlation between EPSP amplitude or PPR with signal 

correlation or difference in preferred orientation (Supplementary Fig. 4c-f). Part of the 

connectivity data was published previously in .
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Neuron model

In the network model, the dynamics of membrane potential u(t) of model neurons is 

described by the Adaptive Exponential Integrate-and-Fire (AdEx) model

where C is the membrane capacitance, gL the leak conductance, EL the resting potential and 

I the stimulating current. The exponential term describes the activation of sodium current. 

The parameter ΔT is called the slope factor and VT the threshold potential. A 

hyperpolarizing adaptation current is described by the variable wad with dynamics

where τwad is the time constant of the adaption of the neuron and α a parameter. Upon firing 

the variable u is reset to a fixed value Vreset whereas wad is increased by an amount b. An 

additional current z, which is set to a value Isp immediately after a spike occurs and decays 

otherwise with a time constant τz,

was used to account for spike afterpotential. Refractoriness is modelled with an adaptive 

threshold VT which starts at VTmax after a spike and decays to VTrest with a time constant 

τVT,

Parameters for the neuron model were taken from for the AdEx, τz was set to 40 ms in 

agreement with, and kept fixed throughout all simulations (see Table 1).

Plasticity model

Our plasticity model exhibits separate additive contributions to the plasticity rule, one for 

LTD and another one for LTP. For the LTD part, we assumed that presynaptic spike arrival at 

synapse t induces depression of the synaptic weight wi by an amount 

. The brackets []+ indicate rectification, i.e. any value  does 

not lead to a change. The quantity  is an exponential low-pass filtered version of the 

postsynaptic membrane potential u(t) with time constant τ_:
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Since the presynaptic spike train is described as a series of short pulses at time  where t is 

the index of the synapse and n an index that counts the spike, , we have 

for depression

where  is an amplitude parameter that is under the control of homeostatic processes, 

depending on the mean depolarization  of the postsynaptic neuron, averaged over a time 

scale of 1 second. The time scale of 1 second is not critical (100 seconds or more would be 

more realistic for homeostasis), but convenient for the numerical implementation.

For the LTP part, we assumed that each presynaptic spike at the synapse wi increases the 

trace  of some biophysical quantity, which decays exponentially with a time constant 

τx
,

where Xi(t) is the spike train defined above. Potentiation is given by

Here, ALTP is a free amplitude parameter fitted to electrophysiology data and  is 

another low-pass filtered version of u(t) similar to  but with a shorter time constant τ+. 

Thus positive weight changes can occur if the momentary voltage u(t) surpasses a threshold 

θ+ and, at the same time the average value  is above θ−.

The final rule used in the simulation was

combined with hard bounds wmin ≤ wi ≤ wmin. For network simulation, 

, where  is a reference value.

Network simulation

In all simulations, five hundred presynaptic Poisson neurons with firing rates 

 were connected to 18 postsynaptic excitatory neurons. The input rates 

 followed a Gaussian profile, i.e. , with variance σ = 10 
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and amplitude A = 30. The center μ of the Gaussian shifted randomly every 100 ms between 

ten equally distributed positions, each position occurring with equal probability. Circular 

boundary conditions were assumed, i.e. neuron t = 500 was considered as neighbour of 

neuron t = 1. Five inhibitory neurons were each driven by 14 excitatory neurons and each 

projected onto 11 excitatory neurons. These connections were chosen randomly and were 

fixed with a weight equal to 1. Feedforward connections onto the inhibitory neurons were 

drawn from a uniform distribution on the interval [0,0.5] and were fixed for the duration of 

the simulation. The reference value was set to . Parameters were chosen as in 

Table 2. The excitatory recurrent connections were plastic under the same rule and with the 

same parameters as the feedforward connections (Table 2), but the amplitudes ALTP and 

ALTD were reduced by a factor of 100.

In the first set of simulations, feedforward weights were initialized with receptive fields 

(weights taken from previous test simulations took values between 0 and 3 which were also 

the hard bounds). At the beginning of the simulation, recurrent excitatory connection 

weights were drawn randomly from a uniform distribution on the interval [0,0.75] (hard 

bounds were set to 0 and 0.75). At each time point during the simulation, noise current 

(Gaussian white noise) was injected into each cell independently in the recurrent network. In 

this and all subsequent networks, the model was run for 20s of simulated time to allow the 

homeostatic dynamical variables to settle before the recurrent synaptic weights were 

reinitialized. The simulations were then run for another 1000s.

To calculate signal correlations in the network at three different time points (at the 

reinitialization of recurrent excitatory chemical synapses, 1 s of simulation time later, and 

end of the simulation), the weights were frozen and the same stimuli were played in order to 

assess the firing rate correlations across neurons. Two neurons were considered to be 

bidirectionally connected if both synaptic weights between them were >0.6, and 

unidirectionally connected if only one was >0.6.

Responsiveness was determined in the following way: the feedforward weights onto each 

neuron were summed, to produce a single value for each cell. These values were then plotted 

on a histogram, which displayed a bimodal distribution. A threshold value was chosen in 

between the two peaks of this bimodal distribution, to separate the cells into responsive and 

non-responsive. Feedforward weights were manually checked to make sure no cells with 

clear RFs were missed. Neuronal pairs whose RFs had a correlation coefficient of >0.85 

were defined to have the same RF.

The recurrent gap-junction network began so that neurons 1 and 2 were electrically coupled 

together, neurons 3 and 4 together and neurons 5 to 7 together, and was run in this state for 

200s. There were no chemical synapses during this time. The gap junction model was taken 

from. The current from neuron i to j was defined as Iij(t) = α∑iδ(t – ti) – ggap[uj(t) – ui(t)], 
where ggap was chosen to be 2 and α such that the spikelet was about 2mV. The network was 

in this state for 200s of simulation time (after the initial 20s settling time), at which point 

gap junctions were removed and replaced with recurrent excitatory chemical connections 

with weights drawn randomly from a uniform distribution on the interval [0,0.75]. After this 
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time point Gaussian white noise current stimulation was again provided to each cell in the 

recurrent network. The network was then run for another 800s.

The comparison chemical network was run in the same manner as the gap-junction network 

except that a recurrent chemical network, with weights drawn randomly from a uniform 

distribution on the interval [0,0.75], replaced the recurrent gap-junction network during the 

first 200s, and there was no replacement of the recurrent weights after this 200s.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Colin Akerman, David Attwell, Robert Froemke, Michael Hausser, Christiaan Levelt, Christian Lohmann, 
Troy Margrie, Jesper Sjostrom and members of the Mrsic-Flogel lab for helpful advice and comments on the 
manuscript. We thank Duncan Farquarson, Derek Halpin, Alan Hogben of the UCL machine shop for custom parts. 
The work was supported by the Wellcome Trust (T.D.M.-F., S.B.H., C.B.), Medical Research Council (L.C.), 
European Research Council and the 7th Framework of European Commission ‘EuroV1sion’ grant (T.D.M.-F.), and 
the Swiss National Science Foundation (C.C., grant no. PA00P3_139703).

References

1. Binzegger T, Douglas RJ, Martin KAC. A quantitative map of the circuit of cat primary visual 
cortex. J. Neurosci. 2004; 24:8441–8453. [PubMed: 15456817] 

2. Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB. Highly nonrandom features of synaptic 
connectivity in local cortical circuits. PLoS Biol. 2005; 3:e68. [PubMed: 15737062] 

3. Brown SP, Hestrin S. Intracortical circuits of pyramidal neurons reflect their long-range axonal 
targets. Nature. 2009; 457:1133–1136. [PubMed: 19151698] 

4. Perin R, Berger TK, Markram H. A synaptic organizing principle for cortical neuronal groups. Proc. 
Natl. Acad. Sci. U.S.A. 2011; 108:5419–5424. [PubMed: 21383177] 

5. Ko H, et al. Functional specificity of local synaptic connections in neocortical networks. Nature. 
2011; 473:87–91. [PubMed: 21478872] 

6. Yoshimura Y, Dantzker JLM, Callaway EM. Excitatory cortical neurons form fine-scale functional 
networks. Nature. 2005; 433:868–873. [PubMed: 15729343] 

7. Yu Y-C, et al. Preferential electrical coupling regulates neocortical lineage-dependent microcircuit 
assembly. Nature. 2012; 486:113–117. [PubMed: 22678291] 

8. Yuste R, Peinado A, Katz LC. Neuronal domains in developing neocortex. Science. 1992; 257:665–
669. [PubMed: 1496379] 

9. Li Y, et al. Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature. 
2012; 486:118–121. [PubMed: 22678292] 

10. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996; 
274:1133–1138. [PubMed: 8895456] 

11. White LE, Fitzpatrick D. Vision and cortical map development. Neuron. 2007; 56:327–338. 
[PubMed: 17964249] 

12. Huberman AD, Feller MB, Chapman B. Mechanisms underlying development of visual maps and 
receptive fields. Annu. Rev. Neurosci. 2008; 31:479–509. [PubMed: 18558864] 

13. Innocenti GM, Price DJ. Exuberance in the development of cortical networks. Nature Reviews 
Neuroscience. 2005; 6:955–965. [PubMed: 16288299] 

14. Purves D, White LE, Riddle DR. Is neural development Darwinian? Trends Neurosci. 1996; 
19:460–464. [PubMed: 8931267] 

15. Mrsic-Flogel TD, et al. Homeostatic regulation of eye-specific responses in visual cortex during 
ocular dominance plasticity. Neuron. 2007; 54:961–972. [PubMed: 17582335] 

Ko et al. Page 15

Nature. Author manuscript; available in PMC 2016 April 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



16. Smith SL, Häusser M. Parallel processing of visual space by neighboring neurons in mouse visual 
cortex. Nat. Neurosci. 2010; 13:1144–1149. [PubMed: 20711183] 

17. Bonin V, Histed MH, Yurgenson S, Reid RC. Local diversity and fine-scale organization of 
receptive fields in mouse visual cortex. J. Neurosci. 2011; 31:18506–18521. [PubMed: 22171051] 

18. Hubel DH, Wiesel TN. Receptive fields of cells in striate cortex of very young, visually 
inexperienced kittens. J. Neurophysiol. 1963; 26:994–1002. [PubMed: 14084171] 

19. Chapman B, Stryker MP. Development of orientation selectivity in ferret visual cortex and effects 
of deprivation. J. Neurosci. 1993; 13:5251–5262. [PubMed: 8254372] 

20. Krug K, Akerman CJ, Thompson ID. Responses of neurons in neonatal cortex and thalamus to 
patterned visual stimulation through the naturally closed lids. J. Neurophysiol. 2001; 85:1436–
1443. [PubMed: 11287467] 

21. Rochefort NL, et al. Development of Direction Selectivity in Mouse Cortical Neurons. Neuron. 
2011; 71:425–432. [PubMed: 21835340] 

22. White LE, Coppola DM, Fitzpatrick D. The contribution of sensory experience to the maturation of 
orientation selectivity in ferret visual cortex. Nature. 2001; 411:1049–1052. [PubMed: 11429605] 

23. Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal 
networks. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:7319–7324. [PubMed: 12777621] 

24. Smyth D, Willmore B, Baker GE, Thompson ID, Tolhurst DJ. The receptive-field organization of 
simple cells in primary visual cortex of ferrets under natural scene stimulation. J. Neurosci. 2003; 
23:4746–4759. [PubMed: 12805314] 

25. Hofer SB, et al. Differential connectivity and response dynamics of excitatory and inhibitory 
neurons in visual cortex. Nat. Neurosci. 2011; 14:1045–1052. [PubMed: 21765421] 

26. Reid RC, Alonso JM. Specificity of monosynaptic connections from thalamus to visual cortex. 
Nature. 1995; 378:281–284. [PubMed: 7477347] 

27. Clopath C, Büsing L, Vasilaki E, Gerstner W. Connectivity reflects coding: a model of voltage-
based STDP with homeostasis. Nat. Neurosci. 2010; 13:344–352. [PubMed: 20098420] 

28. Ohtsuki G, et al. Similarity of visual selectivity among clonally related neurons in visual cortex. 
Neuron. 2012; 75:65–72. [PubMed: 22794261] 

29. Callaway EM, Katz LC. Emergence and refinement of clustered horizontal connections in cat 
striate cortex. J. Neurosci. 1990; 10:1134–1153. [PubMed: 2329372] 

30. Ruthazer ES, Stryker MP. The Role of Activity in the Development of Long-Range Horizontal 
Connections in Area 17 of the Ferret. J. Neurosci. 1996; 16:7253–7269. [PubMed: 8929433] 

Methods References

31. Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F. Sulforhodamine 101 as a specific marker of 
astroglia in the neocortex in vivo. Nat. Methods. 2004; 1:31–37. [PubMed: 15782150] 

32. Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997; 10:433–436. [PubMed: 9176952] 

33. Pelli DG. The VideoToolbox software for visual psychophysics: transforming numbers into 
movies. Spat Vis. 1997; 10:437–442. [PubMed: 9176953] 

34. Vogelstein JT, et al. Fast nonnegative deconvolution for spike train inference from population 
calcium imaging. J. Neurophysiol. 2010; 104:3691–3704. [PubMed: 20554834] 

35. Ringach DL. Mapping receptive fields in primary visual cortex. J. Physiol. (Lond.). 2004; 
558:717–728. [PubMed: 15155794] 

36. Sjöström PJ, Turrigiano GG, Nelson SB. Rate, timing, and cooperativity jointly determine cortical 
synaptic plasticity. Neuron. 2001; 32:1149–1164. [PubMed: 11754844] 

37. Agresti, A. Categorical data analysis. Wiley-Interscience; 2002. 

38. Frick A, Feldmeyer D, Sakmann B. Postnatal development of synaptic transmission in local 
networks of L5A pyramidal neurons in rat somatosensory cortex. J. Physiol. (Lond.). 2007; 
585:103–116. [PubMed: 17916610] 

39. Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an effective description of 
neuronal activity. J. Neurophysiol. 2005; 94:3637–3642. [PubMed: 16014787] 

Ko et al. Page 16

Nature. Author manuscript; available in PMC 2016 April 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



40. Shouval HZ, Bear MF, Cooper LN. A unified model of NMDA receptor-dependent bidirectional 
synaptic plasticity. Proc. Natl. Acad. Sci. U.S.A. 2002; 99:10831–10836. [PubMed: 12136127] 

41. Badel L, et al. Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage 
traces. J. Neurophysiol. 2008; 99:656–666. [PubMed: 18057107] 

42. O’Connor DH, Wittenberg GM, Wang SS-H. Dissection of bidirectional synaptic plasticity into 
saturable unidirectional processes. J. Neurophysiol. 2005; 94:1565–1573. [PubMed: 15800079] 

43. Artola A, Bröcher S, Singer W. Different voltage-dependent thresholds for inducing long-term 
depression and long-term potentiation in slices of rat visual cortex. Nature. 1990; 347:69–72. 
[PubMed: 1975639] 

44. Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat. Rev. 
Neurosci. 2004; 5:97–107. [PubMed: 14735113] 

45. Gerstner W, Kempter R, Van Hemmen JL, Wagner H. A neuronal learning rule for sub-millisecond 
temporal coding. Nature. 1996; 383:76–81. [PubMed: 8779718] 

46. Pfister J-P, Gerstner W. Triplets of spikes in a model of spike timing-dependent plasticity. J. 
Neurosci. 2006; 26:9673–9682. [PubMed: 16988038] 

47. Ostojic S, Brunel N, Hakim V. Synchronization properties of networks of electrically coupled 
neurons in the presence of noise and heterogeneities. J Comput Neurosci. 2009; 26:369–392. 
[PubMed: 19034642] 

Ko et al. Page 17

Nature. Author manuscript; available in PMC 2016 April 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Responses of layer 2/3 pyramidal cells in mouse visual cortex are highly feature 
selective at eye-opening
a, Example of OGB-labelled region at P14 (left, scale bar, 30 μm) with calcium transients of 

two cells obtained with two-photon microscopy (below, scale bars, 20 s, 10 % ΔF/F) in 

response to natural image sequences. b, Linear receptive fields (RFs) of the neurons in a 
obtained by regularized reverse correlation (see Methods); scale bars, 20°. c, RFs of neurons 

from two mice at different ages. d,e, Fractions of neurons with significant RFs (d, chi-

squared test) and RF size (e, rank-sum test) at eye-opening and in more mature V1. Error 

bars show s.d.; n = 4 mice P14 – 15, 5 mice P28 – 35.
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Figure 2. Functionally specific connectivity between L2/3 pyramidal cells is not apparent at eye 
opening
a, Example triplet of neurons shown in a transformed in vivo image (left), the same neurons 

in the brain slice (middle) and during whole-cell recordings (right); scale bar, 30 μm. b, 
Membrane potential recordings from neurons shown in a. Evoked spikes and average traces 

of postsynaptic potentials. Dashed lines indicate timing of presynaptic spikes. Scale bars, 80 

mV, 0.8 mV. c, Peristimulus time histogram of spikes inferred from calcium signals of the 

three neurons in response to a natural movie sequence (averages of six repetitions); scale bar 
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0.02 a.u. d, Schematics of synaptic connectivity and in vivo signal correlations during 

natural movies for the three neurons. e, Overall connectivity rates at eye-opening and in 

more mature V1; Chi-squared test. f, Relationship between connection probability and signal 

correlation of neuronal pairs significantly responsive to the natural movie across age; 

Cochran-Armitage test. g, Relationship between connection probability and difference in 

preferred orientation (ΔOri) among pairs in which both neurons were responsive and 

orientation selective (OSI > 0.4). h,i, The probability of observing uni- or bidirectionaly 

connected pairs as function of either signal correlation (h) or ΔOri (i); n = 13 mice at P13 – 

15, and 18 mice at P22 – 26.
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Figure 3. Developmental elimination of recurrent connections between non-responsive neurons
a, Connection probability between neurons significantly responsive to the natural movie 

(R→R) and between non-responsive neurons (N→N) at two ages; ** indicates P < 0.01, 

Tukey’s HSD multiple comparison test among proportions. b, Distribution of pair-wise time-

varying inferred firing rate correlation coefficients for all responsive cell pairs (to natural 

movies) separated by < 50 μm; *** indicates P < 10−307, rank-sum test).
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Figure 4. Feedforward input structure determines the functional organization of recurrent 
connectivity
a, Schematic of the network model of functional microcircuit development based on voltage-

based spike-timing dependent plasticity (vSTDP) (see text for details). At simulation start, 

cortical neurons were randomly connected, but received spatially clustered input from a 

subset of presynaptic neurons. Both feedforward and recurrent connections were updated via 

the vSTDP rule (see Methods). b, Synaptic weight matrices of feedforward (left, reordered 

for display purposes) and recurrent (right) connections from an example network at the 

beginning and end of the simulation. Recurrent synaptic connections were classified as weak 
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(light grey), unidirectional (white) and bidirectional (black). c, Probability of observing 

weak, uni- or bidirectional connections at simulation end between neurons that start with the 

same RF. d, Connection probability of responsive (R→R) and non-responsive (N→N) 

neuronal pairs during and at the end of the simulation. e, Relationship between connection 

probability and feed-forward input-driven signal correlation at three time points in the 

simulation. f, Schematic of different stages of network model extended earlier in 

development. g, Synaptic weight matrices from example gap-junction network model. The 

recurrent network is initially connected with GJs (yellow) in the absence of chemical 

synapses. With time, neurons selected a spatially clustered set of feedforward inputs (RFs). 

Gap junctions were then removed and recurrent chemical connections were randomly 

assigned. The simulation was then continued as in a and b. h, Probability of developing RFs 

from the same set of feedforward inputs for pairs with no recurrent connections, GJs or early 

bidirectional connections (data from separate simulations) at the start of the simulation. i, 
Probability of developing shared connections depended on the starting connectivity. Data in 

c,d,e,h,i are from 50 network simulations.
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Table 1

Parameters for the neuron model

Parameter Value

C membrane capacitance 281 pF

gL leak conductance 30 nS

EL resting potential −70.6 mV

ΔT slope factor 2 mV

VTrest threshold potential at rest −50.4 mV

τwad adaptation time constant 144 ms

a subthreshold adaptation 4 nS

b spike triggered adaptation 0.0805 pA

Isp spike current after a spike 400 pA

τz spike current time constant 40 ms

τvT threshold potential time constant 50 ms

VTmax threshold potential after a spike −30.4 mV
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Table 2

Parameters for the plasticity model

Parameter Value

θ− LTD/LTP voltage threshold for u‒− u‒+ −70.6 mV

θ+ LTP voltage threshold for u(t) −45.3 mV

ALTD LTD amplitude parameter 14 × 10−5 mV−1

ALTP LTP amplitude parameter 8 × 10−5 mV−2

τx x‒i t  time constant 15 ms

τ− u‒− t  time constant 10 ms

τ+ u‒+ t  time constant 7 ms
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