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Abstract A comprehensive description of the phenotypic changes during cellular aging is key

towards unraveling its causal forces. Previously, we mapped age-related changes in the proteome

and transcriptome (Janssens et al., 2015). Here, employing the same experimental procedure and

model-based inference, we generate a comprehensive account of metabolic changes during the

replicative life of Saccharomyces cerevisiae. With age, we found decreasing metabolite levels,

decreasing growth and substrate uptake rates accompanied by a switch from aerobic fermentation

to respiration, with glycerol and acetate production. The identified metabolic fluxes revealed an

increase in redox cofactor turnover, likely to combat increased production of reactive oxygen

species. The metabolic changes are possibly a result of the age-associated decrease in surface area

per cell volume. With metabolism being an important factor of the cellular phenotype, this work

complements our recent mapping of the transcriptomic and proteomic changes towards a holistic

description of the cellular phenotype during aging.

DOI: https://doi.org/10.7554/eLife.41046.001

Introduction
Cellular aging is a complex multifactorial process affected by an intertwined network of effectors

such as protein translation, protein quality control, mitochondrial dysfunction and metabolism

(Barzilai et al., 2012; Kennedy et al., 1994; Lagouge and Larsson, 2013; Webb and Brunet,

2014). Disentangling cause and effect is a major challenge in aging research (McCormick and Ken-

nedy, 2012). A key requisite towards unraveling the causal forces of cellular aging is a comprehen-

sive account of the concomitant phenotypic changes. In the replicatively aging budding yeast

Saccharomyces cerevisiae, a common model for mitotic aging (Eisenberg et al., 2007), unfortu-

nately, the application of cell ensemble-based omics methods has been difficult due to the rapid

outgrowth of aging mother cells by the newly formed daughter cells. Through a novel cultivation

technique, allowing us to generate large amounts of aged cells, we could recently perform prote-

ome and transcriptome profiling throughout the whole lifespan of S. cerevisiae. There, on the basis

of an identified gradually increasing uncoupling between protein and transcript levels of biogenesis-

related genes, we conjectured that this uncoupling is one of the causal forces of aging

(Janssens et al., 2015). Furthermore, we found changes in expression of enzymes and, consistent

with an earlier report (Lin et al., 2001), in metabolic genes, suggesting an altered metabolism with

increasing replicative age. Here, exploiting our novel cultivation technique (recently also adopted by
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others; Hendrickson et al., 2018), metabolomics and model-based inference methods

(Niebel et al., 2019), we identified a metabolic shift during the replicative lifespan of S. cerevisiae.

With this work, we complement our recent proteome and transcriptome profiling data with the cor-

responding metabolome and fluxome, and generate a description of the functional phenotypic

changes accompanied with cellular aging which ultimately lead to senescence and cell cycle arrest.

Results

Column-based cultivation to enrich aged mother cells
To generate large quantities of aged cells, required for the metabolic profiling, we used our earlier

developed column-based cultivation technique. Here, biotinylated cells attached to streptavidin-con-

jugated iron beads are immobilized inside a column positioned in the center of a ring magnet. A

continuous nutrient flow through the column removes emerging daughter cells, while largely retain-

ing mother cells (Janssens et al., 2015). Several columns operated in parallel, allowed harvesting

cells at different time points, corresponding to cell age. In order to be able to infer data for aged

cells from the harvested samples (which still contained a fraction of daughter cells), we generated at

each harvesting time point three samples differently enriched with aged mother cells; (1) from the

column effluent, (2) from the column after an additional washing step, and (3) from the washing solu-

tion (in the following referred to as mix 1, 2 and 3) (Figure 1). The exact sample compositions (i.e.

the fraction of mother, daughter and dead cells) were determined by flow cytometry using a com-

bined dye-staining with propidium iodide and avidin–FITC. We then determined the cell population-

averaged intracellular metabolite concentrations and, to assess physiological parameters, measured

the change in extracellular metabolites concentrations due to cell growth over a period of 3 hr. To

infer the aged mother cells’ metabolite levels, physiological parameters and intracellular metabolic

fluxes from the mixed-sample measurements, we employed different mathematical model-based

methods (Figure 1).

Intracellular metabolite concentrations decrease with cell age
The intracellular concentrations of 18 metabolites, mainly located in central carbon metabolism,

were quantified by LC-MS/MS in the differently mixed samples (i.e. mix 1, 2 and 3), taken at various

time points (after 10, 20, 44 and 68 hr). As these concentration measurements resembled the aver-

age concentration of metabolites originating from mother and daughter cells, we used non-negative

linear regression to infer the metabolite concentration in each individual population (i.e. aged

mother and young daughter cells), using the determined fractional abundances of each population

and the age-dependent cell volumes, which we determined with microfluidics and microscopy (Fig-

ure 2—figure supplement 1). To confirm the validity of the regression approach, where in general a

good fitting was achieved (R2 = 0.89) (Figure 2—figure supplement 2), we compared the concen-

trations for daughter cells, inferred from the mixed population samples, with metabolite concentra-

tions independently determined from a culture of young streptavidin-labeled cells. Here, we found

an excellent agreement between mathematically inferred and directly determined concentrations

(R2 = 0.99) (Figure 2—figure supplement 3).

Focusing on the intracellular metabolite dynamics in aging mother cells, we found that the con-

centrations of all quantified metabolites already at a relatively young age start to decrease on aver-

age to about half of their initial values (Figure 2a and Figure 2—figure supplement 4). Previously,

also other phenotypic changes have been observed at a young age (Janssens and Veenhoff, 2016).

Remarkably, despite the drop in ATP levels, the adenylate energy charge was maintained between

0.8 and 0.95 (Figure 2—figure supplement 5), which corresponds to values of exponentially grow-

ing cultures (Ditzelmüller et al., 1983). The drop in metabolic concentrations suggests that meta-

bolic activities are globally decreased in aged cells and, as many metabolites have also regulatory

function (Huberts et al., 2012; Litsios et al., 2018), the observed concentration changes are

expected to lead to metabolic rearrangements.
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Cells switch from a fermentative to a respiratory metabolism with age
To assess changes on the level of metabolic fluxes, we next determined the physiological rates, that

is growth, metabolite uptake and excretion rates of aging cells. At each time point (after 10, 20, 44

and 68 hr), we measured the evolution of cell count and extracellular concentrations of glucose,

pyruvate, acetate, glycerol and ethanol over a period of three hours in each harvested sample (i.e.

mix 1, 2 and 3). The fractional abundance of each cell population was determined before and after

that period. We used a second set of aliquots to measure the evolution of produced carbon dioxide

and consumed oxygen using a Respiration Activity Monitoring System (RAMOS) (Hansen et al.,

2012). To infer the population-specific physiological rates from the mixed-population samples, we

fitted the acquired dynamic data to an ordinary differential equation model, describing the changes

of the biomass and extracellular metabolite concentrations in the samples, due to mother and

daughter cell growth and their respective metabolism (Figure 2—figure supplements 6–8). To

assess the validity of the inference approach, we compared the physiological rates inferred for

daughter cells to physiological rates independently determined from unlabeled as well as from

streptavidin-labeled cell cultures, both consisting of predominantly young cells. Here, we found a

good agreement between the rates mathematically inferred for daughter cells and the rates directly

obtained from these cultures containing young cells (Figure 2b).
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Figure 1. Overview of the experimental and model-based analyses to determine the metabolite levels,

physiological parameters and intracellular metabolic fluxes of replicatively aging budding yeast. Samples were

harvested at various time points (corresponding to different cell ages) from a column-based cultivation system

(Janssens et al., 2015), designed to enrich aged mother cells. The fractional abundance of mother, daughter and

dead cells in each sample was determined by flow cytometry and a combined dye-staining with propidium iodide

and avidin–FITC. Aliquots were used to determine the intracellular metabolite concentrations, c�i, by LC-MS/MS

and the cell count, ncell(t), by flow cytometry, extracellular metabolites (i.e. substrates and products), cS(t) and cP(t),

by HPLC and the integral of oxygen and carbon transfer rates, OTR and CTR (i.e. total consumed oxygen and

produced carbon dioxide) by a Respiration Activity Monitoring System (RAMOS), in the mixed population samples.

Next, the age-dependent intracellular metabolite concentrations (ci) were inferred from the acquired population-

average data using non-negative least square regression (NNLS) and the physiological parameters (growth (m) and

metabolite exchange rates (q)) of mother (mo) and daughter (da) cells) from an ordinary differential equation

(ODE) model. The inferred physiological parameters and intracellular metabolite levels of aged mother cells were

then analyzed using a combined stoichiometric-thermodynamic metabolic model and regression analysis to obtain

the intracellular metabolic flux distribution.

DOI: https://doi.org/10.7554/eLife.41046.002
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Figure 2. Changes in metabolite concentrations and physiological parameters during cellular aging. (a) The

intracellular metabolite concentrations of 18 metabolites at various cell ages were inferred from LC-MS/MS

measurements, cell volume measurements and the fractional abundances of each cell population using non-linear

least square regression. Grey dashed lines depict the change of intracellular metabolite concentrations relative to

concentrations determined from streptavidin-labeled cells (i.e. young cells at an age of 0 hr). The change in ATP

concentration is highlighted in red, and FBP (fructose-1,6-bisphosphate) in blue. Figure 2—figure supplement 4

shows the data for each metabolite in absolute units. Figure 2—source data 1 contains the data. (b) The growth

(m), metabolite uptake and production rates at various cell ages were obtained by measuring the evolution of cell

count and extracellular metabolites (including produced carbon dioxide and consumed oxygen) and fitting the

acquired data to an ordinary differential equation model. A positive value indicates metabolite production and a

negative uptake. To assess the validity of the inference approach physiological rates were independently

determined from unlabeled and streptavidin-labeled cell cultures (time point 0 hr), consisting of predominantly

young cells. The shading reflects the inverse of the relative uncertainty of the estimation (i.e. values which are

depicted with a higher transparency are more uncertain). Figure 2—source data 2 contains the data.

DOI: https://doi.org/10.7554/eLife.41046.003

The following source data and figure supplements are available for figure 2:

Source data 1. Intracellular metabolite concentrations inferred for daughter and aging mother cells.

Figure 2 continued on next page
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In aging cells, we found that the specific glucose uptake rate (GUR) decreased drastically towards

the end of their lifespan to almost 10% of the value of young cells (Figure 2b), which is in line with

the simultaneously decreasing concentration of fructose-1,6-bisphosphate (Figure 2—figure supple-

ment 9) and its function as a glycolytic flux-signaling metabolite (Huberts et al., 2012). This

decrease in GUR was accompanied by a reduction of growth rate, which we qualitatively confirmed

with single-cell measurements (Figure 2—figure supplement 10). Furthermore, while at a young

age, cells showed a fermentative metabolic phenotype indicated by ethanol production and a low

oxygen uptake rate (although oxygen was sufficiently available in the setup; Janssens et al., 2015),

with increasing age cells shifted towards a respiratory phenotype as indicated by an increase in oxy-

gen uptake and reduced ethanol excretion (Figure 2b). Using principle component analysis, we

found a similar shift on the level of protein expression data (Figure 2—figure supplement 11). How-

ever, unlike a normal respiratory metabolism, where no byproducts would be excreted, up to half of

the carbon influx was directed to glycerol and acetate excretion. Acetate metabolism has been

linked to apoptosis (Giannattasio et al., 2013) and the production of glycerol indicates a stress

response (Albertyn et al., 1994). This stress response might be crucial for survival at a high replica-

tive age as a gpd1D (rate limiting step in the synthesis of glycerol) mutant shows a significant

reduced lifespan (Kaeberlein et al., 2002). At the end of their lifespan (starting from time point 44

hr), cells started to co-consume ethanol, produced by surrounding daughter cells, for which we

obtained independent evidence from microfluidics experiments (Figure 2—figure supplement 12).

The identified stress responsive metabolism and decreased glucose uptake rate are consistent with

signatures related to starvation and oxidative stress, as foundin our earlier proteome and transcrip-

tome analysis (Janssens et al., 2015).

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.41046.016

Source data 2. Growth rates and yields inferred for daughter and aging mother cells.

DOI: https://doi.org/10.7554/eLife.41046.017

Figure supplement 1. The cellular volume gradually increases with cellular age.

DOI: https://doi.org/10.7554/eLife.41046.004

Figure supplement 2. Inference of intracellular metabolite concentrations.

DOI: https://doi.org/10.7554/eLife.41046.005

Figure supplement 3. Comparison of inferred intracellular metabolite concentrations with independently

determined concentrations of young cells.

DOI: https://doi.org/10.7554/eLife.41046.006

Figure supplement 4. Inference of intracellular concentrations of 18 metabolites with cell age.

DOI: https://doi.org/10.7554/eLife.41046.007

Figure supplement 5. The energy charge remains constant with cell age.

DOI: https://doi.org/10.7554/eLife.41046.008

Figure supplement 6. Inference of physiological parameters from dynamic changes in extracellular metabolites.

DOI: https://doi.org/10.7554/eLife.41046.009

Figure supplement 7. Inference of physiological parameters from dynamic changes in extracellular metabolites.

DOI: https://doi.org/10.7554/eLife.41046.010

Figure supplement 8. Inference of physiological parameters from dynamic changes in extracellular metabolites.

DOI: https://doi.org/10.7554/eLife.41046.011

Figure supplement 9. FBP (fructose-1,6-bisphosphate) concentration as function of sugar uptake rate.

DOI: https://doi.org/10.7554/eLife.41046.012

Figure supplement 10. The decreasing growth rate was confirmed using single cell analysis.

DOI: https://doi.org/10.7554/eLife.41046.013

Figure supplement 11. The yeast proteome progressively transforms form a fermentation- to a respiration-

associated state during aging.

DOI: https://doi.org/10.7554/eLife.41046.014

Figure supplement 12. Replicative lifespan is increased in the presence of ethanol.

DOI: https://doi.org/10.7554/eLife.41046.015
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Metabolic changes are accompanied by drastic intracellular flux
rearrangements
To infer the normalized intracellular flux distributions (i.e. metabolic rates normalized by GUR) from

the acquired physiological data, we used a recently developed computational method

(Niebel et al., 2019). This method rests on a thermodynamic and stoichiometric model of cellular

metabolism (as a function of metabolite concentration and metabolic flux) and was shown to yield

predictions in good agreement with 13C based metabolic flux analysis, while not relying on labelling

data (Niebel et al., 2019). The model consists of a mass balanced metabolic reaction network,

including glycolysis, gluconeogenesis, tricarboxylic acid cycle, amino acid-, nucleotide-, sterol-syn-

thesis and two reactions accounting for the NAD(P)H demand required for scavenging of reactive

oxygen species (ROS). The reaction directionalities are constrained by the associated changes in

Gibbs energy, and the Gibbs energy dissipated by the sum of all metabolic processes is balanced

with the Gibbs energy exchanged with the environment through exchange processes (i.e. the pro-

duction and consumption of extracellular metabolites). Using this model and regression analysis, we

analysed the inferred metabolite concentrations (Figure 2a) and physiological rates (Figure 2b) (Fig-

ure 3—figure supplement 1). Subsequently, we assessed the solution space of the regression solu-

tion by minimizing the ‘absolute sum of fluxes’ (Holzhütter, 2004) to obtain the normalized

intracellular flux distributions during aging.

The inferred intracellular metabolic rearrangements with age echo our findings from the extracel-

lular physiology. Up until an age of 20 hr the intracellular physiology depicted a fermentative pheno-

type with a low normalized flux into the pentose phosphate pathway and a low normalized flux in an

incomplete tricarboxylic acid cycle as the majority of carbon was leaving glycolysis through the pyru-

vate decarboxylase towards ethanol. After 20 hr, cells began to gradually shift towards a respiratory

phenotype, where an increasing proportion of the incoming carbon flux was directed into the pen-

tose phosphate pathway and half of the carbon flux leaving the upper glycolysis going each towards

glycerol excretion and through the lower glycolysis in the tricarboxylic acid cycle, while part of the

carbon loss was compensated by the uptake of ethanol and pyruvate (Figure 3).

This switch in metabolic operation was accompanied by an increased redox nucleotide turnover

(Figure 4). Up until an age of 20 hr, the majority of NADH was generated in glycolysis and regener-

ated through the alcohol dehydrogenase. After the switch to respiration, the tricarboxylic acid cycle

became the major source of NADH, which in turn was regenerated in the respiratory chain. During

the first 20 hr, NADPH turnover was low but after the switch towards respiration NADPH was pro-

duced in the pentose phosphate pathway and through the aldehyde dehydrogenase. The increase in

redox nucleotide turnover can be attributed to increased demands to combat emerging reactive

oxygen species (ROS) (Figure 4). Despite these dramatic changes in cofactor turnover, cells man-

aged to maintain a constant NAD(P)H levels, as observed in age-spanning time-lapse analysis in sin-

gle cells (Figure 4—figure supplement 1).

Discussion
Here, employing again the same experimental setup and procedures, we complement our earlier

generated transcriptome and proteome account during the replicative aging of the budding yeast

Saccharomyces cerevisiae (Janssens et al., 2015), with the metabolic phenotype, inferred from cell

ensemble measurements. Next to globally decreased metabolite levels, we found that cells shift

with age from a fermentative towards a respiratory phenotype accompanied by a decrease in growth

and glucose uptake rate. The increase in cellular volume (and the accompanying decrease in surface

area per cell volume) with age (cf. Figure 2—figure supplement 1) could be in part responsible for

the observed decrease in the volumetric (i.e. dry weight specific) substrate influx, next to possibly

altered hexose transporter expression with age (Kamei et al., 2014). Such decreased substrate

influx will lead to decreased glycolytic fluxes, which trigger a switch towards a respiratory metabo-

lism (Huberts et al., 2012). Increased respiratory activity (Figures 2b and 3) could then lead to an

increased generation of reactive oxygen species (Drakulic et al., 2005) necessitating an increase in

redox cofactor turnover (Figure 4) for ROS scavenging. This cascade of metabolic changes, likely in

part induced by the non-homeostatic volume increases and the concomitant collapse in substrate

uptake rate, might not only cause detrimental effects due to for example ROS production, but the

reduced metabolic rates might also be responsible for the entry into senescence, as it was recently
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shown that sufficiently high enough metabolic rates are necessary for cells to pass cell cycle start

(Papagiannakis et al., 2017).

Materials and methods

Method 1 | strain and cultivation conditions
The haploid prototrophic Saccharomyces cerevisiae strain, YSBN6 (MATa, FY3 ho::HphMX4)

(Canelas et al., 2010), which is derived from S288c, was used in this study. All cultivations were per-

formed using yeast nitrogen base (YNB) without amino acids (ForMedium, Norfolk, UK) supple-

mented with 2% glucose at 30˚C and 300 rpm, unless indicated differently.
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Figure 3. Rearrangement of normalized fluxes during replicative aging. The normalized flux distributions (i.e. metabolic rates normalized by GUR) were

obtained by minimizing the ‘absolute sum of fluxes’ within the solution space of the regression analysis of the inferred intracellular metabolite

concentrations and physiological rates. The thickness of the arrows corresponds to the absolute value of the fluxes, normalized to the glucose uptake

rate. The grey dots show the intracellular metabolite concentrations inferred for cells of the respective age where the diameter corresponds to the

natural logarithm of the respective concentration. Note, that this figure does not show the complete model stoichiometry of the metabolic network.

The numeric values of the respective normalized fluxes can be found in Figure 3—source data 1.

DOI: https://doi.org/10.7554/eLife.41046.018

The following source data and figure supplement are available for figure 3:

Source data 1. Reaction stoichiometry of employed metabolic network model, metabolite annotation and inferred predicted intracellular metabolic

fluxes normalized to the glucose uptake rates, for aging mother cells.

DOI: https://doi.org/10.7554/eLife.41046.020

Figure supplement 1. Results of the regression analysis using the combined thermodynamic and stoichiometric metabolic model.

DOI: https://doi.org/10.7554/eLife.41046.019

Leupold et al. eLife 2019;8:e41046. DOI: https://doi.org/10.7554/eLife.41046 7 of 19

Research advance Cell Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.41046.018
https://doi.org/10.7554/eLife.41046.020
https://doi.org/10.7554/eLife.41046.019
https://doi.org/10.7554/eLife.41046


Column-based cultivation of yeast cells and sampling
To generate large quantities of aged yeast cells, necessary to perform bulk measurements, we used

a method, in which cells were immobilized on iron beads and trapped inside a column

(Janssens et al., 2015). Briefly, cells were labelled with biotin and linked to streptavidin-coated iron

beads. This iron bead bound cell culture was then grown in a column, equipped with an iron grid, in

which the beads (and the cells attached to them) were trapped by a magnet. A continuous medium

flow through the column washed out most emerging daughter cells and kept the mother cells in a

constant, nutrient-rich environment. With the used flow rate of 170 mL h�1, the glucose concentra-

tion stayed almost constant (only dropped from 21.7 to 20.1 g L�1) and the concentration of major

byproducts (pyruvate, succinate, glycerol, acetate and ethanol) never exceeded 1 g L�1. Further-

more, the dissolved oxygen saturation never dropped below 75%. The precise instrumental as well

as experimental setup for the column-based cultivation and harvest can be found in Janssens et al.

(2015).

As samples harvested from the column still resembled a mixture of mother, daughter and dead

cells and any subsequent sorting step, aiming at an absolutely pure mother cell fraction would have

inherently led to a distortion of the metabolic phenotype, we opted for an approach also followed in

our previous study (Janssens et al., 2015), to computationally infer the phenotype of each subpopu-

lation. Specifically, we generated at each aging time point three samples with different proportions

of mothers, daughter and dead cells (i.e. (1) from the column effluent, (2) from the column after an

additional washing step, (3) from the washing solution (in the following referred to as mix 1, 2 and
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Figure 4. The metabolic rearrangements with age are accompanied by shifts in redox cofactor turnover. The

redox cofactor production and consumption rates (normalized by the respective glucose uptake rate) were

obtained by minimizing the absolute sum of fluxes within the solution space of the regression analysis of the

inferred intracellular metabolite concentrations and physiological rates. Reactions with a maximal turnover of <0.5

mol molglc
�1 were combined and depicted as various. A positive turnover means that the cofactor is produced

and a negative turnover that the cofactor is consumed. Note, that we did not enforce the emergence of ROS,

however, the model could fit the experimental data the best by using cofactors for ROS scavenging.

DOI: https://doi.org/10.7554/eLife.41046.021

The following figure supplement is available for figure 4:

Figure supplement 1. The intracellular NAD(P)H concentration remains constant with cell age.

DOI: https://doi.org/10.7554/eLife.41046.022
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3)). After harvesting and before the respective analysis (and for the physiological characterization

additionally at the end of the growth experiment), the cell count specific fractional abundance of

each subpopulation in each sample was determined by flow cytometry and a combined dye-staining

with propidium iodide and avidin – FITC. Later the metabolite concentrations and the cellular physi-

ologies of each individual cell population (i.e. mother, daughter and dead cells) were mathematically

inferred from data originating from the mixed samples and the determined fractional abundance.

Method 2 | inference of intracellular metabolite concentrations
Regeneration
To allow the cells to recover from any possible stress during the sampling procedure, all samples

were transferred in an Erlenmeyer flask containing 10 mL medium, adjusted to a cell density of 2 �

107 cells mL�1 and incubated for 20 min at 30˚C and 300 rpm prior analysis.

Sample preparation
A sample of 3 � 107 cells was taken from the Erlenmeyer flask and immediately quenched in 10 mL

�40˚C methanol. The cells were separated from the organic solvent by centrifugation (5 min, 21’000

g, 4˚C), washed with 2 mL �40˚C methanol, separated again by centrifugation and stored at �80˚C.
For the following analysis, the cell pellet was re-suspended in 900 mL �40˚C extraction buffer (meth-

anol, acetonitrile and water, 4:4:2 v/v/v supplemented with 0.1 M formic acid) and an internal stan-

dard of 13C-labeled metabolites was added to the extraction. This standard was obtained and

quantified from exponentially growing cell cultures prior to the experiment (Wahl et al., 2014). The

extraction solution was agitated for 10 min at room temperature and thereafter centrifuged at maxi-

mum speed. The supernatant was transferred to a new vial and the cell pellet re-suspended in 900

mL �40˚C extraction buffer and the extraction procedure was repeated a second time. The superna-

tants from both steps were combined and centrifuged for 45 min at 4˚C and 21’000 g to remove any

remaining non soluble parts. Thereafter, the supernatant was vacuum-dried at 45˚C for approxi-

mately 1.5 hr and prior to the further analysis dissolved in 200 mL water.

Measurement of intracellular metabolites
The extracted metabolite samples were analyzed using a UHPLC-MS/MS system. The chro-

matographic separation was performed on a Dionex Ultimate 3000 RS UHPLC (Dionex, Germering,

Germany) equipped with a Waters Acquity UPLC HSS T3 ion pair column with precolumn (dimen-

sions: 150 � 2.1 mm, particle size: 3 mm; Waters, Milford, MA, USA). The injection volume was 10 mL

and the samples were permanently cooled at 4˚C. A binary solvent gradient was employed (0 min:

100% A; 5 min: 100% A 10 min: 98% A; 11 min: 91% A; 16 min: 91% A; 18 min: 75% A, 22 min: 75%

A; 22 min: 0% A; 26 min: 0% A; 26 min: 100% A; 30 min: 100% A) at a flow rate of 0.35 mL min�1

where solvent A was composed of 5% methanol in water v/v supplemented with 10 mM tributyl-

amine, 15 mM acetic acid and 1 mM 3,5-heptanedione and isopropanole as solvent B. The detection

was done using multiple reaction monitoring (MRM) on a MDS Sciex API365 tandem mass spectrom-

eter, upgraded to EP10+ (Ionics, Bolton, Ontario, Canada) and equipped with a Turbo-Ionspray

source (MDS Sciex, Nieuwerkerk aan den Ijssel, Netherlands) with the following source parameter:

NEB (nebulizing gas, N2): 12 a.u., CUR (curtain gas, N2): 12 a.u., CAD (collision activated dissocia-

tion gas): 4 a.u., IS (ion spray voltage): �4,500 V, TEM (temperature): 500˚C.

Mathematical inference of intracellular metabolite concentrations of mother
and daughter cells using non-negative least squares regression
The concentrations of intracellular metabolites were determined from samples harvested after 10,

20, 44, and 68 hr. The samples were measured in six replicates and the average of this replicates

was used for the mathematical inference. To validate the interference approach we independently

determined the intracellular metabolite concentrations of biotin labeled cells before loading them

onto the column.

The general idea of the in the following described mathematical inference rests on the concept

that a system of linear equations can be solved if the number of independent equations is greater or

equal than the number of unknowns. This was implemented by generating at each time point three

samples (i.e. mix 1, 2 and 3, cf. Methods 1). The measured concentration in each of these three

Leupold et al. eLife 2019;8:e41046. DOI: https://doi.org/10.7554/eLife.41046 9 of 19

Research advance Cell Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.41046


samples is constituted as the sum of the two unknown concentrations in mother and daughter cells,

weighted by their respective known fractional abundance.

Specifically, the in each sample (with ncell cells) measured amount of metabolite, nmeas, contains

metabolites originating from mother (mo) and daughter (da) cells. As dead cells were considered to

be lysed and their metabolite content accordingly leaked into the medium, we assumed that their

contribution to the total metabolite pool can be neglected. With taking the respective volumes of

mother and daughter cells (Method 5 and Figure 2—figure supplement 1), and the fractional abun-

dance of each population into account, the amount of substance of each metabolite in each cell is

given by,

nmeasi;j;k

ncellj;k

¼ aj;kV
mo
k cmoi;k þbj;kV

dacdai ; (1)

where nmeas
i,j,k is the measured amount of substance (unit mol) of the metabolite i in the sample j

(i.e. mix 1, 2 or 3) at the aging time point k (i.e. 10, 20, 44 or 68 hr), ncellj,k the total amount of cells

in the respective sample, aj,k and bj,k the cell count specific fractional abundance of mother and

daughter cells, Vmo
k and Vda the cell volume (unit L cell�1) of mother and daughter cells and cmo

i,k

and cdai the unknown metabolite concentration (unit M) in mother and daughter cells. Note that cdai
and Vda are not indexed over the aging time points k, as we assumed that the daughter cell pheno-

type does not change over time (i.e. daughter cells produced by young mothers are identical with

daughter cells produced by old mothers). To infer the intracellular metabolite concentrations cmo

and cda from the measurements, nmeas, we formulated a non-negative least square regression prob-

lem of the form,

x
minkAc� nk2

2
;c� 0; (2)

where the matrix A contains all fractional volumes aj,k Vmo
k and bj,k Vda in every sample j at every

aging time point k, the vector c the unknown concentrations cmo
i,k and cdai of the metabolite i in

mother and daughter cells at every aging time point k and the vector n all metabolite measure-

ments, nmeas
i,j,k, normalized by the total amount of cells in the sample, ncellj,k, in every sample j at

every aging time point k.

The regression problem in Equation 2 was implemented in MATLAB (Release R2013, MathWorks,

Inc, Massachusetts, USA) and the unknown metabolite concentrations, c, in mother and daughter

cells were identified using the function ‘lsqnonneg’. The uncertainty of the estimation was then

determined by leave-one-out cross-validation, where we one-by-one removed data points from the

set and repeated the estimation procedure (Figure 2—figure supplement 4).

Method 3 | inference of growth, metabolite uptake and production
rates
The physiological parameters (i.e. growth, metabolite uptake and production rates) were deter-

mined from two independent experimental campaigns. In campaign I, samples were harvested after

20, 44 and 68 hr and in campaign II after 10, 20, 44, and 68 hr where the samples from campaign II

were split and analyzed in duplicates. The three data sets of both campaigns were combined for the

inference. Additionally, we determined the physiologies of biotin labeled cells (referred to as ‘0 hr’)

and unlabeled cells (referred to as ‘unlabeled’).

Batch cultivation conditions in minimal medium
The three samples obtained from the cultivation column (i.e. mix 1, 2 and 3) as well as the two refer-

ence samples (i.e. 0 hr and unlabeled) were transferred each in a 250 mL Erlenmeyer flask (or

RAMOS flasks) containing 25 mL medium, adjusted to a cell density of 2 � 107 cell mL�1, and incu-

bated at 300 rpm and 30˚C.

Determination of cell dry weight from cell count
The cell count was measured every 20 min between 1 and 3 hr after inoculation using a BD Accuri

C6 flow cytometer (Becton, Dickinson and Company, Franklin Lakes, NJ). The samples were diluted

with PBS at pH seven to <106 cell mL�1 and 20 mL sample were counted at ’medium’ flow. The
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FSC-H thresholds was set to 80’000 in order to cut off most of the electronic noise. To correct the

measured dry weight for the mass of iron beads in the sample, the iron beads were gated separately

and counted as well. The data were analyzed using the Accuri CFlow Plus software.

As the cell volume and thus the cell specific dry weight (i.e. the weight of one cell) of mother cells

changes with age, towards converting the measured cell counts to dry weight (biomass), we first

determined the cell specific dry weight of mother/dead, mmo/de, and daughter cells, mda. After 3 hr,

at the end of each batch cultivation, 20 mL of culture were filtered through a pre-weighed nitrocellu-

lose filter with a pore size of 0.2 mm. The filter was washed once with distilled water, dried at 80˚C
for two days and afterwards weighed again. The total weight of iron beads attached to mother cells

(here we assumed that one mother cell is attached to one iron bead; Janssens et al., 2015) and free

beads, which was determined from the counted number of iron beads in the sample and the weight

of one individual bead, was subtracted from the total dry weight of each sample. The bead weight

had been determined to be 8.49 � 10�13 g per bead by filtration and weighting of a known amount

of beads. Next, the cell specific dry weight of mother/dead and daughter cells was inferred from the

measured population-average dry weight in the samples, mmeas, by following an in principle similar

approach as done for the intracellular metabolite concentrations. Specifically, we assumed that dead

cells (i.e. died mother cells) and mother cells have the same dry mass and that the dry mass of newly

formed daughter cells does not change over the aging time points. Taking the fractional abundances

of each cell population into account, the measured cell specific dry mass in each sample is given as,

mmeas
j;k

ncellj;k

¼ aj;k þgj;k

� �
m

mo=de
k þbj;km

da; (3)

where mmeas
j,k is the measured population-average dry mass (unit g) after 3 hr cultivation in the

sample j at the aging time point k, ncellj,k the total amount of cells in the respective sample, aj,k the

cell count specific fraction of mother cells, gj,k the cell count specific fraction of dead cells, mmo/de
k

the unknown cell specific dry mass (unit g) of mother or dead cells, bj,k the cell count specific fraction

of daughter cells and mda the unknown cell specific dry mass (unit g) of daughter cells. Next, we for-

mulated a least square regression problem of the form,

x
minkAm� nk2

2
; (4)

where the matrix A contains all fractional abundances aj,k + gj,k and bj,k in every sample j at every

aging time point k, the vector m the unknown cell specific dry weights mmo/de
k and mda at every

aging time point k and the vector n all measured cell dry weights, mmeas
j,k, normalized by the total

amount of cells in the sample, ncellj,k, in every sample j at every aging time point k. The regression

problem in Equation 4 was implemented in R (Release 3.2.0) and the unknown cell specific dry

weights, m, of mother/dead and daughter cells were identified using the function ‘lm’.

The inferred cell specific dry weights of mother/dead and daughter cells were then used to con-

vert the measured cell counts to dry weight. At the beginning of each cultivation (t = 0) the total dry

weight, Xtt=0, is constituted of mother/dead and daughter cells, taking their fractional abundance

into account, while in the following all new emerging cells are daughter cells. The total dry weight at

every time t, Xt, is then given as,

Xt;j;k ¼ at¼0;j;k þgt¼0;j;k

� �
nt¼0;j;km

mo=de
k þbt¼0;j;knt¼0;j;km

da

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Xt¼0;j;k

þ nt;j;k � nt¼0;j;k

� �
mda; (5)

where Xt,j,k is the dry weight of the mixed population sample j of the aging time point k at time t,

at=0,j,k + gt=0,j,k and bt=0,j,k the cell count specific fractional abundances of mother/dead and daugh-

ter cells at the beginning of the cultivation, nt=0,j,k the cell count at the beginning of the cultivation

and nt,j,k the cell count at the time t. Note that k refers to the cell age (i.e. aging time point) and t

refers to the cultivation time at each aging time point (between 0 and 3 hr).

Additionally, the inferred cell specific dry weights of mother/dead and daughter cells were used

to convert the cell count specific fractional abundances, aj,k, bj,k, and gj,k, in the dry mass specific

fractional abundances of mother, daughter and dead cells, adw
j,k, b

dw
j,k, and g

dw
j,k, in every sample j

at every aging time point k:
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adw
j;k ¼

aj;km
mo=de
k

aj;k þgj;k

� �
m

mo=de
k þbj;km

da
; (6)

bdw
j;k ¼

bj;km
mo=de
k

aj;k þgj;k

� �
m

mo=de
k þbj;km

da
; (7)

gdw
j;k ¼

gj;km
mo=de
k

aj;k þgj;k

� �
m

mo=de
k þbj;km

da
; (8)

Determination of glucose and extracellular metabolite concentration
0.3 mL samples were taken every 20 min from 1 to 3 hr after inoculation. To separate the cells from

the medium, the samples were centrifuged at maximum speed for 3 min, the supernatant transferred

onto a filter column (SpinX, pore size 0.22 mm), again centrifuged at maximum spend and the flow

through was further analyzed. The glucose, pyruvate, glycerol, acetate and ethanol concentration

was detected using an Agilent 1290 LC HPLC system equipped with a Hi-Plex H column and 5 mM

H2SO4 as eluent at a constant flow rate of 0.6 mL min�1. The injection volume was 10 mL and the col-

umn temperature was kept constant at 60˚C. Glucose, glycerol, ethanol and acetate were detected

by refractive index and pyruvate by UV (constant wave length of 210 nm) and the respective concen-

trations were determined using an external standard with known concentrations. The data were ana-

lyzed using the Agilent Open Lab CDS software.

Determination of total consumed oxygen and produced carbon dioxide
The oxygen transfer rate (OTR) and carbon dioxide transfer rate (CTR) were determined from

exhaust gas analysis using a respiration activity monitoring system (RAMOS) (Hansen et al., 2012).

The RAMOS measurement flask, containing 25 mL medium, was inoculated with 2 � 107 cell mL�1

and the cultivation conditions were identical to the batch cultures used to determine the other physi-

ological parameters. One RAMOS measurement cycle encompassed a 10 min measuring phase and

a 20 min rinsing phase. The total consumption of oxygen and the production of carbon dioxide in a

time interval were calculated from the mean of two consecutive OTR and CTR measurement cycles

multiplied by the time.

Inference of growth, metabolite uptake and production rates of mother and
daughter cells
To infer the physiological parameter of mother (mo), daughter (da) and dead (de) cells from the

mixed population measurements, we formulated an ordinary differential equation model describing

the dynamic change of biomass and extracellular metabolites during the 3 hr cultivation in each sam-

ple. To this end, we assumed that the physiology of daughter cells stays constant over all aging time

points and that within the 3 hr cultivation the physiology of the mother cells stays constant. Finally,

due to the short experiment time the evaporation of water and metabolites was neglected.

The total biomass in the sample is constituted of mother, dead and daughter cells and thus the

differential mass balance can be formulated as,

0¼
d

dt
adw
j;k þ

d

dt
bdw
j;k þ

d

dt
gdw
j;k : (9)

Due to the short experiment time (3 hr) compared to their life span (>50 hr), we assumed that the

amount of initial mother and dead cells stays constant (i.e. no new mother cells emerge and no

mother cells die during the experiment). Thus,

d

dt
Xmo
j;k ¼

d

dt
adw
j;k Xj;k

� �

¼ 0; (10)

and
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d

dt
Xde
j;k ¼

d

dt
gdw
j;k Xj;k

� �

¼ 0; (11)

where Xj,k is the total biomass and Xmo
j,k and Xde

j,k the biomass of mother and dead cells in sample

j at the aging time point k.

From Equation 9, 10 and 11, and follows that the change in total biomass is only due to the

change in daughter cell biomass, Xda
j,k, which in turn can be either due to the emergence of new

daughter cells originating from mother cells (i.e. budding of mother cells) or originating from daugh-

ter cells (i.e. budding of daughter cells). Thus, the change of the total biomass is given as,

d

dt
Xj;k ¼

d

dt
Xda
j;k ¼

d

dt
bdw
j;k Xj;k

� �

¼ �mo
k adw

j;k Xj;k þ�dabdw
j;k Xj;k; (12)

where mmo
k is the growth rate (unit h�1) of mother cells and mda is the growth rate (unit h�1) of

daughter cells.

Reformulating the partial derivatives in Equations 10 and 11 and adding Equation 12 yields the

change in dry mass specific fractional abundance of mother and dead cells as,

d

dt
adw
j;k ¼

adw
j;k

Xj;k

d

dt
Xj;k ¼�adw

j;k adw
j;k �

mo
k þbdw

j;k �
da

� �

; (13)

and

d

dt
gdw
j;k ¼

gdw
j;k

Xj;k

d

dt
Xj;k ¼�gdw

j;k adw
j;k �

mo
k þbdw

j;k �
da

� �

; (14)

and plugging Equations 13 and 14 and in the differential biomass balance (Equation 9) yields the

change in fractional abundance of daughter cells due to budding of mother and daughter cells as,

d

dt
bdw
j;k ¼ adw

j;k þgdw
j;k

� �

adw
j;k �

mo
k þbdw

j;k �
da

� �

: (15)

Next, the change in glucose concentration in the medium can be due to the uptake by mother

and daughter cells as in,

d

dt
cglc;j;k ¼�Xj;k adw

j;k

�mo
k

Ymo
XS;k
|ffl{zffl}

qmo
S;k

þbdw
j;k

�da

Yda
XS
|{z}

qda
S

0

B
B
B
B
@

1

C
C
C
C
A

; (16)

where cglc,j,k is the measured glucose concentration (unit g L�1) in sample j at the aging time point

k, qS
mo

k and qS
da the specific uptake rates of mother and daughter cells and YXS

mo
k and YXS

da the

biomass yields (unit g gGLU
�1) of mother and daughter cells.

In a similar way, the mass balance for oxygen, carbon dioxide and other fermentation products

can be formulated:

d

dt
cO2 ;j;k ¼�Xj;k adw

j;k Y
mo
O2S;k

�mo
k

Ymo
XS;k

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

qmo
O2 ;k

þbdw
j;k Y

da
O2S

�da

Yda
XS

|fflfflfflffl{zfflfflfflffl}

qda
O2

0

B
B
B
B
@

1

C
C
C
C
A

; (17)

d

dt
cP;j;k ¼ Xj;k adw

j;k Y
mo
PS;k

�mo
k

Ymo
XS;k

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

qmo
P;k

þbdw
j;k Y

da
PS

�da

Yda
XS

|fflfflffl{zfflfflffl}

qda
P

0

B
B
B
B
@

1

C
C
C
C
A

; (18)

where qO2
mo

k, qO2
da, qP

mo
k and qP

da are the biomass specific oxygen uptake and product (including
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carbon dioxide) excretion rates (unit g gDW
�1 h�1) of mother and daughter cells at the aging time

point k and YO2S
mo

k, YO2S
da, YPS

mo
k and YPS

da the respective oxygen and product yields (unit g

gGLU
�1) of mother and daughter cells.

To increase robustness in the estimation, we stated that the mother and daughter cell physiology

needs to fulfill the carbon balance within a certain range.

0:5�

P
qCP

qCS
� 1:5; (19)

where qC
S and qC

P are the specific carbon uptake and excretion rates (unit C-mol gDW
�1 h�1) of

mother and daughter cells.

All three datasets were combined into one parameter estimation problem subject to the Equa-

tions 12–19. All parameters (including initial conditions) as well as the associated uncertainties were

estimated using Maximum Likelihood estimation implemented in the software gPROMS Model-

Builder (Release 4.0, PSE software systems) with the MINLP solver SRQPD where a constant variance

(error model) was assumed for all measurements.

Method 4 | inference of intracellular metabolic fluxes
Computational model of cellular metabolism
To determine the intracellular fluxes at different cell ages from the inferred metabolite concentra-

tions and physiologies, we made use of a recently published computational inference method

(Niebel et al., 2019). This method rests on a combined thermodynamic and stoichiometric network

model of cellular operation, M(v,lnc)�0 (Equation 20), consisting of a mass balanced metabolic reac-

tion network, in which the reaction directionalities are constraint by the associated changes in Gibbs

energy – as a function of the metabolite concentrations c – through the 2nd law of thermodynamics.

Additionally, the Gibbs energy, which is dissipated through metabolic operation (i.e. the sum of all

metabolic processes, MET) is balanced with the Gibbs energy exchanged with the environment

through exchange processes (i.e. the production and consumption of metabolites, EXG),

M v; lncð Þ � 0f g ¼

P

j2MET Sijvj ¼ vi2EXG 8i

DrG
0 lncj
� �

vj � 0 8j2MET
P

j2MET DrG
0 lncj
� �

vj ¼
P

i2EXGDfG
0 lncið Þvi

8

><

>:

9

>=

>;

; (20)

where Sij is the stoichiometric coefficient of the ith reactant (i.e. metabolite) in reaction j, vj the rate

of the reaction j (i.e. the flux through this reaction), DrG’(ln cj) the Gibbs free energy of reaction of

the metabolic process j and DfG’(ln ci) the Gibbs free energy of formation of the reactant i.

The published, and here used, model for Saccharomyces cerevisiae encompasses the metabolic

processes of glycolysis, gluconeogenesis, tricarboxylic acid cycle, amino acid-, nucleotide-, sterol-

synthesis and considers the processes’ location in the cytosol, mitochondria and extracellular space.

To account for cofactor turnover due to the combatting of reactive oxygen species, which is known

to occur at high replicative ages (Ayer et al., 2014), the model was extended by reactions describ-

ing the oxidation of NADH and NADPH through glutathione in the cytoplasm as well as the glutathi-

one exchange (i.e. a sink and a source). This exchange does not represent any direct metabolic

process but needed to be included since the glutathione metabolism is not part of this model.

nadh[c] + gthox[c] => nad[c] + (2) gthrd[c]

nadh[c] + gthox[c] => nad[c] + (2) gthrd[c]

gthox[c] <=>

gthrd[c] <=>

A more detailed description of this model and its implementation can be found in Niebel et al.

(2019).

Regression analysis
Using this model and the inferred age-dependent metabolite concentrations and physiologies, we

formulated a regression problem minimizing the weighted residual sum of squares, RSS(y)
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(Equation 21). As data we used (i) the inferred yields, ~Y
ðkÞ
i (i2PY. . . physiological yield), (ii) the

inferred metabolite concentrations ~c
ðkÞ
i (i2MC1

S
i2MC2. . . metabolite concentration set 1 or 2 (see

below)), both of daughter and aged mother cells at a replicate age of 0, 10, 20, 44 and 68 hr and (iii)

standard Gibbs energies of reaction, Dr
~G

0o
j . The later were determined (including uncertainty) using

the component contribution method (Noor et al., 2013) and as this was not possible for all standard

Gibbs energies, to prevent overfitting, the regression was regularized by the Lasso method

(Hastie et al., 2011).

To ensure the same thermodynamic reference state (i.e. the same standard Gibbs energies of

reactions) in all experimental conditions, we bundled all datasets in on regression problem and

indexed the model (Equation 20) over the experimental conditions k.

RSSðyÞ ¼ 1

#nY

P

k;i2PY

v
ðkÞ
i

v
ðkÞ

glc�D EX

�~Y
ðkÞ
i

~Y
ðkÞ;SE
i

0

B
@

1

C
A

2

þ 1

#nc

P

k;i2MC1

e
lnc

ðkÞ

i½c��~c
ðkÞ
i

~c
ðkÞ;SE
i

 !2

þ
P

k;i2MC2

0:9e
lnc

ðkÞ

i½c�þ0:1e
lnc

ðkÞ

i½m��~c
ðkÞ
i

~c
ðkÞ;SE
i

 !2

4

3

5;

þ 1

#nCCM

P

j2CC

DrG
0o
j
�Dr

~G
0o
j

Dr
~G
0o;SE
j

� �2

þ 0:05
#nunk

DrG
0o
j

�
�
�

�
�
�

(21)

where #nY and #nc are the number of inferred yields and metabolite concentrations, #nCCM the num-

ber of standard Gibbs energies of reaction, which could be estimated by the component contribu-

tion method and #nunk the number of reactions where no standard Gibbs energy of reaction could

be calculated. The residuals were weighted by the respective prediction uncertainty, indicated by

the superscript SE. Metabolites can occur in the cytoplasm and/or in the mitochondrial space

(MC1. . . metabolites occurring in one compartment and MC2. . . metabolites occurring in two com-

partments). Thus, we stated that the sum of the metabolite concentrations in the respective com-

partments, weighted by the fractional compartmental volume (0.9 for the cytoplasm and 0.1 for the

mitochondrial space), had to be equal to the inferred (cell-averaging) concentration. Last, to facili-

tate the convergence of the optimization and for an easy conversion of reaction rates to yields, the

glucose uptake rate, vglc-D_EX, was constraint to a value of 1 mmol gDW-1 h-1.

The regression analysis was implemented in the mathematical programming system GAMS

(GAMS Development Corporation; General Algebraic Modeling System (GAMS) Release 24.2.2.

Washington, DC, USA).

Evaluation of the solution space
To obtain a picture of the intracellular flux distribution, we formulated the solution space, Wreg

(Equation 22), of the optimal regression solution, indicated by an *,

Wreg ¼ v kð Þ; lnc kð Þ;DrG
0o

� �
jM kð Þ v kð Þ; lnc kð Þ;DrG

0o
� ��

^
v
kð Þ
i

v
kð Þ

glc�D EX

¼ Y
kð Þ�

i 8i 2 PY

� �

^ lnc
kð Þ
i ¼ lnc

kð Þ
i 8i 2MC1

� �

^ 0:9e
lnc

kð Þ

i c½ � þ 0:1e
lnc

kð Þ

i m½ � ¼ 0:9e
lnc

kð Þ�

i c½ � þ 0:1e
lnc

kð Þ�

i m½ � 8i 2MC2

� �

^ DrG
0o ¼ DrG

0o�ð Þg

: (22)

Within this solution space we then minimized the ‘absolute sum of fluxes’,

min
j

X

jvjj: v; lncð Þ 2Wreg

� �

: (23)

The optimization problem in Equation 23 was implemented in the mathematical programming

system GAMS (GAMS Development Corporation; General Algebraic Modeling System (GAMS)

Release 24.2.2. Washington, DC, USA).
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Method 5 | determination of NAD(P)H concentration, budding rate, cell
size and replicative lifespan using single cell analysis
Microscopy
For microscopy experiments, cells from exponentially growing batch cultures were used to load a

microfluidic device (Huberts et al., 2013; Lee et al., 2012). Individual cells were monitored using an

inverted fluorescence microscope (Eclipse Ti-E; Nikon) housed in an custom-made microscope incu-

bator (Life Imaging Services GmbH) that retained at a constant temperature of 30˚C. During the

experiment, cells were continuously fed with fresh medium. An LED-based excitation system (pE2;

CoolLED) was used for illumination, and images were recorded using an Andor 897 Ultra EX2 EM-

CCD camera. NAD(P)H autofluorescence (excitation at 365 nm using a 357/44 nm filter and a 409

nm beam-splitter, 200 ms exposure time, 15 % light intensity, 435/40 nm emission, EM gain 1) was

recorded every 60 min to minimize phototoxic effects, and brightfield images every 10 min to reli-

ably track individual cells and determine their division times. A CSI S Fluor 40x Oil (NA = 1.3; Nikon)

objective was used for NAD(P)H. Automated hardware (PFS, Nikon) was used for correction of axial

focus fluctuations during imaging.

Image and data analysis
Cell segmentation for estimation of cell volume and fluorescence intensity took place in a semi-auto-

mated manner using the ImageJ plugin BudJ (Ferrezuelo et al., 2012). For cell volume estimation,

brightfield images captured with the 60x objective were used. Fluorescent intensity measurements

were corrected for background fluorescence using the Rolling Ball Radius algorithm of ImageJ. For

budding rate estimations on the basis of single-cells, the doubling time, td, (time from bud emer-

gence to bud emergence) was measured for each cell in 60x brightfield images, and the budding

rate for each doubling event (ln(2) td
-1) was calculated.

Replicative lifespan
Cells from an exponentially growing culture (minimal medium; Verduyn et al., 1992) supplemented

with 1 % (w/v) glucose were loaded in two identical microfluidic devices located on one cover glass.

Minimal media supplemented with 0.5 % (w/v) glucose with and without 0.1 % (v/v) ethanol were

constantly supplied into the two microfluidic devices, respectively. The cells in the microfluidic devi-

ces were monitored simultaneously by taking bright-field images every 10 minutes for more than 5

days (halogen lamp with a UV-blocking filter, 60x objective). The time points of budding, death and

washout loss were recorded for individual cells using a custom macro in ImageJ. The number of bud-

ding events and fate (death or washed) of the individual cells in both microfluidic devices were used

to assess the replicative age-associated survival via the Kaplan-Meier estimator. The analysis was

implemented using the Lifelines (0.9.4) module in Python (2.7.13). The mean survival and its standard

error were calculated using the Survival (2.43-3) package in R (3.4.1) integrating the survival curves

until 44 buds (the maximal number of buds per cell in two conditions).
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