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 Background: The mouth is exposed to thermal irritation from hot and cold food and drinks.
  Thermal changes in the oral cavity produce expansions and contractions in tooth structures and restorative 

materials. The aim of this study was to investigate the effect of temperature and stress distribution on 2 dif-
ferent post systems using the 3-dimensional (3D) finite element method.

 Material/Methods: The 3D finite element model shows a labio-lingual cross-sectional view of the endodontically treated upper 
right central incisor and supporting periodontal ligament with bone structures. Stainless steel and glass fiber 
post systems with different physical and thermal properties were modelled in the tooth restored with com-
posite core and ceramic crown. We placed 100 N static vertical occlusal loading onto the center of the incisal 
surface of the tooth.

  Thermal loads of 0°C and 65°C were applied on the model for 5 s. Temperature and thermal stresses were de-
termined on the labio-lingual section of the model at 6 different points.

 Results: The distribution of stress, including thermal stress values, was calculated using 3D finite element analysis.
  The stainless steel post system produced more temperature and thermal stresses on the restorative materials, 

tooth structures, and posts than did the glass fiber reinforced composite posts.
 Conclusions: Thermal changes generated stresses in the restorative materials, tooth, and supporting structures.
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Background

Endodontically-treated teeth are usually weakened and become 
more susceptible to fractures due to the loss of dental hard 
tissue structure by caries, cavity preparation, root canal shap-
ing and instrumentation, and decrease in dentin moisture [1]. 
A widely used method for the treatment of structurally weak-
ened teeth is the post-and-core system [1,2]. Prefabricated 
posts may be non-metallic (e.g., carbon fiber, zirconium, and 
resin composites reinforced with glass fiber) or metal (e.g., 
stainless steel and titanium). Metallic posts are luted to the 
root canal with zinc phosphate cement, and non-metallic posts 
are luted with adhesive bondings [3,4].

With advances in materials and technology, several new non-
metal post materials, such as carbon fiber and glass fiber 
post systems have recently become available [5–8]. Although 
use of cast metal posts has been most common, the glass fi-
ber reinforced post-core system is gaining in popularity in re-
cent years [9].

Glass fiber post systems show much better esthetic results 
than metal posts. While metallic posts are prone to fatigue 
failure and corrosion, glass fiber post systems meet the re-
quirements of mechanical strength and retention. Their elastic 
modulus, being similar to dentin, reduces stress on the post-
dentin interface [10].

The oral environment is exposed to thermal stimuli with con-
sumption of hot and cold food and drinks [11]. Palmer et al. 
identified maximum and minimum temperatures between 0°C 
and 67°C in hot and cold liquid using a digital thermometer 
probe [12]. They concluded that thermal conductivity and ex-
pansion values of metal, dentin, and non-metallic restorative 
materials are different [12].

Stress distribution analysis of prefabricated post applica-
tions have been studied by many researchers using differ-
ent theoretical or experimental techniques [7,9,10]. With rap-
id improvements in computer technology, the finite element 
method (FEM) was shown to be a powerful method and nu-
merical model for evaluating behavior of a post-dentin inter-
face [13]. FEM was originally developed in the aircraft industry 
for stress analysis in 1956; this technique is used in engineer-
ing fields, as well as in dentistry, due to its flexibility [14]. FEM 
plays an important role in determining clinical and biomechan-
ical states of thermal conditions in different areas of dentist-
ry. Computer programs allow calculation of stress, strain, and 
deformations [15,16].

The aim of this study was to compare and evaluate the stress 
distributions on an endodontically treated tooth with stainless 
steel and glass fiber posts under thermal and mechanical loads.

Material and Methods

An endodontically treated maxillary central incisor was modeled 
to include the periodontal ligament and alveolar bone (Figure 1). 
Thermal properties of materials, elastic modulus values, and 
Poisson’s ratios are given in Table 1 in accordance with the lit-
erature. Temperature and thermal stresses were determined 
on the labio-lingual section of the model at 6 different points 
(Figure 2).

The model placed static vertical occlusal force of 100 N onto 
the middle of the occlusal surface of the tooth. Rhinoceros 
4.0 software (Seattle, USA) was used for modeling and Algor 
Fempro software (ALGOR, Inc. Pittsburgh, USA) was used for 
stress analysis. Stress distribution and values were calculated 
taking into consideration 3D Von Mises criteria. The thermal 
loads were applied to have an initial value of 0°C (Figure 3, 4), 
and 65°C for the hot liquids (Figures 5, 6). Thermal stress levels 
were measured after 5 s. These temperature ranges and times 
were selected based on previous studies [11,12].

Results

Stress was observed in the middle third of the root. In con-
trast, minimum values were observed both in the apical por-
tion of the post and in the root apex. Assessments were made 
according to the color changes in Figures 3–6, in which warm 
colors denote higher stresses.

Temperature and thermal stresses of the model on 6 differ-
ent points are shown in Table 2. Numerical calculations were 
made according to the Von Mises criteria. For better observa-
tion, stress values were converted to the color chart. All stress 
levels were measured in megapascals.

Figure 1. 3D finite element model and illustration of materials.
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Analyses of Von Mises values for the stainless steel post showed 
that the maximum stress concentration was on the highest 
peak surface of the post and coronal third, between 550.364 
and 653.678 Mpa. For the glass fiber post model, it showed 
that the maximum stress concentration was on the highest 
peak surface of the post and coronal third, between 389.957 
and 521.704 Mpa. Analyses of thermal stress values for the 
stainless steel post showed that the maximum stress concen-
tration was on the highest peak surface of the post and coro-
nal third, between 12.504 and 46.137 Mpa. Analyses of thermal 

stress values for the glass fiber post showed that the max-
imum stress concentration was on the highest peak surface 
of the post and coronal third, between 6.035 and 6.427 Mpa.

Discussion

Many studies have evaluated variables related to the use of 
posts using mechanical tests. Destructive tests, such as frac-
ture mechanics testing, are important in the biomechanical 
analysis of teeth and restorative materials, but they have very 
limited ability to calculate complex stress and strain between 
the tooth and restoration surfaces [25–28]. Non-destructive 
testings, such as strain gauge [29] and FEM test [30–32], are 
more appropriate tools for calculation of the distribution of 
stress in this area [33–37].

In investigations of complex biomechanical structures, finite 
element analysis (FEA) works by dividing a problem domain 
into small elements and executing an element-level compu-
tation to generate a piecewise solution, which cannot be re-
vealed by direct experimental techniques. Rapid progress and 
development in computer technology have increased the ac-
curacy of FEM analysis. Finite element analysis has become a 
powerful method in measuring internal stress when investi-
gating complex systems that are difficult to standardize dur-
ing in vitro and in vivo studies [38,39].

Figure 2.  Six measurement points on labio-lingual view and their 
localizations.
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Material/component
Elastic modulus 

(MPa)
Poisson 

raito

Thermal 
expansion 
(10–6/°C)

Specific heat (103 
J/kg)

Thermal 
conductivity 
[J/(mm·s°C)]

Cortical bone (11, 17, 24) 13.700 0.30 10 0.44 0.5868

Cancellous bone (11, 17, 24) 1.370 0.30 10 0.44 0.5868

Dentin (11, 18, 19, 24) 18.600 0.31 11.4 0.588 0.15

Ligament (11, 20, 24) 68.9 0.45 4.1 0.36 0.5

Gingiva (11, 13, 24) 3 0.45 4.1 0.36 0.5

Gutta-percha (11, 17, 24) 0.69 0.45 54.9 0.22 0.48

Adhesive cement (21, 24) 18.600 0.28 30 0.197 0.976

Composite core (*) (24) 18.600 0.26 39.4 0.2 1.0878

Nickel–Chromium (11, 22, 24) 200.000 0.33 14.3 0.11 66.944

Porcelain crown (11, 19, 23, 24) 68.900 0.28 13.1 0.25 0.754

Zinc phosphate cement (11, 21, 24) 22.000 0.35 35 0.12 1.294

Stainless steel post (11, 13, 24) 200.000 0.33 14.3 0.11 66.944

Glass fiber post (11, 21, 24) 49.000 0.28 8.5 0.26 1.3

Table 1. The mechanical and thermal properties of the materials.

* Information from company.

3718
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS] [Index Copernicus]

Değer Y. et al.: 
The evaluation of temperature and stress distribution

© Med Sci Monit, 2015; 21: 3716-3721

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License

LAB/IN VITRO RESEARCH



Correctly done, FEM analysis can describe how the stress dis-
tribution between dental tissue and dental materials occurs. 
The dental restoration of endodontically treated teeth has an 
important place in dentistry practice. Lately, post and core 

restorations have become viable options for endodontically 
treated teeth and this treatment can make teeth more brittle 
and susceptible to fracture [40].

Material A D E J L I

Stainless steel 0°C 550.364 12.504 5.011 3.356 2.645 0.317

Stainless steel 65°C 653.578 46.137 12.703 3.361 2.855 0.823

Glass fiber 0°C 389.957 6.0358 3.171 3.210 2.483 0.409

Glass fiber 65°C 521.704 6.42740 3.533 3.220 2.660 0.737

Table 2. Temperature and thermal stresses of the model on 6 different points.

Figure 3. Stainless steel post model (0°C).
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Figure 5. Stainless steel post model (65°C).
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Figure 4. Glass fiber post model (0°C).
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Figure 6. Glass fiber post model (65°C).
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High compressive or tensile stress concentrated around posts 
may lead to root fractures and may result a new cracks or wors-
en an existing crack along with tooth surface [41,42].

Our study, which compared stainless steel and glass fiber posts 
under thermal and mechanical loads, determined the effec-
tiveness of post different material types.

The modulus of elasticity of metal is much higher than that 
of dentine. This results in a system that can lead to a cata-
strophic, unrestorable fracture [43]. The high elasticity modu-
lus and high fracture resistance of cast metallic dowels make 
the teeth highly susceptible to catastrophic fractures under in-
tense occlusal forces [21]. Young’s modulus of glass fiber posts 
is close to that of dentine and exhibits higher fatigue and ten-
sile strength [22]. Teeth restored with fiber posts showed high-
er resistance than metallic posts under static loading.

Hot and cold liquids cause thermal stress over time. This phe-
nomenon is a serious condition that should be investigated. 
Drinking hot liquids causes more thermal stress on stainless 

steel posts, and glass fiber posts exhibit less thermal stress 
behavior. Stainless steel post has more thermal stress than 
glass fiber post systems.

According to the results of the present study, post material, 
post design, and post mechanical properties are very impor-
tant in stress distribution. The numerical results indicated that 
the mechanical behavior in the root dentin was affected by 
post material and temperature.

Conclusions

We conclude that thermal and physical properties of the posts 
affected stress distribution in post and core applications. Our 
study showed that when thermal heat is applied, stainless steel 
posts create more stress than glass fiber posts.
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