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SURVIV for survival analysis of mRNA
isoform variation
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The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to

associate mRNA isoform variations to clinical outcomes. Here we report a statistical method

SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA

isoform variation associated with patient survival time. A unique feature and major strength

of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq

data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression

survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV

to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types.

Alternative splicing-based survival predictors consistently outperform gene expression-based

survival predictors, and the integration of clinical, gene expression and alternative splicing

profiles leads to the best survival prediction. We anticipate that SURVIV will have broad

utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq

projects.
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E
ukaryotic cells generate remarkable regulatory and func-
tional complexity from a finite set of genes. Production of
mRNA isoforms through alternative processing and

modification of RNA is essential for generating this complexity.
A prevalent mechanism for producing mRNA isoforms is the
alternative splicing of precursor mRNA1. Over 95% of the multi-
exon human genes undergo alternative splicing2,3, resulting in an
enormous level of plasticity in the regulation of gene function and
protein diversity. In the last decade, extensive genomic and
functional studies have firmly established the critical role of
alternative splicing in cancer4–6. Alternative splicing is involved
in a full spectrum of oncogenic processes including cell
proliferation, apoptosis, hypoxia, angiogenesis, immune escape
and metastasis7,8. These cancer-associated alternative splicing
patterns are not merely the consequences of disrupted gene
regulation in cancer but in numerous instances actively
contribute to cancer development and progression. For
example, alternative splicing of genes encoding the Bcl-2 family
of apoptosis regulators generates both anti-apoptotic and
pro-apoptotic protein isoforms9. Alternative splicing of the
pyruvate kinase M (PKM) gene has a significant impact on
cancer cell metabolism and tumour growth10. A transcriptome-
wide switch of the alternative splicing programme during the
epithelial–mesenchymal transition plays an important role in
cancer cell invasion and metastasis11,12.

RNA sequencing (RNA-seq) has become a popular and cost-
effective technology to study transcriptome regulation and
mRNA isoform variation13,14. As the cost of RNA-seq
continues to decline, it has been widely adopted in large-scale
clinical transcriptome projects, especially for profiling
transcriptome changes in cancer. For example, as of April 2015
The Cancer Genome Atlas (TCGA) consortium had generated
RNA-seq data on over 11,000 cancer patient specimens from 34
different cancer types. Within the TCGA data, breast invasive
carcinoma (BRCA) has the largest sample size of RNA-seq data
covering over 1,000 patients, and clinical information such as
survival times, tumour stages and histological subtypes is
available for the majority of the BRCA patients15. Moreover,
the median follow-up time of BRCA patients is B400 days, and
25% of the patients have more than 1,200 days of follow-up.
Collectively, the large sample size and long follow-up time of the
TCGA BRCA data set allow us to correlate genomic and
transcriptomic profiles to clinical outcomes and patient survival
times.

To date, systematic analyses have been performed to reveal the
association between copy number variation, DNA methylation,
gene expression and microRNA expression profiles with cancer
patient survival16,17. By contrast, despite the importance of
mRNA isoform variation and alternative splicing, there have been
limited efforts in transcriptome-wide survival analysis of
alternative splicing in cancer patients. Most RNA-seq studies of
alternative splicing in cancer transcriptomes focus on identifying
‘cancer-specific’ alternative splicing events by comparing cancer
tissues with normal controls (see refs 18–23 for examples). A
recent analysis of TCGA RNA-seq data identified 163 recurrent
differential alternative splicing events between cancer and normal
tissues of three cancer types, among which five were found to
have suggestive survival signals for breast cancer at a nominal
P-value cutoff of 0.05 (ref. 21). Some other studies reported a
significant survival difference between cancer patient subgroups
after stratifying patients with overall mRNA isoform expression
profiles24,25. However, systematic cancer survival analyses of
alternative splicing at the individual exon resolution have been
lacking. Two main challenges exist for survival analyses of mRNA
isoform variation and alternative splicing using RNA-seq data.
The first challenge is to account for the estimation uncertainty of

mRNA isoform ratios inferred from RNA-seq read counts. The
statistical confidence of mRNA isoform ratio estimation depends
on the RNA-seq read coverage for the events of interest, with
larger read coverage leading to a more reliable estimation14.
Modelling the estimation uncertainty of mRNA isoform ratio is
an essential component of RNA-seq analyses of alternative
splicing, as shown by various statistical algorithms developed for
detecting differential alternative splicing from multi-group
RNA-seq data14,26–29. The second challenge, which is a general
issue in survival analysis, is to properly model the association of
mRNA isoform ratio with survival time, while accounting for
missing data in survival time because of censoring, that is,
patients still alive at the end of the survival study, whose precise
survival time would be uncertain. To date, no algorithm has been
developed for survival analyses of mRNA isoform variation that
accounts for these sources of uncertainty simultaneously.

Here we introduce SURVIV (Survival analysis of mRNA
Isoform Variation), a statistical model for identifying mRNA
isoform ratios associated with patient survival times in large-scale
cancer RNA-seq data sets. SURVIV models the estimation
uncertainty of mRNA isoform ratios in RNA-seq data and tests
the survival effects of isoform variation in both censored and
uncensored survival data. In simulation studies, SURVIV
consistently outperforms the conventional Cox regression
survival analysis that ignores the measurement uncertainty of
mRNA isoform ratio. We used SURVIV to identify alternatively
spliced exons whose exon-inclusion levels significantly correlated
with the survival times of invasive ductal carcinoma (IDC)
patients from the TCGA breast cancer cohort. Survival-associated
alternative splicing events are identified in gene pathways
associated with apoptosis, oxidative stress and DNA damage
repair. Importantly, we show that alternative splicing-based
survival predictors outperform gene expression-based survival
predictors in the TCGA IDC RNA-seq data set, as well as in
TCGA data of five additional cancer types. Moreover, the
integration of clinical information, gene expression and alter-
native splicing profiles leads to the best prediction of survival
time.

Results
SURVIV statistical model. The statistical model of SURVIV
assesses the association between mRNA isoform ratio and patient
survival time. While the model is generic for many types of
alternative isoform variation, here we use the exon-skipping type
of alternative splicing to illustrate the model (Fig. 1a). For each
alternative exon involved in exon-skipping, we can use the
RNA-seq reads mapping to its exon-inclusion or -skipping
isoform to estimate its exon-inclusion level (denoted as c, or PSI
that is Per cent Spliced In14). A key feature of SURVIV is that it
models the RNA-seq estimation uncertainty of exon-inclusion
level as influenced by the sequencing coverage for the alternative
splicing event of interest. This is a critical issue in accurate
quantitative analyses of mRNA isoform ratio in large-scale
RNA-seq data sets14,26–29. Therefore, SURVIV contains two
major components: the first to model the association of mRNA
isoform ratio with patient survival time across all patients, and
the second to model the estimation uncertainty of mRNA isoform
ratio in each individual patient (Fig. 1a).

Briefly, for any individual exon-skipping event, the first
component of SURVIV uses a proportional hazards model to
establish the relationship between patient k’s exon-inclusion level
ck and hazard rate lk(t).

lkðtÞ ¼ l0ðtÞexp blogitckð Þ: ð1Þ
For each exon, the association between the exon-inclusion level
and patient survival time is reflected by the survival coefficient b.
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A positive b means increased exon inclusion is associated with
higher hazard rate and poorer survival, while a negative b means
increased exon inclusion is associated with lower hazard rate and
better survival. l0(t) is the baseline hazard rate estimated from the
survival data of all patients (see Supplementary Methods for the
detailed estimation procedure). A particular patient’s survival
probability over time Sk(t) can be calculated from the patient-
specific hazard rate lk(t) as SkðtÞ ¼ expð�

R t
0 lkðtÞdtÞ. Figure 1b

illustrates a simple example with a negative b¼ � 1 and a
constant baseline hazard rate l0(t)¼ 1, where higher exon-
inclusion levels are associated with lower hazard rates and higher
survival probabilities.

The second component of SURVIV models the exon-inclusion
level and its estimation uncertainty in individual patient samples.
As illustrated in Fig. 1c, the exon-inclusion level ck of a given
exon in a particular sample can be estimated by the RNA-seq read
count specific to the exon inclusion isoform (ICk) and the exon-
skipping isoform (SCk). Other types of alternative splicing and
mRNA isoform variation can be similarly modelled by this
framework29. Given the effective lengths (that is, the number of
unique isoform-specific read positions) of the exon-inclusion
isoform (lI) and the exon-skipping isoform (lS), the exon-
inclusion level ck can be estimated as ĉk ¼ ICk=lI

ICk=lI þ SCk=lS
.

Assuming that the exon-inclusion read count ICk follows a
binomial distribution with the total read count nk¼ ICkþ SCk, we
have:

ICk � Binomial ðnk ¼ ICkþ SCk; pk ¼ f ðckÞ ¼
lIck

lIckþ lSð1�ckÞ
Þ:

ð2Þ

The binomial distribution models the estimation uncertainty of
ck as influenced by the total read count nk, in which the
parameter pk represents the proportion of reads from the exon-
inclusion isoform, given the exon-inclusion level ck adjusted by a
length normalization function f(ck) based on the effective lengths
of the isoforms. The definitions of effective lengths for all basic
types of alternative splicing patterns are described in ref. 29.

Distinct from conventional survival analyses in which
predictors do not have estimation uncertainty, the predictors in

SURVIV are exon-inclusion levels ck estimated from RNA-seq
count data, and the confidence of ck estimate for a given exon in
a particular sample depends on the RNA-seq read coverage. We
use the statistical framework of survival measurement error
model30 to incorporate the estimation uncertainty of isoform
ratio in the proportional hazards model. Using a likelihood ratio
test, we test whether the exon-inclusion levels have a significant
association with patient survival over the null hypothesis
H0:b¼ 0. The false discovery rate (FDR) is estimated using the
Benjamini and Hochberg approach31. Details of the parameter
estimation and likelihood ratio test in SURVIV are described in
Supplementary Methods.

Simulation studies of SURVIV. We designed a set of simulation
studies to compare the performance of SURVIV with a conven-
tional Cox regression survival analysis using the point estimates
of exon-inclusion levels. To recapitulate the features of real data
sets, we mimicked the parameters of the TCGA IDC breast cancer
data wherever possible in generating the simulated data. Specifi-
cally, we simulated 20,000 alternative exons in each simulation
(similar to the number of exon-skipping events in the TCGA IDC
data), with 90% of the exons from the null hypothesis that the
exons were not associated with survival time (b¼ 0), and the
remaining 10% of the exons from the alternative hypothesis that
the exons were associated with survival time. The survival coef-
ficient b of exons representing the alternative hypothesis was
randomly sampled from the top 100 significant exons based on
SURVIV analysis of all IDC patients (see Supplementary Data 1).
We simulated a data set of 600 individuals, which was close to the
sample size of the TCGA IDC data set. To study the effect of
RNA-seq coverage, we simulated the total number of exon-
inclusion plus exon-skipping splice junction reads (n) with mean
value (�n) of 5, 10, 20, 50, 80 and 100 (Fig. 2a). The inset figure in
Fig. 2a shows the cumulative distribution of the mean splice
junction read counts for individual exon-skipping events aver-
aged across all patients in the TCGA IDC RNA-seq data. The
read counts for a given exon in individual patients were then
simulated using a Gamma–Poisson model with the variance of
read counts estimated from the TCGA IDC data. Details about
the simulation procedures are described in the Methods section.

0 2 4 6 8 10

0%

20%

40%

60%

80%

100%

Time (years)

S
ur

vi
va

l p
ro

ba
bi

lit
y

ICk ∼ Binomial (nk = ICk + SCk, pk = f (�k))

Observed read counts: (ICk, SCk)
Exon inclusion level: �k

Hazard rate of individual k : �k (t )

Baseline hazard: �0(t )

Skipped exon Exon inclusion isoform

Exon skipping isoform

ICk

SCk

Fixed effect: �

�k

Sk(t ) = exp(–∫0
t  �k (t )dt)

 = exp(–t exp(–logit �k))
 when � = –1; �0(t ) = 1

Survival probability

�k (t ) = �0 (t ) exp (� logit �k)
�1 = 80%

�2 = 50%

�3 = 20%

a b

c

Figure 1 | The statistical framework of the SURVIV model. (a) For each patient k, the patient’s hazard rate lk(t) is associated with the baseline hazard rate

l0(t) and this patient’s exon-inclusion level ck. The association of exon-inclusion level with patient survival is estimated by the survival coefficient b. The

exon-inclusion level ck is estimated from the read counts for the exon-inclusion isoform ICk and the exon-skipping isoform SCk. The proportion of the

inclusion and skipping reads is adjusted by a normalization function f that considers the lengths of the exon-inclusion and -skipping isoforms (see details in

Results and Supplementary Methods). (b) A hypothetical example to illustrate the association of exon-inclusion level with patient survival probability over

time Sk(t), with the survival coefficient b¼ � 1 and a constant baseline hazard rate l0(t)¼ 1. In this example, patients with higher exon-inclusion levels have

lower hazard rates and higher survival probabilities. (c) The schematic diagram of an exon-skipping event. The exon-inclusion reads ICk are the reads from

the upstream splice junction, the alternative exon itself and the downstream splice junction. The exon-skipping reads SCk are the reads from the skipping

splice junction that directly connects the upstream exon to the downstream exon.
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Using these simulated data, we compared SURVIV with Cox
regression in two settings, without or with censoring of the
survival time. In the setting without censoring, the death and
survival time of each individual is known. In the setting with
censoring, certain individuals are still alive at the end of the
survival study. Consequently, these patients have unknown death
and survival time. Here, in the simulation with censoring, we
assumed that 85% of the patients were still alive at the end of the
study, similar to the censoring rate of the TCGA IDC data set. In
both settings and with different depths of RNA-seq coverage,
SURVIV consistently outperformed Cox regression in the true-
positive rate at the same false-positive rate of 5% (Fig. 2a). As
expected, we observed a more significant improvement in
SURVIV over Cox regression when the RNA-seq read coverage
was low (Fig. 2a).

To more faithfully recapitulate the read count distribution in a
real cancer RNA-seq data set, we performed another simulation
study with read counts directly sampled from the TCGA IDC
data. To assess the influence of RNA-seq read depth on the
performance of SURVIV and Cox regression, sampled read
counts were then multiplied by different factors ranging from 10
to 300% to simulate data sets with different RNA-seq read depths
(Fig. 2b). The TCGA IDC data set has an average RNA-seq depth
of B60 million paired-end reads per patient. Thus, the read
depth of these simulated RNA-seq data sets ranged from B6
million reads to 180 million reads per patient, representing
low-coverage RNA-seq studies designed primarily for gene
expression analysis32 up to high-coverage RNA-seq studies
designed primarily for alternative isoform analysis29. At all
levels of RNA-seq depth, SURVIV consistently outperformed Cox
regression, as reflected by the area under curve of the receiver
operating characteristic (ROC) curve as well as the true-positive
rate at 5% false-positive rate (Fig. 2b). The improvement of
SURVIV over Cox regression was particularly prominent when
the read depth was low. For example, at 10% read depth, SURVIV
had 7% improvement in area under curve (68% versus 61%) and
8% improvement in the true-positive rate at 5% false-positive rate

(46% versus 38%). Collectively, these simulation results suggest
that SURVIV achieves a higher accuracy by accounting for the
estimation uncertainty of mRNA isoform ratio in RNA-seq data.

SURVIV analysis of TCGA IDC breast cancer data. To illustrate
the practical utility of SURVIV, we used it to analyse the overall
survival time of 682 IDC patients from the TCGA breast cancer
(BRCA) RNA-seq data set (see Methods for details of the data
source and processing pipeline). We chose to analyse IDC
because it is the most frequent type of breast cancer33, comprising
B70% of patients in the TCGA breast cancer data set. To control
for the effects of significant clinical parameters such as tumour
stage and subtype and identify alternative splicing events
associated with patient outcomes across multiple molecular and
clinical subtypes, we followed the procedure of Croce and
colleagues in analysing mRNA and microRNA prognostic
signature of IDC33 and stratified the patients according to their
clinical parameters. We then conducted SURVIV analysis in 26
clinical subgroups with at least 50 patients in each subgroup. We
identified 229 exon-skipping events associated with patient
survival in multiple clinical subgroups that met the criteria of
SURVIV P-valuer0.01 in at least two subgroups of the same
clinical parameter (cancer subtype, stage, lymph node, metastasis,
tumour size, oestrogen receptor status, progesterone receptor
status, HER2 status and age as shown in Fig. 3). DAVID
(Database for Annotation, Visualization and Integrated
Discovery) Gene Ontology analyses34 of the 229 alternative
splicing events suggest an enrichment of genes in cancer-related
functional categories such as intracellular signalling, apoptosis,
oxidative stress and response to DNA damage (Supplementary
Fig. 1). Table 1 shows a few selected examples of survival-
associated alternative splicing events in cancer-related genes.
Using two-means clustering of each individual exon’s inclusion
levels, the 682 IDC patients can be segregated into two subgroups
with significantly different survival times as illustrated by the
Kaplan–Meier survival plot (Fig. 4). We also carried out
hierarchical clustering of IDC patients using 176 survival-
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Figure 2 | Simulation studies to assess the performance of SURVIV and the importance of modelling the estimation uncertainty of mRNA isoform ratio.

We compared our SURVIV model with Cox regression using point estimates of exon-inclusion levels, which does not consider the estimation uncertainty of

the mRNA isoform ratio. (a) To study the effect of RNA-seq depth, we simulated the mean total splice junction read counts equal to 5, 10, 20, 50, 80 and

100 reads. We generated two sets of simulations with and without data-censoring. For each simulation, the true-positive rate (TPR) at 5% false-positive

rate is plotted. The inset figure shows the empirical distribution of the mean total splice junction read counts in the TCGA IDC RNA-seq data (x axis in the

log10 scale). (b) To faithfully represent the read count distribution in a real data set, we performed another simulation with read counts directly sampled

from the TCGA IDC data. Sampled read counts were then multiplied by different factors ranging from 10 to 300% to simulate data sets with different

RNA-seq read depth. Continuous and dashed lines represent the performance of SURVIV and Cox regression, respectively. Red lines represent the area

under curve (AUC) of the ROC curve (TPR versus false-positive rate plot). Black lines represent the TPR at 5% false-positive rate.
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associated alternative exons (Pr0.01; SURVIV analysis of all IDC
patients). Using the exon-inclusion levels of these 176 exons, we
clustered IDC patients into three major subgroups, with 95, 194
and 389 patients, respectively. As illustrated by the Kaplan–Meier
survival plots, the three subgroups had significantly different
survival times (Supplementary Fig. 2).

As an example of a survival-associated alternative splicing
event with potential functional significance, an exon-skipping
event of STAT5A (signal transducer and activator of transcription
5a) was found to be significantly associated with IDC patient
survival (Fig. 5). STAT5A is a signal transducer and transcrip-
tional activator involved in the programmed cell death35. It is
activated by a number of cytokines. Once activated, STAT5A
enters the nucleus and functions as a transcription factor36. The
activation of STAT5A is important to both cell growth and
differentiation. The alternatively spliced STAT5A mRNA isoform
lacking exon 5 encodes a protein variant (DEx5 isoform; see
Fig. 5a) that inhibits the production of p21 and Bax and increases
cell number37. The STAT5A DEx5 protein isoform was found to

have only 10% transcriptional regulatory activity as compared
with the full-length STAT5A (ref. 37). We found that the
inclusion levels of STAT5A exon 5 had a significant positive
association with IDC patient survival (SURVIV P¼ 6.8e� 4;
Fig. 5b). When we clustered the 682 IDC patients into two
subgroups according to the inclusion levels of STAT5A exon 5,
the first group of 420 patients with higher exon 5 inclusion levels
(B95% on average) had significantly longer survival times as
compared with the second group of 262 patients with lower exon
5 inclusion levels (B85% on average; Fig. 5b,c). We also analysed
STAT5A exon 5 in a separate set of TCGA breast cancer RNA-seq
data with tumour-normal-matched pairs. Consistent with higher
exon 5 inclusion levels associated with more favourable patient
outcomes, normal breast tissues had 95% exon 5 inclusion levels
as compared with 91% exon-inclusion levels in tumour samples
(Fig. 5d). This example illustrates that the survival analysis of
mRNA isoform variation can identify alternative splicing events
with interesting functional implications in cancer development
and progression.
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Figure 3 | SURVIV analysis of exon-skipping events in the TCGA IDC RNA-seq data set. IDC patients are stratified into multiple clinical subgroups based
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status, HER2 status and age. Only clinical subgroups with at least 50 patients are included in further analyses. Numbers of patients in the subgroups are
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are associated with higher survival probabilities. Magenta colour indicates negative correlation that lower exon-inclusion levels are associated with higher
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Table 1 | A selected list of exon-skipping events associated with IDC patient survival.

Gene symbol Ensembl transcript ID (exon number) SURVIV P-value Gene function

ATRIP ENST00000320211 (11) 2.4e� 3 Encodes a critical component of the DNA damage checkpoint52.
BCL2L11 ENST00000308659 (3) 2.7e� 3 Induces apoptosis and anoikis9,53.
CD74 ENST00000518757 (7) 2.3e�4 Regulates antigen presentation for immune response54.
PCBP4 ENST00000484633 (2) 1.7e� 3 Induced by p53; suppresses cell proliferation55,56.
RAD17 ENST00000354312 (3) 1.1e� 3 Required for cell cycle arrest and DNA damage repair57.
TLR5 ENST00000342210 (2) 1.3e�4 Activates innate immune response58.

IDC, invasive ductal carcinoma; SURVIV, Survival analysis of mRNA Isoform Variation.
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Network of survival-associated alternative splicing events.
Next, we characterized the splicing-regulatory network of the 229
alternative splicing events associated with IDC patient survival.
Specifically, we asked whether a significant fraction of these

alternative splicing events were potentially regulated by a few key
splicing factors with altered expression in IDC breast cancer
tissues. Splicing factors are RNA-binding proteins that recognize
cis-regulatory elements within the pre-mRNA to influence exon
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selection and splice site choice. Using gene expression levels
calculated from the TCGA IDC RNA-seq data, we identified six
splicing factors whose gene expression levels were significantly
associated with IDC patient survival time (Cox regression
FDRr1%, Supplementary Data 2). To identify potential exon
targets of these six splicing factors among the 229 survival-
associated alternative splicing events, we performed a gene–exon
co-expression network analysis. Specifically, we used robust
regression (R package ‘robust’) to test the correlation between the
gene expression levels of the splicing factors and the exon-
inclusion levels of survival-associated alternative splicing events.
Each of the six splicing factors had 41–61 significantly correlated
exons among the 229 alternative splicing events (robust regres-
sion FDRr1%). We then investigated whether the correlated
exons of a given splicing factor were significantly enriched among
the 229 survival-associated alternative splicing events. Among the
six splicing factors, three (TRA2B, HNRNPH1 and SFRS3) had
significant enrichment in the co-expression network of alternative
splicing events (Fisher’s exact test FDRr1%, see detailed data in
Supplementary Data 2). As illustrated in Fig. 6a–c, for each of the
three splicing factors, the gene expression levels were significantly
correlated with patient survival times, with higher gene expres-
sion associated with shorter survival time and poorer prognosis.
The expression levels of these splicing factors were strongly

correlated or anticorrelated with the exon-inclusion levels of
survival-associated alternative splicing events in IDC RNA-seq
data. For example, DHX30 is a member of the DEAD-box
proteins involved in RNA metabolism38. Exon 4 of DHX30 was
negatively correlated with splicing factor TRA2B (robust
correlation P-value¼ 1.2e� 17, r¼ � 0.26, Fig. 6d). Likewise,
exon 17 of MAP3K4 was positively correlated with splicing factor
HNRNPH1 (robust correlation P-value¼ 2.6e� 06, r¼ 0.16,
Fig. 6e). MAP3K4 is a component of the mitogen-activated
protein kinase pathway, which plays critical roles in cancer
development39. Collectively, these three splicing factors were
significantly correlated with 37% (84 out of 229) of the survival-
associated alternative splicing events, thus placing them at the
‘hubs’ of the survival-associated splicing regulatory network in
IDC (Fig. 6f).

A total of 165 significant correlations existed among the 84
survival-associated alternative exons and the three splicing factors
in this network (Fig. 6f). As the expression levels of all three
splicing factors were negatively associated with survival, exons
positively associated with these splicing factors (blue lines) should
have negative association between exon-inclusion levels and
patient survival times (red dots), while exons negatively
associated with these splicing factors (red lines) should have
positive association between exon-inclusion levels and patient
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survival times (blue dots). The majority of the 165 significant
correlations had the expected correlation directions between the
splicing factor expression level and exon-inclusion level
(135/165¼ 82%, two-sided binomial test Po2.2e� 16).

Our combined survival and co-expression network analysis
identified splicing factors known to be dysregulated in breast
cancer. For example, TRA2B is known to have elevated
expression in breast cancers compared with normal breast tissues,
and it regulates the alternative splicing of a number of genes with
key functions in cancer development40–43. The TRA2B target
genes encode key proteins involved in cell proliferation, survival
and migration44. The splicing factor HNRNPH1 was reported to
inhibit apoptosis in cancer cells partially by regulating the A-Raf
kinase in the mitogen-activated protein kinase pathway45.

Alternative splicing predictors of cancer patient survival.
Finally, we investigated the prognostic value of alternative spli-
cing as predictors of IDC patient survival. Recent work by the
TCGA consortium evaluated the clinical utilities of diverse
molecular data (for example, copy number variation, DNA
methylation, mRNA and microRNA expression and protein
expression) as well as clinical parameters in predicting cancer
patient survival16. Here we asked whether the use of alternative
splicing information can lead to comparable or improved
accuracy in predicting patient survival. To assess the clinical
utility of alternative splicing-based survival predictors in an
unbiased manner, we performed a two-fold Monte Carlo cross-

validation analysis using the TCGA IDC RNA-seq data (see
details in Methods). Briefly, in each round of cross-validation, the
IDC patients were randomly split into a training group of 50%
patients and a separate testing group of the remaining 50%
patients. We used SURVIV to identify survival-associated
alternative splicing events in the training group with a loose
P-value threshold of r0.01. Then, a penalized Cox regression of
L1 penalty was used to build the predictive model combining the
individual alternative splicing events identified by SURVIV. We
then applied the predictive model built from the training group to
predict the survival outcome in the testing group. The cross-
validation was repeated for 100 times. The discriminatory power
of the survival predictors was measured by the C-index46. A
C-index of 1 indicates perfect prediction accuracy and a C-index
of 0.5 indicates random guess. Besides alternative splicing-based
predictors, we also built other predictive models based on clinical
parameters or gene expression profiles. As shown in Fig. 7, both
gene expression and alternative splicing-based predictors
performed better than clinical parameters alone (gene versus
clinical P¼ 1.5e� 3; splicing versus clinical P¼ 4.7e� 4; two-
sided Wilcoxon test). We also observed that alternative splicing
predictors alone performed better than gene expression predictors
(splicing versus gene P¼ 4.3e� 2, two-sided Wilcoxon test).
Adding clinical parameters to the predictive model collectively
improved the performance of both gene expression and
alternative splicing-based predictors, while the combined model
of alternative splicing plus clinical parameters outperformed the
combined model of gene expression plus clinical parameters
(P¼ 7.4e� 9, two-sided Wilcoxon test). We also evaluated the
combined effect of incorporating clinical, gene expression and
alternative splicing data. A predictive model incorporating all
three types of information performed significantly better than any
one type of predictors alone (clinicalþ geneþ splicing versus
clinical Po2.2e� 16; versus gene Po2.2e� 16; versus splicing
P¼ 6.0e� 8, two-sided Wilcoxon test). The improved prediction
accuracy was not caused by over-fitting since the training and
testing data were completely separated during cross-validation.
This result illustrates the potential value of utilizing alternative
splicing information for improved prognosis of cancer patients.

Next, we carried out the SURVIV analysis in five additional
cancer types in TCGA, including GBM (glioblastoma multi-
forme), KIRC (kidney renal clear cell carcinoma), LGG (lower
grade glioma), LUSC (lung squamous cell carcinoma) and OV
(ovarian serous cystadenocarcinoma). As expected, the number of
significant events at different FDR or P-value significance cutoffs
varied across cancer types, with LGG having the strongest
survival-associated alternative splicing signals with 660 significant
exon-skipping events at FDRr5% (Supplementary Data 3 and 4).
Strikingly, regardless of the number of significant events,
alternative splicing-based survival predictors outperformed gene
expression-based survival predictors across all cancer types
(Supplementary Fig. 3), consistent with our initial observation
on the IDC data set.

Discussion
Alternative processing and modification of mRNA, such as
alternative splicing, allow cells to generate a large number of
mRNA and protein isoforms with diverse regulatory and
functional properties. The plasticity of alternative splicing is
often exploited by cancer cells to produce isoform switches that
promote cancer cell survival, proliferation and metastasis7,8. The
widespread use of RNA-seq in cancer transcriptome
studies15,47,48 has provided the opportunity to comprehensively
elucidate the landscape of alternative splicing in cancer tissues.
While existing studies of alternative splicing in large-scale cancer
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transcriptome data largely focused on the comparison of
splicing patterns between cancer and normal tissues or between
different subtypes of cancer18,21,49, additional computational
tools are needed to characterize the clinical relevance of
alternative splicing using massive RNA-seq data sets, including
the association of alternative splicing with phenotypes and patient
outcomes.

We have developed SURVIV, a novel statistical model for
survival analysis of alternative isoform variation using cancer
RNA-seq data. SURVIV uses a survival measurement error model
to simultaneously model the estimation uncertainty of mRNA
isoform ratio in individual patients and the association of mRNA
isoform ratio with survival time across patients. Compared with
the conventional Cox regression model that uses each patient’s
mRNA isoform ratio as a point estimate, SURVIV achieves a
higher accuracy as indicated by simulation studies under a variety
of settings. Of note, we observed a particularly marked
improvement of SURVIV over Cox regression for low- and
moderate-depth RNA-seq data (Fig. 2b). This has important
practical value because many clinical RNA-seq data sets have
large sample size but relatively modest sequencing depth.

Using the TCGA IDC breast cancer RNA-seq data of 682
patients, SURVIV identified 229 alternative splicing events
associated with patient survival time, which met the criteria of
SURVIV P-valuesr0.01 in multiple clinical subgroups. While the
statistical threshold seemed loose, several lines of evidence suggest
the functional and clinical relevance of these survival-associated
alternative splicing events. These alternative splicing events were
frequently identified and enriched in the gene functional groups
important for cancer development and progression, including
apoptosis, DNA damage response and oxidative stress. While
some of these events may simply reflect correlation but not causal
effect on cancer patient survival, other events may play an active
role in regulating cancer cell phenotypes. For example, a survival-
associated alternative splicing event involving exon 5 of STAT5A
is known to regulate the activity of this transcription factor with
important roles in epithelial cell growth and apoptosis37. Using a
co-expression network analysis of splicing factor to exon
correlation across all patients, we identified three splicing
factors (TRA2B, HNRNPH1 and SFRS3) as potential hubs of
the survival-associated alternative splicing network of IDC. The
expression levels of all three splicing factors were negatively
associated with patient survival times (Fig. 6a–c), and both
TRA2B and HNRNPH1 were previously reported to have an
impact on cancer-related molecular pathways40–45. Finally,
despite the limited power in detecting individual events, we
show that the survival-associated alternative splicing events can
be used to construct a predictor for patient survival, with an
accuracy higher than predictors based on clinical parameters or
gene expression profiles (Fig. 7). This further demonstrates the
potential biological relevance and clinical utility of the identified
alternative splicing events.

We performed cross-validation analyses to evaluate and
compare the prognostic value of alternative splicing, gene
expression and clinical information for predicting patient
survival, either independently or in combination. As expected,
the combined use of all three types of information led to the best
prediction accuracy. Because we used penalized regression to
build the prediction model, combining information from multiple
layers of data did not necessarily increase the number of
predictors in the model. The perhaps more surprising and
intriguing result is that alternative splicing-based predictors
appear to outperform gene expression-based predictors when
used alone and when either type of data was combined with
clinical information (Fig. 7). We observed the same trend in five
additional cancer types (Supplementary Fig. 3). We note that this

finding was consistent with a previous report that cancer subtype
classification based on splicing isoform expression performed
better than gene expression-based classification25. While this
trend seems counterintuitive because accurate estimation of gene
expression requires much lower RNA-seq depth than accurate
estimation of alternative splicing29, one possible explanation may
be the inherent characteristic of isoform ratio data. By definition,
mRNA isoform ratio is estimated as the ratio of multiple mRNA
isoforms from a single gene. Therefore, mRNA isoform ratio data
have a ‘built-in’ internal control that could be more robust against
certain artefacts and confounding issues that influence gene
expression estimates across large clinical RNA-seq data sets, such
as poor sample quality and RNA degradation12. Regardless of the
reasons, our data call for further studies to fully explore the utility
of mRNA isoform ratio data for various clinical research
applications.

The SURVIV source code is available for download at
https://github.com/Xinglab/SURVIV. SURVIV is a general
statistical model for survival analysis of mRNA isoform ratio
using RNA-seq data. The current statistical framework of
SURVIV is applicable to RNA-seq based count data for all basic
types of alternative splicing patterns involving two isoform
choices from an alternatively spliced region, such as exon-
skipping, alternative 50 splice sites, alternative 30 splice sites,
mutually exclusive exons and retained introns, as well as other
forms of alternative isoform variation such as RNA editing. With
the rapid accumulation of clinical RNA-seq data sets, SURVIV
will be a useful tool for elucidating the clinical relevance and
potential functional significance of alternative isoform variation
in cancer and other diseases.

Methods
Simulation studies of SURVIV. We designed simulation studies to compare the
performance of SURVIV with the conventional Cox regression survival analysis
using point estimates of mRNA isoform ratios. We mimicked the characteristics of
the TCGA IDC breast cancer RNA-seq data wherever possible in the simulations.
For each simulation, we simulated a data set of 600 individuals, which was similar
to the sample size of the TCGA IDC data. To study the effect of RNA-seq depth,
for individual alternative splicing events we simulated the total number of splice
junction reads (n) with the mean value (�n) equal to 5, 10, 20, 50, 80 or 100,
respectively. We simulated 20,000 exons at each RNA-seq depth, with 10% of the
exons from the alternative hypothesis that the exons were associated with survival
time. The survival coefficient b of individual exons was randomly sampled from the
top 100 significant exons in the TCGA IDC data set. The remaining 90% of the
exons were from the null hypothesis that the exons were not associated with
survival time (b¼ 0).

For each exon, we then simulated the total number of splice junction reads and
exon-inclusion levels across the 600 individuals. To model the variation in the total
splice junction counts across individuals, we used a Gamma–Poisson model to
simulate the total number of splice junction reads of each individual k. First, we
generated the mean of Poisson distribution (lk) for each individual k as:
lk � Gamma a;bð Þ, where the shape parameter a ¼ �nb and the rate parameter
b¼ 0.05, which produced a read count variance similar to the variance in the
TCGA IDC data. Then, we generated the total number of splice junction reads (nk)
for each individual k as: nk � Poisson lkð Þ. After that, we simulated the mean
exon-inclusion level (c) according to a distribution Beta(0.51,0.36) that fitted the
observed distribution of all alternative exons from the TCGA IDC data set.
Similarly, the variance of the exon-inclusion levels (s) was simulated according to a
distribution Gamma(1.31,15.04) that fitted the observed variance of all alternative
exons from the TCGA IDC data set. Each individual’s exon-inclusion level (ck)
was simulated as: ck � Normal c; sð Þ. The inclusion splice junction counts were
generated as: ICk � Binomial nk;ckð Þ. We also performed a second set of
simulation, in which we directly sampled the read counts from the read counts of
the exon-skipping events in the TCGA IDC data. Sampled read counts were then
multiplied by different factors (ranging from 10 to 300%) to simulate data sets with
different RNA-seq read depths.

We simulated the patient survival time based on the proportional hazards model, in
which the individual exon-inclusion level ck was used as the covariate. We used the
Nelson–Aalen estimator50 of the baseline hazard function from the TCGA IDC data set
as the baseline hazard function of the proportional hazards model. In the simulation
with censored data, the censored individuals were randomly selected from the 85% of
the individuals (note IDC patients had 89% censoring rate). The censor time was
randomly sampled from 10 to 90% of the actual death time.
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TCGA RNA-seq data. We obtained the RNA-seq read counts and clinical para-
meters of 682 IDC patients from TCGA breast cancer (BRCA) cohort (TCGA
dbGaP Accession ID phs000178). The RNA-seq reads were mapped to the human
genome and transcriptome by the TCGA consortium using Burrows-Wheeler
Aligner (BWA) with default settings15. The TCGA consortium provided the
numbers of RNA-seq read counts on splice junctions as part of the Level 3 RNA-
seq data available at the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). For
each exon-skipping event defined in the Ensembl annotations (release #75), we
identified the read counts for both exon-inclusion and -skipping splice junctions
from the Level 3 data. The IDC patient list is provided in Supplementary Data 5.
The same procedure was used to obtain and process TCGA RNA-seq data and
clinical parameters of five additional cancer types, including GBM, KIRC, LGG,
LUSC and OV.

Cross-validation of survival predictors. We evaluated and compared the survival
prediction using clinical information, gene expression and alternative splicing. We
used two-fold cross-validation to split the IDC patients into separate training and
testing groups. The even split of the IDC patients ensured that there were enough
death events in both training and testing groups for accurate model training and
testing. The cross-validation was repeated for 100 times. Each time, half of the IDC
patients were randomly selected as the training group and the other half were
selected as the testing group. Using the training group, we built a series of survival
prediction models based on clinical information, gene expression or alternative
splicing predictors as well as the combination of these predictors. The clinical
parameters used in the Monte Carlo cross-validation were identical to those used
for the initial SURVIV analysis of 26 clinical subgroups (Fig. 3), which included
cancer subtype, stage, lymph node status, metastasis, tumour size, oestrogen
receptor status, progesterone receptor status, HER2 status and age. First, we used
univariate regression (Pr0.01) to select potential survival predictors associated
with patient survival time. We used Cox regression for the univariate analysis of
clinical information and gene expression. We used SURVIV for the univariate
analysis of alternative splicing. Then, starting from the predictors selected from
univariate regression, we used a L1-penalized Cox regression model51 to select a set
of predictors in the multivariate prediction model. Owing to the different
numerical scales of gene expression and alternative splicing predictors, when we
combined these two types of predictors in the penalized regression, a z-score
normalization was used to scale the gene expression and alternative splicing
predictors in the penalized regression. After the model was built using the training
group, we used the remaining patients from the testing group to test the model.
The prediction accuracy of the model was measured by the C-index46. A C-index of
1 indicates perfect prediction accuracy and a C-index of 0.5 indicates random
guess.
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