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Abstract: Demand for the fabrication of high-performance, transparent electronic devices with
improved electronic and mechanical properties is significantly increasing for various applications.
In this context, it is essential to develop highly transparent and conductive electrodes for the realization
of such devices. To this end, in this work, a chemical vapor deposition (CVD)-grown graphene was
transferred to both glass and polyethylene terephthalate (PET) substrates that had been pre-coated
with an indium tin oxide (ITO) layer and then subsequently patterned by using a laser-ablation
method for a low-cost, simple, and high-throughput process. A comparison of the results of the laser
ablation of such a graphene/ITO double layer with those of the ITO single-layered films reveals that
a larger amount of effective thermal energy of the laser used is transferred in the lateral direction
along the graphene upper layer in the graphene/ITO double-layered structure, attributable to the high
thermal conductivity of graphene. The transferred thermal energy is expected to melt and evaporate
the lower ITO layer at a relatively lower threshold energy of laser ablation. The transient analysis
of the temperature profiles indicates that the graphene layers can act as both an effective thermal
diffuser and converter for the planar heat transfer. Raman spectroscopy was used to investigate the
graphite peak on the ITO layer where the graphene upper layer was selectively removed because of
the incomplete heating and removal process for the ITO layer by the laterally transferred effective
thermal energy of the laser beam. Our approach could have broad implications for designing
highly transparent and conductive electrodes as well as a new way of nanoscale patterning for other
optoelectronic-device applications using laser-ablation methods.

Keywords: graphene; ITO; laser ablation; thermal-energy transfer; temperature distribution;
Raman spectroscopy

1. Introduction

For the fabrication of transparent electronic devices, such as touchscreen panels (TSPs) and
flat-panel displays (FPDs), it is essential to develop transparent conductive electrodes (TCEs) with
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high transmittance and low resistivity. Although indium tin oxide (ITO) has been mainly applied as a
typical material for TCEs in electronic devices because of its high figure of merit and good compatibility
with conventional semiconductor-processing technology [1–3], the demand for developing new
TCE materials with better conductivity has been soaring as the sizes of TSPs and FPDs increase
continuously [4–11].

Graphene has been widely attempted to be used as one of the promising candidates for TCEs
in various optical and electronic device applications owing to its high transmittance and high
flexibility [12–14]. These properties are known to stem from the extremely thin, one-carbon-atom
thickness, uniform absorption of light causing a zero-energy bandgap, and high carrier mobility
because of its two-dimensional (2D) sp2 electronic hybridization configuration [15–17]. On the other
hand, it is difficult to apply graphene in industrial processes because of its relatively high sheet
resistance as compensation for its extremely thin thickness and fragility. Therefore, it is necessary to
solve the demerits of the graphene layer for applications such as TCEs.

In this study, to realize a higher conductance of a TCE in an electronic device, a chemical vapor
deposition (CVD)-grown graphene layer was transferred to indium tin oxide (ITO)-film-coated glass
or polyethylene terephthalate (PET) substrates, and graphene on an ITO (graphene/ITO) double layer
was suggested as a new TCE material. However, it is very difficult to produce fine electrode patterns
because of the difference in etch selectivity between graphene and ITO layers. In the case of the wet
etching process for the removal of the ITO layer, it is indeed challenging to maintain graphene-electrode
patterns without damage. The electron-beam-lithography and plasma-etching techniques have been
reported as some patterning methods for graphene [18–20]. On the other hand, such conventional
lithography methods would be undesirable for patterning graphene/ITO because of their highly costly
vacuum process. Therefore, for low-cost patterning with high throughput, we demonstrate a direct
laser ablation method to pattern the graphene/ITO double-layered films on glass and PET substrates.
In the fabrication of TSPs, laser ablation has been applied to various transparent oxides including
graphene without a lithography mask [21–26]. As a method of relatively low-cost patterning, a pulsed
laser with a wavelength of 1064 nm was used for direct laser patterning under various laser-beam
conditions, and the experimental results were analyzed in terms of the laser ablation threshold of the
graphene/ITO double layer for the optimization of the laser-patterning process.

2. Materials and Methods

A-few layered graphene films were produced in a CVD furnace and transferred to soda-lime-glass
and PET substrates [27–29], on which a 70 Å-thick ITO layer had been deposited. To fabricate either
graphene/ITO/glass or graphene/ITO/PET substrates as a platform for the laser ablation studied
in this work, the graphene layers were first synthesized as follows. After the copper (Cu) foil as
a substrate for synthesis of graphene layers was heated in a furnace up to 1050 ◦C for 60 min in
hydrogen (H2) at a flow rate of 60 sccm, a few-layered graphene film was grown with methane
(CH4) feedstock gas at a flow rate of 5 sccm. Subsequently, polymethyl methacrylate (PMMA) was
spin-coated over the CVD-grown graphene layer on the Cu foil; then, the whole PMMA/graphene/Cu
foil structure with Cu foil downside was carefully floated on ammonium persulfate (APS, (NH4)2S2O8,

Sigma-Aldrich Korea Ltd., Seoul, Korea)) solution to etch off the Cu foil [30,31], followed by rinsing
the remainder using deionized water. Then, the remaining PMMA/graphene structure, still floating,
was transferred to the target substrates, which were the ITO-film-coated glass or PET substrates.
Finally, only the uppermost PMMA layer was immediately removed with acetone, resulting in the final
structures of either the graphene/ITO/glass or graphene/ITO/PET substrates. Table S1 in Supplementary
Materials lists the optical transmittance and sheet resistance of the ITO single and graphene/ITO
double layers on glass and PET substrates. The transmittance with wavelengths ranging from 400
to 800 nm and sheet resistance were measured using a UV-visible spectrometer (Cary 100 UV-Vis,
Agilent Technologies, Inc., Santa Clara, CA, USA) and 4-point probe (CMT-SR2000N, AIT Co., Ltd.,
Suwon, Gyeonggi-do, Korea), respectively. Compared to the ITO/PET substrate without a graphene
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layer, the 1-layer-graphene/ITO/PET or even the 2-layer-graphene/ITO/PET substrate showed similar
transmittance but a trend towards a decrease in the sheet resistance with an increase in the number
of graphene layers [32], despite the contact resistance between the ITO and graphene applied (Table
S2). These results confirm that the sheet resistances obtained were appropriately measured in this
work. In addition, the data for the transmittance for different ITO-coated substrates with and without
a graphene layer are also included in Figure S1.

A 1064 nm, Q-switched, diode-pumped, neodymium-doped yttrium vanadate (Nd:YVO4) laser
system (Miyachi, ML-7111A, Miyachi Korea Co., Sungnam, Gyeonggi-do, Korea) was used for the
direct patterning of the prepared graphene/ITO-layered films (Figure 1). The pulse duration (τ) of the
laser beam was 10 ns for a full width at half maximum (FWHM), and the repetition rate ranged from 0
to 200 kHz. The samples were laser ablated under various laser-beam conditions, such as different
repetition rates and scanning speeds. During laser ablation, the beam energy per laser pulse was
adjusted from 44.6 to 266.5 µJ according to the repetition rate.
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Figure 1. Schematic of the experimental setup for laser ablation of both indium tin oxide (ITO) single
and graphene/ITO double layers on polyethylene terephthalate (PET) substrates.

3. Results and Discussion

Figure 2 shows the relationship between the squared laser-ablated spot size on the thin film and
the laser-beam fluence per etch pulse to determine the ablation threshold value of each layer of the
graphene/ITO-double-layer structure [25,33–38]. Using the equation D2 = 2ω2

0 × ln
( E0

Eth

)
, from the

ablated spot size data D per laser energy pulse E0, the laser beam radiusω0 can be obtained from the
slope of the linear-fitted graph. Considering the equation Φ = 2×E

π×ω2
0
, the ablation threshold values can

be obtained by extrapolating the fitting lines to the intercepts of the logarithmic axis of the laser-beam
fluence. From Figure 2a, the ablation threshold values of the laser-beam fluence obtained for both the
graphene upper and ITO lower layers of the graphene/ITO double-layer structure on glass substrates
were 7.54 and 0.86 J/cm2, respectively. An accurate value of the ablation threshold for the ITO single
layer on glass could not be determined because the ablation threshold for the ITO layer increases when
its thickness is much smaller than its absorption length [37]. Most of the laser beam is expected to
transmit through both the thin ITO and glass substrate instead of being absorbed due to the relatively
long wavelength of 1064 nm employed in this work. Therefore, the laser ablation process in this
experiment is expected to be influenced mainly by the thermal energy of the laser beam. Furthermore,
we also investigated the ablation threshold values for different layers on the PET substrates: the ITO
single layer and both the graphene upper and ITO lower layers of the graphene/ITO double-layer
structure on each PET substrate have the values of 1.50, 0.30, and 1.31 J/cm2, respectively (Figure 2b).
Compared to the ablation threshold values with the glass substrate (Figure 2a), the lower values for
each layer on the PET substrates can be explained as a result of the lower thermal conductivity of PET
than glass substrate [39,40].
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Figure 2. Squared laser-patterned diameters (line widths) of ITO single layer and graphene/ITO double
layer on (a) glass, where the solid red circles and black squares indicate the data for graphene and
ITO layers on ITO-coated glass substrate, respectively, and (b) PET substrates, where the solid black
triangles and red circles indicate the data for graphene and ITO layers on ITO-coated PET substrate,
respectively, the blue squares are the ITO single layer on PET substrate. Each colored line shows
a linear fit of the data. The laser-ablated line widths of Figure 2a,b were obtained from Figures 3
and 4, respectively.

Optical images of the laser-ablated lines on the graphene/ITO double-layer structure on the glass
substrate with a laser scanning rate of 1000 mm/s at different pulse energies are shown in Figure 3.
When the laser pulse energy was 266.5 µJ, both the graphene upper and ITO lower layers were found
to be etched to form stripes and spots, respectively, as shown in Figure 3a. In the case of 156.5 µJ,
only small, etched spots on the ITO lower layer were found (Figure 3b), and furthermore, no ITO
layer appeared to be laser ablated at lower pulsed energy, 88.1 and 44.6 µJ (Figure 3c,d). Although
the laser scanning rate was increased to 2000 mm/s, a similar tendency to the result of Figure 3 was
observed for the graphene/ITO double-layer structure on the PET substrate (Figure 4). The largest
etched spots (~100 µm in diameter) were found with the pulsed energy of 266.5 µJ. As the pulsed
energy was decreased from 266.5 to 88.1 µJ, the etched spots, even on the ITO lower layer, were still
observed, and no spots were found in the case of 44.6 µJ. The etched spot pattern of the graphene
upper layer in Figure 4a was attributed to the different overlapping rates as a result of the scanning
speed [22,40–42]. The overlapping etched spot patterns of the graphene upper layer in Figures 3a and
4b could be due to the overlapping of the laser beam.
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Figure 4. Optical microscopy images of the laser-patterned lines on graphene/ITO double layer on a
PET substrate produced at a scanning speed of 2000 mm/s and pulse energies of (a) 266.5, (b) 156.5,
(c) 88.1, and (d) 44.6 µJ. The white lines correspond to 100 µm.

The difference in the laser-driven etched spot patterns between the graphene upper and ITO
lower layers can be explained as a result of the higher thermal conductivity of graphene than that
of the ITO layer [43]. Therefore, it is possible to examine the larger etched spots on the graphene
layer and the higher overlapping as the formation of stripes [40]. Compared to the ITO single layer,
a lower ablation threshold and a larger etched spot were investigated on the ITO lower layer of the
graphene/ITO double-layer structure. In addition, we calculated the lateral (or in-plane directional)
etch rate for the different samples from our experimental results (Figure S2). The average values with
standard deviation σ of the lateral (or in-plane directional) etch rates in unit of mm2/s for the ITO
and graphene layers of the graphene/ITO/glass substrates were found to be 0.02781 (σ, 0.0064) and
0.27637 (σ, 0.00905), respectively. Those of the graphene/ITO/PET substrate were 0.18134 (σ, 0.1035)
and 0.56833 (σ, 0.2951), respectively. There is a tendency that in the same substrate, the lateral etch rate
of graphene is higher than that of the ITO layer. This could be because of the difference in the thermal
conductivity as well as film thickness between the two layers. For the same material, for example,
the graphene layer with PET shows a higher value with increasing σ compared to that with a glass
substrate. This result would be possibly due to the lower thermal conductivity [39,40] as well as the
possibility of a less-uniform distribution of the heat developed during the laser-ablation process for the
former over the latter. Figure 5a,b show the expected effective thermal-energy transfer of the laser
beam through the ITO single layer and graphene/ITO double-layer structure during the laser-ablation
process, respectively. When a laser beam is incident on the graphene layer with a Gaussian distribution,
its effective thermal energy is expected to be transferred in the lateral direction through the graphene
upper layer [44]. The thermal conduction from the graphene upper layer to the ITO lower one can be
explained using a heat-flow equation in one-dimensional form for the time-dependent temperature
distribution in the laser-ablated graphene/ITO double-layered films [45]. The boundary condition
at the interface between the graphene upper and ITO lower layers can be expressed for the heat
flow in the equation κgraphene

∂T
∂z

∣∣∣
graphene = κITO

∂T
∂z

∣∣∣
ITO [46]. κ is the thermal conductivity, and z is the

distance into the vertical direction from the surface of the thin film to the substrate. From the above
boundary condition, the conveyed effective thermal energy to the ITO lower layer of the graphene/ITO
double-layer structure is expected to cause an abrupt change in temperature and ablate the ITO lower
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layer more easily in a larger area than the ITO single layer because of the difference in the thermal
conductivity of graphene and ITO, as shown in Figure 5b.
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The transient temperature distribution confirms the different characteristics of thermal-energy
transport on graphene/ITO double and ITO single layers, enabled by the laser irradiation for 10 ns
(Figure 6). The analysis of the temperature changes was conducted using ComsolMultiphysics [47].
First, the graphene/ITO double layers show effective thermal-energy transport, thereby facilitating heat
dissipation on a two-dimensional plane, while the laser beam is irradiated for only 10 ns, as shown in
Figure 6a. The transient changes in the temperature profiles for every 2 ns along the white-dotted line
more clearly present the extended thermal function of the graphene layer on ITO film-coated substrates
(Figure 6b). As the graphene/ITO double layer is exposed in the laser irradiation, it significantly
absorbs the produced thermal energy, and the instant heat diffusion in the lateral direction appears on
the x–y plane. The higher thermal conductivity of the graphene layer could significantly enhance the
planar thermal-energy transport, despite the low thermal conductivity of the ITO layer. On the other
hand, the thickness of the ITO layer film (~70 Å) is over 20 times greater than that of the graphene
layer (~3 Å). While the thermal diffusion is guided in the planar direction of the graphene layer, the
penetration of thermal energy passing through the vertical direction is minimized, and the desirable
thermal path via the graphene layer facilitates highly anisotropic thermal diffusion. The different trend
of temperature changes in the single ITO layer enabled by the laser irradiation clarify the distinct
functions of the graphene layer in terms of the enhanced planar thermal diffusion. The laser-beam
irradiation for 10 ns on the ITO-layer film forms much narrower thermal diffusion (~30 µm) along
the planar direction than that on the graphene/ITO double layers (Figure 6c). The thermal diffusion
length with the graphene layer (~70 µm) enhances the thermal diffusion length by more than two
times. This trend is observed in the transient temperature changes for every 2 ns, as well (Figure 6d).
Although the laser-beam irradiation increases the peak temperature at the central area for both cases,
the effective thermal diffusion in the planar direction only increases in the graphene/ITO double layer.
Furthermore, the maximum temperature on the graphene/ITO double layer reaches over 5000 K,
whereas the ITO-single-layered film only shows about 1500 K. The transient analysis of the temperature
profiles indicates that the graphene layers can act as both an effective thermal diffuser and converter
for the planar heat transfer. In addition, despite the relatively low melting temperature (523 K [48]
to 533 K [49]) of the PET substrate compared to the peak temperature (>1500 K) resulting from the
simulation, it is reasonably expected that the PET substrate would not be completely melted with such
a short laser-ablation duration (10 ns applied for both the experiment and simulation) but rather be
cracked to release the stress developed during the process [39].
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To confirm the removal of the graphene/ITO double layer after laser ablation, Raman spectroscopy
was performed to examine a laser-etched spot on the graphene/ITO double layer (Figure 7a), where
the regions 1, 2, and 3 were assigned to indicate the graphene upper layer, ITO lower layer, and PET
substrate in sequence. On each part of the laser-ablated graphene patterns, the Raman spectra were
compared, as shown in Figure 7b, from 200 to 3150 cm−1. For the region 1, the three characteristic bands,
D-, G-, and 2D-band, indicative of the existence of a graphene layer were found [50–57]. A D-band
peak (~1350 cm−1) of weak intensity and both G- (~1580 cm−1) and 2D-band peaks (~2700 cm−1)
on the graphene layer were observed. When the Raman spectra were acquired along the edge of a
laser-etched spot, where the graphene upper layer was etched selectively but the ITO lower layer
remained (region 2), very small traces of both the D- and G-band peaks were observed, but no 2D-band
peak was detected, indicating that most of the graphene upper layer had been removed as a result of
laser ablation. Compared to the Raman spectra of a center region of the laser-etched spot, on which no
graphene-related peaks were observed (region 3), some of the residual amorphous carbon on the ITO
lower layer was found, which is expected to have resulted from the incomplete heating and removal
process for the ITO lower layer by the laterally transferred effective thermal energy of the laser beam.
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Figure 7. (a) Expanded optical microscopy images of Figure 4a. The graphene/ITO double layer was
laser ablated at a pulse energy of 266.5 µJ with a scanning speed of 2000 mm/s; (b) Raman spectra on
regions 1, 2, and 3 of (a).

4. Conclusions

In conclusion, we experimentally showed the laser-ablation-assisted patterning of graphene/ITO
double layers for future TCE applications. To elucidate the underlying mechanism for the difference
between ITO single and graphene/ITO double layers during the laser-ablation process, we also
conducted a theoretical analysis of transient temperature spatial distribution, revealing thermal-energy
transport on graphene/ITO double and ITO single layers. From the analysis, we demonstrated a role of
effective thermal-energy transfer during laser ablation, indicating that the graphene layers can act as
both an effective thermal diffuser and converter for the planar heat transfer. The analysis of Raman
spectroscopy also supported this laser-ablation mechanism of the selective etching of graphene layers
due to the effective thermal-energy transfer. Our study may provide insight into designing optimal
electrode patterning using graphene layers, which would not only enable better electrode formation
with high transparency and conductance for TCE applications but would also serve as a new way of
nanoscale patterning for other optoelectronic-device applications using laser-ablation methods. Future
work will be carried out towards the further reduction of the size of the pattern width as well as the
development of complex shapes of pattern design.
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26. Şahin, R.; Simsek, E.; Akturk, S. Nanoscale patterning of graphene through femtosecond laser ablation. Appl.
Phys. Lett. 2014, 104, 53118. [CrossRef]

27. Zhou, Y.; Bao, Q.; Tang, L.A.L.; Zhong, Y.L.; Loh, K.P. Hydrothermal Dehydration for the “Green” Reduction
of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chem.
Mater. 2009, 21, 2950–2956. [CrossRef]

28. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulović, V.; Dresselhaus, M.S.; Kong, J. Large Area, Few-Layer
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