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ABSTRACT

We show on general theoretical grounds that the
two ends of single-stranded (ss) RNA molecules
(consisting of roughly equal proportions of A, C, G
and U) are necessarily close together, largely inde-
pendent of their length and sequence. This is
demonstrated to be a direct consequence of two
generic properties of the equilibrium secondary
structures, namely that the average proportion of
bases in pairs is �60% and that the average
duplex length is �4. Based on mfold and Vienna
computations on large numbers of ssRNAs of
various lengths (1000–10 000 nt) and sequences
(both random and biological), we find that the 50–30

distance—defined as the sum of H-bond and
covalent (ss) links separating the ends of the RNA
chain—is small, averaging 15–20 for each set of viral
sequences tested. For random sequences this
distance is �12, consistent with the theory. We
discuss the relevance of these results to evolved
sequence complementarity and specific protein
binding effects that are known to be important for
keeping the two ends of viral and messenger RNAs
in close proximity. Finally we speculate on how our
conclusions imply indistinguishability in size and
shape of equilibrated forms of linear and covalently
circularized ssRNA molecules.

INTRODUCTION

There are many situations in which it is biologically im-
portant for the two ends of a large RNA molecule to be
close to each other. In animal viruses with single-stranded
(ss) RNA genomes, for example, efficient replication of the

genome has been shown to depend on its effective ‘circu-
larization’. More explicitly, complementary sequences
have been identified at or near the 50- and 30-ends that
are responsible for forming ‘panhandles’ that keep the
two ends close together. These panhandles are duplexes
that are 21 bp in the case of yellow fever virus (1), and
15 bp in the case of influenza A (2), thereby according
them unusual robustness. Another example where RNA
genome circularization of this kind has been implicated
in RNA replication is sindbis virus; here an 18 bp 50–30

panhandle has been shown to survive denaturing condi-
tions sufficient to eliminate much of the remaining second-
ary structure, leaving the genome with a circular
appearance in electron micrographs (3). In dengue, also
(like yellow fever, influenza A and sindbis) a positive-
sense RNA virus, minus-strand synthesis involves
long-distance 50–30 base pairing that facilitates the
transfer of the RNA-dependent RNA polymerase from
its binding site at the 50-end to the initiation site at the
30-end (4). Similarly, circularization of HIV-1 has been
shown to arise from base pairing between the 50- and
30-ends of the RNA genome (5); these interactions are
found to occur as well in different HIV-1 subtypes with
large sequence variation, suggesting they share an evolu-
tionary basis.

It has also long been known that effective circulariza-
tion of messenger RNA molecules is important for effi-
cient translation. The 50- ‘capping’ and 30-polyadenylation
of mRNAs—through a variety of specific protein-binding
events—result in the association of the two ends of the
molecules and subsequent formation of translation initi-
ation complexes (6). In eukaryotes, for example,
the 30-poly(A) ‘tail’ interacts with the poly(A)-binding
protein, the 50-G-cap binds a eukaryotic initiation factor,
and these two bound proteins—with the full length of
mRNA intervening—simultaneously bind a ‘bridging’
protein. This effective circularization of the molecule
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results in recruitment of the 40S ribosomal subunit (via
binding of still another protein) and initiation of
translation.

Because circularization of mRNA is so important for its
translation, mechanisms that co-localize the ends have
evolved even in cases where the molecules are not
capped or polyadenylated. Plant viruses, for example,
often lack both of these special sequences and yet are
translated efficiently (7,8). The effective circularization is
enhanced by direct base pairing between sub-sequences in
the untranslated regions (UTRs) at the 50- and 30-ends; the
UTRs functionally replace the G-cap and poly(A) tail.
Further, the RNAs of many positive-sense (mRNA)
viruses have internal ribosome entry sites (IRESs) at
their 50-ends, i.e. subsequences that recruit ribosomes
and initiate translation (9,10).

In all of the above examples—involving both direct
interaction between 50- and 30-ends or interaction
mediated by binding proteins—particular, evolved, subse-
quences are involved in effective circularization. But in all
of these scenarios, an even more fundamental requirement
is that the two ends of the fluctuating molecule must spend
enough time near each other in order for there to be a high
probability for the special elements—RNA subsequences
or binding proteins—to find one another. More explicitly,
we will argue here that effective circularization of large
RNA molecules is achieved through generic properties
of secondary structure that are essentially independent
of sequence. The specific evolved subsequences mentioned
above are not needed so much for circularization as for
facilitating the binding of particular proteins—e.g. RNA
replicases and ribosome initiation factors—that are im-
portant for biological function of the circularized RNA.

Consider the analogous situation of double-stranded
(ds) DNA with ‘sticky’ ends arising from complementary
ss overhangs (generated, say, by a restriction enzyme).
Here the probability of the two ends being covalently
bound by a ligase is directly determined by—and ultim-
ately limited by—the likelihood that they are close enough
to each other to bind, i.e. that the double helix can twist
and bend enough for its two ends to get close together
(11). This classic problem is informed by the well-known
statistical mechanical result giving the likelihood of the
ends of a linear, semiflexible, polymer being within a
monomer distance of one another. For sufficiently long
molecules L� �ð Þ, this probability is of order 1=ðL=�Þ3=2,
where L and � are the contour and persistence lengths,
respectively, of the linear polymer; the contour length is
the number of monomers times the average
inter-monomer distance, and the persistence length is the
distance along the chain contour beyond which the
polymer can bend almost freely (12). Thus, the circular-
ization probability of long DNA is small because L=� is
large, i.e. the molecule is long compared to its persistence
length (50 nm, for DNA): maximization of configurational
entropy requires that the ends be far apart. The small
probability of finding them close, decreasing as L�3=2,
reflects directly the fact that the root-mean-square
distance between the ends of the molecule is increasing
as L1=2.

To understand the basis for effective circularization of
ssRNA, then, it is natural to ask: is there, in analogy with
dsDNA, a generic result for the probability of finding the
two ends of an RNA molecule close to one another, and
how different is it from that for a linear polymer? In this
article we argue that there is indeed a universal distribu-
tion of end-to-end distances in large RNA molecules, and
furthermore that it is essentially independent of overall
sequence and length. We show in particular that the
distance between ends is necessarily small, because of
generic features of the secondary structure, notably that
the percentage (f) of paired nucleotides (nt) is �60% and
that the average duplex length (k) is �4. Using an early
variant of the RNA folding algorithm developed by Zuker
et al. (13,14), Fontana et al. (15) have calculated various
characteristics of the minimum free energy (MFE) struc-
ture corresponding to several different types of short
(20–100) nucleotide sequences. Averaging over many se-
quences of the same length (number of nucleotides, N) and
base composition (’), they found that f and k approach a
constant value with increasing N. They also calculated a
property (the number of unpaired bases in ‘joints’ and
‘free ends’) that is closely related to our definition of the
50–30 distance (see next section), finding that for the short
chains analyzed this number increases, yet with a
gradually decreasing slope, as N increases. The constancy
of f and k has been confirmed for a wide range of bio-
logical (viral and yeast) ssRNA sequences (16) by appli-
cation of the mfold and Vienna codes for predicting
thermally accessible secondary structures.
For certain models of polynucleotide chains, the N-

independence of f and k has been proven analytically,
using a variety of powerful theoretical tools. Hofacker
et al. (17), applying an elegant graph-theoretic approach,
derived exact results for these properties (see their Table 3)
and various other secondary structure attributes of
RNA-like heteropolymers. Their results apply to an
idealized ensemble where all possible secondary structures
have equal statistical weight, resulting in low values of
f and k. More recently, Clote et al. (18), using the
Nussinov–Jacobson (‘maximum base pairing’) model
(19) have shown that, for an ssRNA chain with
Watson–Crick pairing rules, f approaches a constant
value slightly exceeding 90% for N large (>1000).
Earlier, de Gennes had noted (20) that, for a random
sequence of two complementary nucleotides, the distance
between chain ends remains finite even as N approaches
infinity. Based on this notion he also concluded that
‘ . . .many properties of a large, open, strand are not
very different from those of a cyclic strand of equal mo-
lecular length’ (20). We elaborate on this idea in the next
section.
Our goal in the present work is to emphasize the gen-

erality of the proximity of the 50- and 30-ends of large
RNA molecules of arbitrary length and sequence. Based
on the general findings noted above for large ssRNA
chains, we derive a simple expression for the 50–30

distance that can be evaluated numerically for sequences
of given f and k. We also calculate this distance using the
RNAsubopt (21,22) and mfold (23,24) folding algorithms.
A further consequence of our analyses is that the
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secondary—and hence tertiary—structures of linear and
covalently-circularized RNA molecules are practically
identical. These conclusions are tested against several sys-
tematic calculations of secondary structures for specific
linear and circular sequences, both random and viral.

METHODS

Figure 1A displays the MFE secondary structure of a
rather short (200 nt) random-sequence ssRNA molecule,
composed of equal numbers of A, C, G and U, as pre-
dicted by the mfold algorithm (23,24). The duplexes are
represented in the usual way by straight ‘ladders’ and the
loops by circles of different sizes. The same secondary
structure is visualized slightly less schematically in
Figure 1B, with more realistic scaling of duplex dimen-
sions, using the jViz.Rna drawing program (25). This
latter representation illustrates that the dangling ss
segments in the ‘exterior loop’—the one including the
50- and 30-ends—are independent flexible chains. In
Figure 1C the secondary structure is mapped into a tree
graph, where each edge (bond) represents a duplex and the
vertices represent the loops (15,17,26); the interior loops
are denoted by solid circles, and the exterior loop by an
open circle. The term ‘interior loop’ is conventionally
defined as the chain of bases, both paired and unpaired,
comprising a closed loop, excluding its closing (‘down-
stream’) base pair. In the following we slightly depart
from this definition and include the closing base pair as

part of the (hence closed) loop. Our definition of the
exterior loop, which lacks a closing base pair, is identical
to the conventional one, namely, it includes all bases
(paired and unpaired) along the shortest connected (cova-
lently or H-bonded) path from the 50- to the 30-end.

50–30 Distance

As a simple intuitive measure of the 50–30 distance (in a
given secondary structure of a given sequence) we use the
total number of nucleotide links comprising the exterior
loop, i.e.

D¼ lext+dext ð1Þ

Here lext is the number of covalent (phosphodiester) bonds
(hereafter also referred to as ss links) in the exterior loop
and dext is the number of base-paired (H-bonded, ds) links
in the exterior loop or, equivalently, the number of
duplexes emanating from the exterior loop. As it is the
total number of (ss and ds) links in the nucleotide chain
constituting the exterior loop, we shall refer to D as
the ‘effective contour length’ of this loop. Expressing D
in the form D ¼ next � 1 ¼ sext+2dextð Þ � 1, where next is
the total number of nucleotides in the exterior loop, and
noting that 2dext is the total number of paired bases in the
exterior loop, it follows from Equation (1) that
sext ¼ lext � dext+1 is the number of unpaired bases in
this loop. Figure 2 illustrates an exterior loop where
D ¼ lext+dext ¼ 11+2 ¼ 13, whereas in Figure 1
D¼ lext+dext¼14+1¼15. It should be emphasized that

BA C

5„3„

3„

5„

Figure 1. Three different representations of the mfold-predicted minimum free energy secondary structure of a random 200 nt ssRNA of uniform
composition (25% A, C, G, U). (A) Conventional schematic, drawn with mfold, showing base-paired regions (duplexes) and single-stranded loops.
(B) jViz.Rna drawing (16), emphasizing the flexibility of single-stranded loops and scaled dimensions of duplexes. (C) Graph-theoretic mapping of
this secondary structure, reducing duplexes to edges (bonds) and loops to vertices (filled circles); the single ‘exterior’ loop is depicted by an open
circle.
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the average physical distance between the 50- and 30-ends
depends not only on D but also on the specific sequence of
the loop, as well as the number of duplexes branching
from the loop. In fact the lengths of the covalent and
H-bonded links are different (the latter are about three
times larger). If all links were of equal length b, and
their joints were fully flexible, then the physical 50–30

distance would be roughly b
ffiffiffiffi
D
p

, where we have neglected
excluded volume effects because of the shortness of the
exterior loop (12). It follows that small, N-independent,
D-values imply small, N-independent physical distances
between the two chain ends.

Four simple observations will guide our calculation of
the 50–30 distance:

(i) The MFE secondary structures of a given linear
ssRNA molecule and that of the circular RNA
obtained by linking the 50- and 30-ends of the
linear chain are very similar, and their energies
practically identical. This is because the presence
or absence of a covalent (phosphodiester) bond
between the terminal nucleotides does not signifi-
cantly alter overall base pairing. Its small influence
on the configurational free energy of the molecule
enters only through the entropy difference between

the open exterior loop in the linear RNA and the
corresponding closed (interior) loop in the circular
analog. Actually, for any secondary structure of the
linear ssRNA, not only the one of minimum free
energy, the corresponding circular structure has es-
sentially the same energetic and structural charac-
teristics. Conversely, any secondary structure of a
linear RNA can be regarded as derived from
‘cutting’ a specific covalent bond in one of the
interior loops of the corresponding circular RNA.
We thus expect that secondary structure character-
istics of long RNA molecules, such as the pairing
fraction or average duplex length, are practically the
same for the linear and circularized ‘isomers’. These
conclusions have been confirmed by numerical
analyses of a large number of linear and circular
RNA sequences of different lengths and compos-
itions, as reported below and in Supplementary
Figure S1 and Supplementary Table S1.

(ii) As noted in the Introduction, for long chains (say
N >1000) composed of comparable proportions of
A, C, G and U (25±5%), we find that
f ¼ 60� 65% for randomly-permuted sequences
and for most viral RNAs (Tables 1 and 2).

(iii) For long chains, we also know that the average
length of (i.e. number of base pairs in) a duplex,
k, is independent of N and rather insensitive to ’
(for compositions involving 25±5% of the four
bases). For nearly all the sets of sequences
examined in this study—randomly-permuted, viral
and yeast-derived—k is between 4 and 5 (Tables 1
and 2; Supplementary Table S1).

(iv) As is well known, every secondary structure can be
represented by a tree graph (26), as illustrated in
Figure 1C.

Two simple and important results can easily be proved
from the tree graph analogy. First, the number of
vertices, L, and the number of bonds, S, of a circular
RNA are related by the equality L¼S+1. This relation
is also valid for linear RNAs provided the exterior loop is
also represented by a vertex (possibly differently labeled,
as in Fig. 1C). Second, on average (over all loops in any
given structure), each loop (vertex) is connected to
hdi¼2� 2=L duplexes (edges). For long (N� 1) se-
quences we also find L�1 (see below), in which case we
can safely set hdi ¼ 2, which (unless otherwise stated) will

5„
3„

Figure 2. Detailed view of an exterior loop consisting of lext ¼ 11
covalent links and dext ¼ 2 H-bonded links of nucleotides. The effective
contour length of the loop is D ¼ lext+dext ¼ 11+2 ¼ 13.

Table 1. Composition (’)-dependence of the average percentage of bases paired (f), the average duplex length (k) and the average 50–30 distance

(D), for different sets of random and yeast-derived sequences of length 3000 nt; each set consists of 500 sequences

Type of ssRNA Folding program ’ (%)a f (%) k (bp) D, links D, from
Equation (2)

G C A U

Random, viral-like ’ RNAsubopt 24 22 26 28 62±1 4.0±0.1 12±4 11.6
Random, uniform ’ RNAsubopt 25 25 25 25 61±1 3.9±0.1 12±5 12.6
Yeast-derivedb RNAsubopt 19 19 31 31 58±2 4.1±0.1 14±5 11.9
Random, viral-like ’ mfold 24 22 26 28 61±1 4.5±0.1 14±7 12.8

Values following the±symbols are standard deviations.
aThe randomly-permuted ssRNAs of each type are of identical composition; for the yeast ssRNAs, the mean composition is listed.
bThese are ssRNA transcripts of successive 3000 bp sections of yeast (S. cerevisiae) chromosomes XI and XII.
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be the value used in our calculations. Note that the
averaging here is over all loops in a given structure. The
same holds, of course, after averaging over any number of
structures and/or sequences. Note also that we always
have d�1, with d¼1 corresponding to a ‘hairpin’ loop,
d¼2 to a ‘bubble’ or ‘bulge,’ and d�3 to a ‘multi loop’.
Among the numerous possible secondary structures of

long RNA sequences, there are often thousands whose
free energies are just marginally higher (kBT or less)
than that of the MFE configuration, and under equilib-
rium conditions all these structures are nearly equally
likely. Consequently, any property of the molecule that
depends on its secondary structures should be averaged
over their full thermal (Boltzmann) distribution.
Suppose that, using RNAsubopt or a similar program,
we have stochastically sampled the thermal ensemble of
structures corresponding to a certain circular ssRNA
sequence of given N and ’. As argued in (i), above, all
the linear ssRNA molecules derived by cutting any
covalent (ss) bond in any interior loop of any member
of the above ensemble will fold into ensembles of struc-
tures that are practically identical both to each other, and
to the ensemble of the original circular molecule. The only
difference is the appearance of an exterior loop, which
now contains the 50- and 30-ends. For every given
circular structure containing L interior loops, this
cutting procedure yields M linear ssRNA sequences,
where M ¼

PL
i¼1 li is the total number of ss (covalent)

bonds in all loops of the given structure, li denoting the
number of covalent bonds in loop i. Noting that the total
number of nucleotides in the closed loop i, namely
ni ¼ si+2di, is equal to the total number of bonds in
this loop (di+li), we find li ¼ si+di, with si and
2di denoting the number of unpaired and H-bonded nu-
cleotides in loop i, respectively, and di the number of
duplexes emerging from this loop. This yields
M ¼

PL
i¼1 si+

PL
i¼1 di ¼ N 1� fð Þ+2S. We have used

the fact that the first sum is the total number of
unpaired nucleotides, N�Nf, and the fact that because
every duplex is connected to two loops, the second sum is
twice the total number (S) of duplexes in the structure. But
S can be expressed in the form S ¼ Nf=2k so that
M ¼ N 1� f+f=kð Þ. Here, and in all subsequent analytical
expressions involving f, its numerical value will be

understood to be the fraction of bases in pairs, rather
than the percentage. As before, k denotes the average
duplex length in the particular sequence considered. For
f¼0:6 and k¼4 we find M�0:55N.

In the next section we present numerical calculations of
the average 50–30 distance D for two types of ssRNA mol-
ecules, biological (yeast-derived and viral) and randomly-
permuted sequences. The random sequences were included
both for direct comparison to the biological sequences,
and for general theoretical interest. In each case, a
Boltzmann-weighted average D-value is determined for
the thermal ensemble of structures associated with each
sequence. We then report the mean of these
ensemble-average D-values for each set of sequences.

For the random sequences a simple theoretical predic-
tion of D (showing good agreement with the numerical
calculation) can be derived based on two reasonable ap-
proximations, as argued in the Appendix 1. We show there
that, for any given secondary structure of a very long
(N� 1) ssRNA molecule, the 50–30 distance is given by

D ¼
2hsi2+4hsi+10

hsi+2
, ð2Þ

with hsi denoting the average number of ss covalent
bonds per interior loop in the structure considered. In
terms of the pairing fraction, f, and duplex length, k, of
this structure we obtain hsi ¼ Nð1� f Þ=L � Nð1� f Þ=S
¼ 2kð1� f Þ=f. For both the MFE structure and the canon-
ical ensemble averages of secondary structures of random
(but also viral) sequences containing roughly equal pro-
portions of the four bases it is found that f � 0:6 and
k � 4, yielding hsi¼5:33, and hence D¼12. See also
Table 1.

Numerical computations

RNA sequences. Randomly-permuted ssRNA sequences
were generated with a Fisher–Yates shuffle driven by
a Mersenne Twister random number generator (27)
implemented in C++ (by R. Wagner, University
of Michigan, available at: www-personal.umich.edu/
�wagnerr/MersenneTwister.html). Viral ssRNA se-
quences were obtained from the National Center for
Biotechnology Information Genome Database (www
.ncbi.nlm.nih.gov). Yeast (Saccharomyces cerevisiae)

Table 2. Values of f, k and D for viral ssRNAs, determined with RNAsubopt

Viral taxon No. of seq.a Host N (nt) f (%) k (bp) D, links

Bromoviridae RNA3 8 Plant 2210 63±1 4.2±0.1 19±6
Bromoviridae RNA2 8 Plant 2891 63±2 4.3±0.1 18±4
Bromoviridae RNA1 8 Plant 3265 64±2 4.3±0.1 15±3
Leviviridae 9 Bacterium 3780 68±2 4.3±0.1 15±9
Sobemovirus 9 Plant 4199 66±2 4.2±0.2 17±4
Luteovirus 17 Plant 5725 62±1 4.2±0.1 16±7
Tymovirus 9 Plant 6300 45±4 3.9±0.1 26±5
Tobamovirus 22 Plant 6425 64±1 4.2±0.1 19±5
Astroviridae 6 Animal 6719 63±1 4.3±0.1 16±8
Caliciviridae 18 Animal 7713 62±1 4.1±0.1 20±19

Values following the±symbols are standard deviations.
aNumber of sequences analyzed.
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genomic sequences were obtained from the Saccharomyces
Genome Database (www.yeastgenome.org).

Folding programs. Secondary structure predictions
were made with two RNA folding programs,
RNAsubopt, a program in the Vienna RNA Package,
Version 1.7 (21,22), and mfold, Version 3.1 (23,24). These
programs employ detailed empirically-based energymodels
to estimate the free energies of the non-pseudoknotted sec-
ondary structures that are formed by a specified ssRNA
sequence. With RNAsubopt, it is possible to sample sto-
chastically from the ensemble of secondary structures, with
a sampling probability in proportion to each structure’s
Boltzmann weight. Thus, sampling a sufficient number of
structures (we use 1000), and averaging the D-values for
this set, gives a close approximation to the
ensemble-average predicted value of the end-to-end
distance for that sequence. In earlier work (16) we
demonstrated that the average properties of subsets of
1000 structures are not significantly different from those
of the complete ensemble of structures. More generally,
for any property X, its RNAsubopt-predicted ensemble-
average value is calculated as

P1000
�¼1 X�=1000, where X�

is its value in the �th member of the stochastically-generated
subset of the Boltzmann ensemble of secondary structures.
In mfold, by contrast, an algorithm is used to generate
a structurally diverse representation of the ensemble,
rather than a thermally-representative average. We
configured mfold to generate the 1000 lowest-energy
structures from such a set, measured D for each,
and averaged them in proportion to their Boltzmann
weights, to give an mfold-averaged D-value. For any
property X, its mfold-predicted average value is
P1000

�¼1 X�expð��G�=kBTÞ=
P1000

�¼1 expð��G�=kBTÞ with

�G� the free energy of the �th secondary structure

relative to the MFE for that sequence.

RESULTS

While there can be significant inter-taxon variation, the
average composition, ’, of the viral RNAs in this study
is �24% G, 22% C, 26% A and 28% U (16). With this
‘viral-like’ ’, we generated 2000 random sequences of
lengths 50, 100, 200 and 400; 1000 of lengths 800 and
1500; 500 of lengths 2000, 2500, 3000 and 4000; 300 of
lengths 5000, 6000 and 7000; and 1000 of length 8000.
These sequences were folded with RNAsubopt. Figure 3
shows the mean D and standard deviation for each length
of RNA, and a regression line fitted to sequences of length
400 and greater. Except for the very short sequences, D is
�12, independent of sequence length; in addition, it is
relatively insensitive to small changes in ’. That this
D-value is identical to the estimate obtained above,
through the theoretical calculation, is coincidental,
because the latter is based on the somewhat approxi-
mate expression given in Eq. (2) (the approximations
are explained in Appendix 1). But it is nevertheless very
striking, and highly significant, that the simple theory
predicts a D-value that is of the correct magnitude and
that is independent of length and sequence.

Table 1 shows the results for 500 3000-nt ssRNAs of
viral-like and uniform ’, as well as 500 ssRNAs that are
the transcripts of consecutive 3000 bp sections on yeast
(S. cerevisiae) chromosomes XI and XII. In these sets,
the values of D, f and k (averaged over the 500 sequences)
were 12–14, �60% and �4, respectively. The last column
in the table lists the values of D calculated according to
Equation (2), and these results are seen to agree closely
with those from the detailed numerical calculations (espe-
cially for the random sequences, as expected).
The viral taxa analyzed are listed in Table 2. All are

non-enveloped ssRNA viruses and, except for the
rod-shaped Tobamoviruses, have T ¼ 3 icosahedral
capsids. The Leviviridae infect bacteria, the Astroviridae
and Caliciviridae are animal viruses, and the remainder
infect plants. The Bromoviridae are, in addition, tripartite:
the genome consists of three ssRNAs, divided among
three separate capsids. The number of sequences
analyzed in each case corresponds to the number of
species considered.
From Figure 3 it can be seen that the values and

standard deviations of D for the viral RNAs are higher,
but overlap those of the random sequences for all taxa
except the Tymoviruses. The latter can be understood
from the fact that small D-values are an inherent conse-
quence of base pairing; all non-pathological secondary
structures with a sufficiently high percentage of bases in
pairs, f, will have a low D. The Tymoviruses show a rela-
tively larger D (although still small relative to sequence
length) because they have a significantly smaller f.
We note that current RNA folding programs have been

shown to be limited in their ability to correctly predict
individual base pairs in long ssRNA sequences (28).
Consistent with this, RNAsubopt and mfold (which use
slightly different energy models to generate their ensem-
bles of secondary structures, and different algorithms to

0 2000 4000 6000 8000
0

10

20

30

40

50

Sequence Length

D

Randomly-permuted sequences
Viral sequences

Figure 3. Mean ensemble-averaged 50–30 distances, D, from Equation
(1), for random and viral sequences. Standard deviations are shown
with vertical bars. The small black points represent the 10 groups of
viral sequences listed in Table 2. The large gray points represent the
14 different lengths of randomly-permuted RNAs (50–8000 nt), of viral-
like composition, described in the text. The line is a least-squares fit to
the D values for random sequences with N � 400. The asymptotic value
of D for the random sequences is very close to the theoretically pre-
dicted one, D � 12 [see Equation (2)].
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sample from these ensembles), when given long sequences
to fold, output structures that often show significant dif-
ferences in the details of base pairing, as well as overall
appearance. However, our simple theoretical model
predicts that D depends only on the values of f and k,
which we have previously found to be robust with
respect to the details of the folding program used (16).
Consequently, D should likewise be robust to the details
of the folding program, and thus insensitive to low-level
inaccuracies in specific predictions of base pairing. To test
this, we compared predictions of D made using mfold and
RNAsubopt. As expected, we found that the values do not
differ significantly between the two folding programs, and
can thus be considered broadly robust to the specific char-
acteristics of the energy model used (Table 1).
There is currently no published experimental work that

directly measures the 50–30 distance of large (103–104 nt)
ssRNAs in their native state (i.e. not complexed with
proteins). However, based on a combination of experi-
mental and computational approaches, Filomatori et al.
(4) have proposed a model for the secondary structure of
the exterior loop of native dengue ssRNA. Their proposed
loop has a D-value of 25, which is of the same magnitude
as both the theoretical predictions in Table 1, and the
numerical predictions in Table 2.

DISCUSSION

We have made two predictions in the current work, both
of which can be tested experimentally. First, we have
predicted with general theoretical arguments—and
demonstrated with numerical computations involving the
equilibrated secondary structures of a large number of
different lengths and sequences—that the distance
between ends of an ssRNA (or ssDNA) should be
�10–15 nt links. This corresponds to a 3D physical
distance of a few nm, which is far smaller than the
contour lengths of large ssRNA molecules. As mentioned
earlier, a crude estimate of the 3D distance between ends
may be obtained in terms of the root-mean-square (RMS)
end-to-end distance (b

ffiffiffiffi
D
p

) associated with a flexible linear
polymer defined by the string of covalent and H-bonded
links shown in Figure 2. With an average link size, b, of
�3/4 nm, and a D of 12, one obtains an RMS end-to-end
distance of �3 nm. This is approximately an order of
magnitude less than the 37 nm average distance between
nucleotides (radius of gyration) that has been measured by
small-angle X-ray scattering for a 6400 nt viral ssRNA
(29). Our estimate of 3 nm could be confirmed by fluores-
cence resonance energy transfer (FRET) measurements, or
still more directly by cryo-EM imaging of large ssRNA
molecules whose ends have been labeled by small gold
particles (for example, 1 nm particles conjugated to oligo-
nucleotides that are complementary to the 50- and 30-ends).
Second, we have predicted that all the linearized

ssRNAs obtained by making a single cut in a long
circular ssRNA molecule should have secondary (and
hence) tertiary structures that are essentially identical to
that of the parent circular form. Accordingly, they should
have the same size and shape. And because they

necessarily have the same charge, they should show virtu-
ally indistinguishable band positions in native gels, even
though the linear and circular forms can be easily distin-
guished in denaturing gels where the secondary structure
needed to effectively circularize the linear molecule
has been destroyed. Similarly, under native conditions,
small-angle X-ray scattering experiments, cryo-EM, and
measurements of diffusion coefficients/hydrodynamic
radii should show no difference between the circular and
linearized molecules. The only caveat here, as well as for
the measurements of 50–30 distance described earlier, is
that the secondary structures of the molecules be
equilibrated, since this is explicitly assumed in the
theoretical arguments leading to all of these predictions
[for a critical discussion of the equilibration/renaturation
(and the lack thereof) of ssRNA, see Uhlenbeck (30)].
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APPENDIX 1: DERIVATION OF D

Consider a particular secondary structure � of a given
circular ssRNA molecule, containing N nucleotides and
with base composition ’. Let L� s, dð Þ denote the number
of s, d-loops (i.e. loops composed of s unpaired nucleotides
and d duplexes) in this structure. Each s, d-loop can be cut
through any of its l ¼ s+d covalent bonds, yielding open
exterior loops of s+2d� 1 links. The average effective
contour length D� resulting from this cutting procedure is

D� ¼

P
s, d s+2d� 1ð Þ s+dð ÞL� s, dð Þ
P

s, d s+dð ÞL� s, dð Þ

¼
hs2i�+3hsdi�+2hd2i� � hsi� � hdi�

hsi�+hdi�
,

ðA1Þ

where the averages after the second equality are over
all loops belonging to the particular structure. This
follows from the fact that D ¼ next � 1 ¼ sext+2dextð Þ � 1
is the effective contour length of the exterior loop in a
particular secondary structure, and s+dð ÞL� s, dð Þ is
the statistical weight of s, d-loops containing s+d
covalent bonds. hsi� ¼

P
s, d sP� s, dð Þ ¼

P
s sP� sð Þ, with

P� s, dð Þ ¼ L� s, dð Þ=L� denoting the fraction of s, d-loops
in this structure and L� ¼

P
s, d L� s, dð Þ denoting the

total number of loops in this structure. The ‘marginal’
probability distribution P� sð Þ ¼

P
d P� s, dð Þ ¼ L� sð Þ=L� is

the fraction of loops containing s unpaired nucleotides,
regardless of the number of duplexes connected to these
loops. Similarly, hdi� ¼

P
s, d P� s, dð Þd ¼

P
d P� dð Þd, etc.

The sums over s include all s � 1 (s ¼ 1 corresponds to
a bulge) yet we also note that, in the case of a hairpin
(d ¼ 1), energetic considerations generally imply s � 3.
The sums over d include all d � 1.
For long random sequences a simplified expression for

D� [see Equation (2)], involving only sh i�, can be derived
based on two reasonable approximations. The first is to
assume there are no correlations between the distributions
of unpaired and paired nucleotides in loops, i.e.
P� s, dð Þ ¼ P� sð ÞP� dð Þ, from which it follows that
hsdi� ¼ hsi�hdi�. Small deviations from this approxima-
tion may occur because, for hairpins, we generally have
s � 3, whereas for other loops we have s � 1. The second
approximation serves to relate hs2i to hsi and hd2i to hdi.
Here we assume that the distributions P� sð Þ and P� dð Þ of,
respectively, [the (1�fa)N] unpaired nucleotides and
(f�N=2k�) duplexes among the L� loops of structure �,
are random. These distributions (analogous to those of
indistinguishable balls randomly distributed among
boxes) are determined by maximizing the (entropy)
functional �

P
i�i� P� ið Þ lnP� ið Þ (i ¼ s, d), subject to the

normalization
P

i�i� P� ið Þ ¼ 1
� �

and conservationP
i�i� iP� ið Þ ¼ hii�

� �
constraints. In this way we find

P� sð Þ ¼ 1� ��ð Þ�s�s
�

� , with a similar expression for P� dð Þ.
For concreteness and simplicity we set s�¼1 and d� ¼ 1
for the minimum values of s and d, thus obtaining
hsi�¼��= 1� ��ð Þ+1 and hs2i� ¼ 2hsi2� � hsi�. Similarly,
hd2i�¼2hdi

2
� � hdi� ¼ 6, with the second equality follow-

ing from the fact that, for all structures, hdi ¼ 2. Equation
(A1) now yields Equation (2) of the main text.
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