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Stem cell transplantation therapy is a promising adjunct for regenerating damaged heart tissue; however, only modest
improvements in cardiac function have been observed due to poor survival of transplanted cells in the ischemic heart.
Therefore, there remains an unmet need for therapies that can aid in attenuating cardiac damage. Recent studies have
demonstrated that exosomes released by stem cells could serve as a potential cell-free therapeutic for cardiac repair. These
exosomes/nanoshuttles, once thought to be merely a method of waste disposal, have been shown to play a crucial role in
physiological functions including short- and long-distance intercellular communication. In this review, we have summarized
studies demonstrating the potential role of exosomes in improving cardiac function, attenuating cardiac fibrosis, stimulating
angiogenesis, and modulating miRNA expression. Furthermore, exosomes carry an important cargo of miRNAs and proteins
that could play an important role as a diagnostic marker for cardiovascular disease post-myocardial infarction. Although there is
promising evidence from preclinical studies that exosomes released by stem cells could serve as a potential cell-free therapeutic
for myocardial repair, there are several challenges that need to be addressed before exosomes could be fully utilized as off-the-
shelf therapeutics for cardiac repair.

1. Introduction

Cardiovascular disease (CVD) accounted for 30.8% of all
deaths in the United States in 2014, with one person dying
from CVD every 40 seconds [1]. More than half of all car-
diovascular events in men and women under the age of 75
years are caused by coronary heart disease (CHD) [2],
which includes myocardial infarction (MI). Furthermore,
for patients over 45 years of age, 36% of men and 47%
of women will die within 5 years after their first MI [1].
The primary treatments for CHD include antihypertensive
and cholesterol-lowering drugs and surgical interventions
including stents and bypass, all of which aim to prevent
recurrence of MI or slow down heart failure. Unfortunately,
these strategies do not address the issue of post-MI scar

formation which often leads to progressive heart failure and
eventually death. Research has been ongoing to prevent scar
formation and improve cardiac function post-MI by encour-
aging cardiomyocyte regeneration in the infarct area.

Transplantation of stem cells is a viable therapeutic
approach as the adult human heart has a very limited capac-
ity for innate cardiac regeneration [3]. The potential of cer-
tain stem cells for multilineage differentiation provided the
theoretical basis for their use in direct regeneration of injured
cardiac tissue [4–6]. More recently, interest in using stem
cells for cardiac repair was piqued with the discovery of
induced-pluripotent stem cells [7] and subsequent derivation
of functional cardiomyocytes [8], which could directly regen-
erate the injured tissue. However, theory has not been easily
translated into practice as transplantation of stem cells has
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yielded limited success due to poor engraftment of stem cells
in the ischemic heart [9, 10]. Interestingly, posttransplan-
tation cardiac function improves even though the number
of surviving transplanted cells present is very low [9, 10] and
increased capillary density has been observed even though
direct differentiation of the transplanted cells is lacking
[11]. As such evidence is pointing towards a greater role of
the paracrine signaling potential of transplanted cells, the
key tenet in restoring cardiac function after MI may lie in
providing the appropriate signaling events to initiate cardiac
repair mechanisms. Recently, exosomes have emerged as a
novel cellular signaling mechanism and can provide active
molecules to target cells to aid in responding to stress.
Delivering exosomes to damaged tissues to convey benefi-
cial signals is of particular interest in cardiac regenerative
medicine [12, 13]. Endogenous post-MI cardiac repair is
inefficient and results in a maladaptive response that ulti-
mately leads to heart failure [14]. Stimulation of endoge-
nous remodeling and increasing local angiogenesis to
support cardiomyocyte function and improve heart function
is paramount to improving clinical outcomes for ischemic
heart disease, and exosomes have the potential to fulfill
this need.

2. Background on Exosomes

Exosomes are membrane-bound vesicles secreted by many
cell types containing proteins [15], lipids [16], and nucleic
acid [17–19]. Since numerous types of extracellular vesicles
(EV) have been described, certain criteria exist to classify
EVs as exosomes [20]. Exosomes are formed by inward bud-
ding of multivesicular endosomes, where molecules are pack-
aged and stored [21] and later fuse with the plasma
membrane for extracellular secretion. Exosomes are charac-
terized by their size (40–100 nm) [22], which along with other
physical properties allows for simple separation from debris
released by cells and other types of vesicles [23]. Exosomes,
once thought to merely be vehicles for waste disposal
[24, 25], are now considered to play a critical role in inter-
cellular communication and thus provoked fervent interest
in understanding this novel function. Proteomic analyses
unveiled that exosomes contain distinct proteins [26–28],
which distinguish them from membrane vesicles released
by apoptotic cells [21]. These nanoshuttles relay information
from their cellular microenvironment to near and distant
cells to signal necessary changes to deal with stressors.

3. Exosome Uptake by Target Cells

The lipid bilayer of exosomes protects the protein and nucleic
acid contents, allowing them to persist in the extracellular
environment. Exosome uptake by target cells has been shown
to occur via myriad mechanisms in cell culture experiments,
with uptake depending on the source cells, target cells, and
the microenvironment. Exosomal uptake can take place by
endocytosis; however, the endocytic pathway has multiple
mechanisms for uptake. Fitzner et al. labeled purified exo-
somes with PKH67 and incubated them with mouse oligo-
dendrocytes; they observed colocalization of exosomes with

Lamp1, a marker of late endosomes, indicating that the exo-
somes had been internalized by an endocytic pathway [29].
Similarly, Tian et al. utilized labeled exosomes from rat pheo-
chromocytoma cells and studied their uptake by cardiomyo-
blast cells pretreated with various pharmacological and
chemical agents against specific mechanisms of endocytosis.
Results from this study concluded that exosome uptake
occurred via clathrin-mediated endocytosis and macropino-
cytosis [30]. Furthermore, Svensson et al. studied the effi-
ciency of uptake of exosomes derived from human primary
glioblastoma cells. Experiments determined the mechanism
of uptake to occur via lipid raft-mediated endocytosis nega-
tively regulated by caveolin-1 and to be dependent on intact
ERK1/2 signaling [31]. Conversely, a study by Soares et al.
indicated the presence of hexameric channels of Connexin
43 (Cx43) in exosomes. These experiments demonstrated
colocalization of labeled exosomes and Cx43 protein as well
as increased transfer of plasmid DNA with expression of
Cx43 in both donor and target cells [32]. These studies
demonstrate that exosomal uptake occurs via numerous
mechanisms; thus, clinical application of therapeutic exo-
somes may rely on understanding and exploiting their
method of uptake for successful treatment.

4. Exosomes in Molecular Signaling

Exosomes have been found in many bodily fluids including
blood, urine, and plasma, supporting their role in intercellu-
lar communication [33, 34]. Crosstalk between cardiac mus-
cle cells and endothelial cells is critical for regulating cardiac
blood vessels to meet the oxygen and nutrient demand of the
myocardium. Exosomes have been shown to play a role in
communication between cardiac cell types. Vrijsen et al.
demonstrated that exosomes from human cardiomyocyte
progenitor cells (CPCs) stimulated migration of endothelial
cells in a dose-dependent manner using a wound healing
assay [35]. Another study by Ong et al. utilized concomitant
post-MI injection of mouse CPCs and exosomes from endo-
thelial cells (ECs) overexpressing HIF-1α. The transplanted
CPCs displayed increased survival in the exosome injected
group, as compared to CPC injection alone, demonstrating
the cytoprotective properties of exosomes [36]. Addition-
ally, Yu et al. demonstrated that exosomes isolated from
conditioned media of GATA4-overexpressing MSCs were
enriched in antiapoptotic miRNAs and when injected into
rat hearts post-MI mediated cardioprotective effects [37].
Another recent study by Khan et al. demonstrated that
mouse embryonic stem cell- (ESC-) derived exosomes have
the ability to augment cell survival, proliferation, neovascu-
larization, and cardiac function in the infarcted heart [38].
As proof of principle, Hergenreider et al. utilized ECs trans-
duced with eGFP in a transwell assay with smooth muscle
cells (SMCs) to demonstrate transfer of eGFP mRNA to the
SMCs [39]. Additional experiments showed miRNA transfer
from vesicles isolated from ECs transfected with a miRNA
unique to C. elegans, when incubated with SMCs [39]. These
experiments exhibited exosomal transfer of RNA and
miRNA from ECs to SMCs indicating that exosome contents
are source cell-specific and can be transferred as paracrine
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mediators and carriers of genetic information [39]. Overall,
these studies demonstrate that various types of cardiac
cells signal through exosomes to adapt to changes in their
microenvironment.

Exosome secretion from cell cultures has been highly
characterized as their isolation frommedia is mostly straight-
forward. Unfortunately, characterization of exosome secre-
tion from in vivo tissue is not as simple as many possible
source cells are present. However, presumed exosome secre-
tion from tissue has been observed using transmission elec-
tron microscopy (TEM). In this study, secretion of double
membrane-bound vesicles approximately 50nm in size was
visualized in both healthy and ischemic heart tissue [40].
Additional studies in rodent hearts demonstrated exosomes
and microvesicle secretion by cardiac progenitor cells [41]
and telocytes, an interstitial cell type present in the heart
[42]. Altogether, these studies corroborate the secretion of
exosomes from the mammalian heart. Moreover, Xiao et al.
used CPCs to study whether oxidative stress would affect
exosome secretion. In this study, cells were treated with or
without H2O2 and exosome concentrations were measured;
results indicated that oxidative stress increased exosome
secretion in a dose-dependent manner [43]. These findings
further supporting the role of exosomes in signaling in
response to stress.

5. Exosomes and Cardiac Repair

A growing body of evidence demonstrates that exosomes
delivered to cells under oxidative stress stimulate angiogen-
esis and cytoprotection as well as regulate inflammation
and apoptosis [44–46]. Several studies performed using
exosomes isolated from various stem cell types investigated
their potential role in attenuating cardiac fibrosis and
improving cardiac function post-MI (Tables 1 and 2).
Source cell type and culture conditions can determine the
therapeutic potential of derived exosomes. For instance,
ESCs grown under normal conditions produce therapeutic
stem cells as observed in a study by Khan et al. which uti-
lized mouse ESC-derived exosomes to treat the heart after
acute MI in a mouse model [38]. Results of this study dis-
played improvement in cardiac function and decreased
fibrosis following exosome treatment [38]. Similarly, exo-
somes isolated from human embryonic stem cell-derived
mesenchymal stem cells (ESC-MSCs) cultured under nor-
mal conditions also exhibited therapeutic benefit. When
these exosomes were used to treat mouse models of MI
[47] and ischemia/reperfusion (I/R) injury [48], improve-
ments in cardiac function and decreased infarct size were
observed. Furthermore, multiple studies conducted have
used bone marrow-derived MSCs (BM-MSCs) as the source

Table 1: Exosomes isolated from stem cells derived from rodent source and their cardioprotective effects on the heart post-MI.

Source cells (rodents)
Conditions for Exo

generation
In vivo model Dose/route of administration Outcomes References

ESC
40 h in culture—unclear

about serum status
Mouse, MI

10 μg total Exo
protein/inj; IM inj into
border zone at 2 sites

↑ LVEF
↑ FS
↓ ESD

↓ infarct size

Khan et al. [38]

BM-MSC

O/N glucose starvation,
(±)IPC; serum-free,
collected after 48 h

Mouse, MI
1 μg total Exo protein;

injected along border zone
↓ infarct size
with IPC

Feng et al. [51]

10% Exo-depleted FBS,
collected after 48 h;
during passage 4

Rat, MI
20 μg total Exo protein
into 2 sides along infarct

border zone

↑ LVEF
↑ FS

↓ fibrosis
↓ inflammation

Shao et al. [50]

Overexpression of
GATA4, 10% Exo-free
FBS, collected after 48 h

Rat, MI
Exo from 4× 106 cells; IM
injection at border zone

↑ LVEF
↑ FS

↓ infarct size
Yu et al. [37]

Rat heart perfusate (±)IPC Rat, Langendorff
I/R

Perfused prior to 30min
global ischemia, 2 h

reperfusion

↓ infarct size with
IPC perfusate

Giricz et al. [52]

CPC
2% Exo-depleted FBS,
collected after 48 h

Mouse, MI
Half of Exo collected
from 5× 105 cells;

IM injection
↓ apoptosis Chen et al. [82]

CD31+ cardiac EC
Overexpression of HIF-1α,

Exo-depleted serum
Mouse, MI

25 μg total Exo
protein± 1× 106
CPCs; peri-infarct

injection

↑ LVEF
↑ FS

↓ Infarct size
↑ capillary density

↑ survival of
transplanted CPCs

Ong et al. [36]

ESC: embryonic stem cell; BM-MSC: bone marrow-derived mesenchymal stem cell; CPC: cardiac progenitor cell; EC: endothelial cell; MI: myocardial
infarction; Exo: exosome; inj: injection; IM: intramyocardial; IPC: ischemic preconditioning; LVEF: left ventricular ejection fraction; FS: fractional
shortening; ESD: end systolic diameter; O/N: overnight.
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cell for exosomes. Bian et al. isolated exosomes from human
BM-MSCs and injected them into rat hearts after induction
of acute MI. They observed increased blood vessel density
along with improved cardiac function in the exosome-
treated group, when compared to control [49]. Likewise,
work by Shao et al. employed rat BM-MSCs as source cells
for exosomes and treatment for a rat model of MI, which
also observed increased cardiac function and decreased
fibrosis as well as decreased inflammation [50]. Addition-
ally, another study by Feng et al. utilized exosomes derived
from BM-MSCs, which were subjected to ischemic precon-
ditioning (IPC) for treating acute MI in mice. This study
demonstrated a significant decrease in cardiac fibrosis in
mice treated with exosomes from IPC-treated cells, when
compared to the non-IPC group [51]. Similarly, Giricz et
al. isolated exosomes from rat heart perfusate with and
without IPC, used them to treat a rat model of I/R, and
showed that infarct size was reduced with IPC-treated exo-
somes [52]. On the other hand, transplantation of CPCs
post-MI is considered to have the greatest potential for

cardiac cell therapy due to its capacity to differentiate
toward cardiac lineages [53, 54] and augment paracrine
effects [9]. To that end, Barile et al. induced acute MI in rats
and injected exosomes from human CPCs in the infarct bor-
der zone. Increased blood vessel density, decreased scar
tissue, and larger areas of viable tissue in the infarct bor-
der zone were seen in the exosome-treated group as com-
pared to control [55]. Overall, this study confirmed that
exosome signaling stimulated angiogenesis, increased cell
survival, decreased apoptosis, and improved cardiac func-
tion, when compared to PBS-injected group [55]. In another
study by Cambier et al., exosomes from cardiosphere-
derived cells (CDCs) were injected into rat hearts in a
model of I/R injury and resulted in decreased infarct mass,
decreased infiltration of macrophages, and decreased apo-
ptosis of cardiomyocytes [56]. Collectively, these studies
demonstrate that exosome treatment improved cardiac
function and decreased fibrosis post-MI, which are cru-
cial requirements for future clinical exosome therapy in
myocardial repair.

Table 2: Exosomes isolated from stem cells derived from human source and their cardioprotective effects on the heart post-MI.

Source cells
(human)

Conditions for Exo
generation

In vivo model Dose/route of administration Outcomes References

ESC-MSC

Serum-free, collected
after 72 h

Mouse, MI
16 μg/kg total Exo protein;

tail vein inj 5min
before reperfusion

↑ LV function
↓ infarct size

Arslan et al. [47]

Serum-free, collected
after 72 h

Mouse, I/R
3 μg total Exo protein;
tail vein inj 5min prior

to reperfusion
↓ infarct size Lai et al. [48]

BM-MSC
Serum-free, collected
after 72 h at hypoxia

(1% O2)
Rat, MI

4 inj 20 μg total Exo protein;
IM inj into infarct border
zone 30min after ligation

↑ LVEF, FS, LVSP
↓ LVDEP

↓ infarct size
↑ blood vessel mass

Bian et al. [49]

CDC

Serum-free, collected
after 5 days

Rat, I/R

10 μg total Exo protein;
injected into LV cavity

over 20s with aortic cross
clamp 10min into reperfusion

↓ infarct mass
↓ infiltration
of macrophage
↓ apoptosis

of cardiomyocytes

Cambier et al. [56]

Serum-free, collected
after 15 days at
confluence

Mouse, MI
2.8× 109 Exo; IM inj at 2 sites
in peri-infarct area either

immediately or 3 weeks later

↑ LVEF
↓ fibrosis

↓ infarct size
(for both dose intervals)

Ibrahim et al. [127]

Serum-free, collected
after 15 days at
confluence

Pig, MI
16.5× 1011 Exo in 10 injections;
IM injection to infarct area

Maintained LVEF
↓ scar mass

↑ blood vessel density
↑ proliferation of
cardiomyocytes

Gallet et al. [126]

CPC
1% HSA, collected

after 48 h
Rat, MI

30 μg or 300 μg total Exo protein;
IM inj into viable myocardium

bordering LV infarct zone at 3 sites

↑ LVEF
↑ in systolic

LV wall thickening
↓ fibrosis

Barile et al. [55]

PMPs
Healthy donors,
no medication
for 2 weeks

Rat, MI
5 μg total Exo protein per
injection; 4 inj 2mm from

cyanotic region

↑ functional
vascularization

Brill et al. [101]

ESC-MSC: embryonic stem cell-derived mesenchymal stem cell; BM-MSC: bone marrow derived mesenchymal stem cell; CPC: cardiac progenitor cell; CDC:
cardiosphere-derived cells; PMP: platelet microparticles; MI: myocardial infarction; I/R: ischemia/reperfusion; Exo: exosome; inj: injection; IM:
intramyocardial; IPC: ischemic preconditioning; LV: left ventricular; LVEF: left ventricular ejection fraction; FS: fractional shortening; LVSP: left ventricular
systolic pressure; LVDEP: left ventricular end-diastolic pressure; HSA: human serum albumin.
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6. Exosomes and Angiogenesis

Restoration of blood flow after ischemia-reperfusion (I/R)
injury to the infarct region can salvage myocardium by
clearing apoptotic cells, decreasing scar tissue, stimulating
angiogenesis, and recruiting progenitor cells for tissue regen-
eration. Stimulating the growth of new microcirculation in
the infarct area can help in reviving cardiac function. Angio-
genesis is a process of developing new blood vessels from the
existing vessels [57]. In stem cell transplantation after MI, the
primary beneficial effects are attributable to the paracrine
effect of transplanted stem cells and have been shown to
stimulate angiogenesis in the infarct and peri-infarct regions
of the heart. Under stress or normal conditions, cell-to-cell
communication occurs through the secretion of microvesi-
cles or exosomes. Recent studies have demonstrated that exo-
somes isolated from stem cells such as MSCs, CPCs, CD34+

stem cells, and pericardial fluid can stimulate angiogenesis
after MI and improve cardiac function [49, 55, 58–68].
MSC-derived exosomes have shown induction of angiogene-
sis and promotion of proliferation in cellular experiments
and animal models with acute MI. Moreover, hypoxia-
treated MSC-derived exosomes have shown a greater angio-
genic potential, when compared to exosomes from non-
hypoxia-treated MSCs [49, 58]. The ischemic treatment in
MSCs promotes the expression of several proangiogenic
signaling-associated proteins including epithelial growth fac-
tor (EGF), fibroblast growth factor (FGF), and platelet-
derived growth factor (PDGF). The underlying molecular
mechanism of angiogenesis induced by these exosomes is
via the activation of NF-κB pathways [58]. The miRNA
analysis of these exosomes identified miR-132, miR-30b,
miR-30c, miR-424, let-7f, and let-7b-5p to be proangiogenic
miRNAs [55, 59–61, 65]. Furthermore, miR-132 from CPC
exosomes downregulated RasGAP-p120 enhancing tube
formation in endothelial cells [55]. miR-30b from MSC
exosomes downregulated DLL4, a negative regulator of vas-
cular sprouting and vessel branching, and thus promoted
angiogenesis [55]. The angiogenic effect of let-7b-5p from
pericardial fluid-derived exosomes in ECs occurs via inhibi-
tion of its target gene, TGFBR1 [59]. MSCs overexpressing
Akt, HIF-1α, or CXCR4 have exhibited an induction of
angiogenesis and improvement of cardiac function after
MSC transplantation in acute MI models. Similarly, exo-
somes derived from Akt, HIF-1α, or CXCR4-overexpressed
MSCs exhibit tremendous beneficial effects in the treatment
of MI via the induction of angiogenesis and the improvement
of cardiac function [62–64]. Furthermore, nitric oxide
(NO) plays an important role in regulating vascular tone
and vascular growth [69–71]. Exosomes derived from NO-
stimulated MSCs also show superior angiogenic effects and
ameliorated limb function in a murine model of hind limb
ischemia [60]. Moreover, the paracrine effect of transplanted
human CD34+ stem cells exhibits enhanced therapeutic effi-
cacy in ischemic tissue. Exosomes derived from these cells
enriched with proangiogenic miRNAs such as miR-126-3p
increased angiogenesis of ischemic hind-limb tissue [65].

Overall, angiogenesis is an important process for tissue
repair after MI. Recent progress in exosome research

provides a new direction in the treatment of ischemic heart
disease via the induction of angiogenesis. Continuing investi-
gation of the molecular mechanism of exosomes on angio-
genesis will provide a new avenue for the future treatment
of MI. However, the uncertainties that need to be addressed
are: What is the molecular mechanism used by exosomes in
stimulating angiogenesis? What is the best cell type for
exosome generation and stimulation of angiogenesis? The
further identification of the content of exosomes, including
proteins, miRNAs, peptides, and small molecules, will shed
the light on the therapeutic value of exosomes in the treat-
ment of MI and its role in the induction of angiogenesis
for cardiac repair after MI.

7. Exosomes and miRNAs

miRNAs are short noncoding RNAs that regulate gene
expression at the mRNA level and are estimated to regulate
upwards of 30% of human mRNAs [72]. miRNA regulation
of gene expression is critical for numerous cellular processes
including proliferation, differentiation and apoptosis [73].
Valadi et al. demonstrated the presence of mRNA and
miRNA within exosomes and their ability to deliver the cargo
to target cells for translation into protein or regulation of
gene expression, respectively [74]. Remarkably, the packaged
mRNAs are not the result of random association, as
microarray analysis revealed that specific mRNA sequences
are targeted for packaging into exosomes [74]. Additionally,
several recent studies have reported particular miRNAs
to be enriched in exosomes [75–77]. Exosomal miRNA
can be transferred to target cells where they can actively
promote changes in gene expression and respond to stress
(Figure 1). ESC-derived exosomes demonstrated significant
enrichment of the ESC-specific miR-290 family (including
miR-291, miR-29, and miR-295) and these miRNAs were
detected in mouse hearts 5 days after MI [38]. Subsequent
miR-294 gain-of-function experiments performed in CPCs
showed an increase in the number of CPCs in S-phase,
and mRNA expression of cyclins also increased as com-
pared to untreated cells [38]. Further molecular studies
showed that treatment of CPCs with miR-294 mimic
increased AKT phosphorylation, increased protein expres-
sion of CPC multipotency marker nucleostemin [78] and
pluripotency regulator LIN28 [79], and increased mRNA
expression of pluripotency markers c-Myc and Klf4, as
compared to miR-291 mimic and untreated controls [38].
Exposure of CPCs to H2O2 stress resulted in increased prolif-
eration and survival when treated with miR-294 mimic; thus,
miR-294 aided in regulating CPC cell cycle and promoted
proliferation and survival [38]. Studies by Xiao et al. showed
CPCs exposed to oxidative stress secreted exosomes with sig-
nificantly increased amounts of miR-21 [43], which has been
shown to be important in the response to oxidative stress
[80]. Cardiomyocytes exposed to H2O2 display decreased
levels of miR-21 expression and increased apoptosis via cas-
pase activation, as compared to unstressed controls [43].
Interestingly, pretreatment of CMs with stressed CPC-
derived exosomes (or miR-21 mimic) rescued the decrease
of miR-21 and exhibited decreased apoptosis when exposed
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to oxidative stress [43]. These findings support the antiapop-
totic role of miR-21 in cytoprotection, which further studies
revealed to occur by directly targeting PDCD4—a promoter
of tumor cell apoptosis [81]. Similarly, exosomes isolated
from mouse CPCs which demonstrated protection against
oxidative stress-induced apoptosis were found to be enriched
in miR-451/−144 [82]. Cell-based studies have demonstrated
that miR-451 expression is directly regulated by GATA4
[83], a key transcription factor involved in cardiac develop-
ment and function [84, 85]. Additionally, miR-133a, a
muscle-specific miRNA that is highly abundant in the heart
[86], is enriched in exosomes secreted by CPCs and confers
protective effects [87]. A study by Agarwal et al. investigated
the role of miRNAs in the therapeutic effects of CPC-derived
exosomes and identified numerous miRNAs of importance
known to regulate fibrosis, cardiac hypertrophy, angiogene-
sis, and apoptosis [88]. Conclusively, the complex role of exo-
somal miRNAs in cardiac repair is only beginning to be
unraveled and requires further study.

8. Exosomes from Human-Induced Pluripotent
Stem Cell-Derived Cardiomyocytes

Recently, induced pluripotent stem cell-derived cardiomyo-
cytes (hiPSC-CMs) have emerged as a potential source for

cardiac regeneration. Previous studies from our lab have
demonstrated improved cardiac function and decreased
fibrosis following transplantation of hiPSC-CMs post-MI
[89, 90]. However, there is a paucity of information about
exosomes derived from hiPSC-CMs in cardiac repair. In an
effort to understand whether hiPSC-CMs release exosomes
under normoxic environment, we have cultured hiPSC-
CMs for 2 weeks and performed TEM studies. Our results
demonstrate that hiPSC-CMs can secrete exosomes under
normoxic microenvironment; these exosomes can be identi-
fied in the cytoplasm and close to the periphery of the cell
membrane (Figure 2). The size of these exosomes ranged
from 46 to 88nm; studies are in progress in our lab to under-
stand the role of hiPSC-CMs-secreted exosomes in cardiac
repair and angiogenesis.

9. Exosomes as Diagnostic Markers in
Cardiovascular Disease

Exosomes carry cargo representative of the status and micro-
environment of their source cells, which changes in response
to stressors. Combining this trait with their presence and sta-
bility in bodily fluids, exosomes are being heralded as a prac-
tical source of diagnostic and prognostic markers. Jansen
et al. found that miRNAs present in circulating microvesicles
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Figure 1: Cardiotherapeutic effects of exosomes isolated from stem cells. Exosomes have been found to play a critical role in cardiac repair.
These “nanoshuttles” can impart information to the target cells via miRNAs, which can directly regulate gene expression. Listed are exosomes
found to be upregulated in exosomes isolated from various cell lines and the cardioprotective benefits of those exosomes. Exosomes derived
from mesenchymal stem cells (MSCs), cardiac progenitor cells (CPCs), embryonic stem cells (ESCs), and cardiosphere-derived cells (CDCs),
administered to mice after acute myocardial infarction (AMI) have been shown to enhance cardiac function, angiogenesis, attenuate
apoptosis, and fibrosis.
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could predict cardiac events. By studying select miRNAs
known to regulate vascular performance in patients with sta-
ble coronary artery disease, it was discerned that increased
expression of miR-126 and miR-199a in circulating microve-
sicles correlated with a decreased occurrence of a major det-
rimental cardiovascular event [91]. Moreover, endothelial
cells express miR-126, which is involved in angiogenic devel-
opment and vascular integrity [92] by regulating the cellular
response to VEGF signaling [93]. The miR-199 family has an
important role in hypoxia-induced cell death via downregu-
lation of HIF-1α and stabilization of proapoptotic factor
p53 [94]; miR-199a is downregulated in heart failure patients
[95]. Additionally, Kuwabara et al. showed that patients with
CVD had increased serum levels of miR-1 and miR-133a,
indicating myocardial damage [96]. A mouse model of MI
demonstrated levels of miR-1 and miR-133a were decreased
in the infarcted myocardium and elevated in serum as com-
pared to sham-operated animals, suggesting that these miRs
could be an early stage diagnostic marker [96]. Another study
by Yang et al. noted that acute MI patients had increased
serum exosome levels of miR-30a, which was upregulated
by HIF-1α during hypoxia and induced autophagy of cardio-
myocytes in cellular studies [97]. Furthermore, Matsumoto
et al. found that patients with acute MI who developed heart
failure have elevated serum exosome levels of miR-192, miR-
194, and miR-34a [98], all of which are p53-responsive [99,
100]. In summary, profiling exosomes miRNAs in patients’
blood samples post-MI could serve as a reliable repertoire
of biomarkers for CVD. This would enable physicians to pro-
vide patients the most appropriate treatment when presented
in the clinic or to adjust their treatment regimen as needed.

10. Exosomes as Cell-Free Therapeutics in
Cardiac Repair

Researchers are studying ways to harness the paracrine sig-
naling potential of exosomes in use as a novel cell-free thera-
peutic. The cardiotherapeutic potential of exosomes was first
demonstrated by Brill et al. using human platelet-derived
microparticles (PMPs). PMPs were isolated from healthy

donors via an ultracentrifugation protocol similar to that uti-
lized for exosome isolation. A rat model of MI was injected
with either PMPs or saline immediately after permanent cor-
onary artery ligation. Three weeks post-MI, rats treated with
PMPs showed a significant increase in blood vessel density,
suggesting the PMPs stimulated angiogenesis in the infarct
region [101]. In a study by Vicencio et al. rats were pretreated
with a tail vein injection of plasma exosomes isolated from
healthy human donors then subjected to acute MI. Results
demonstrated reduced infarct size with exosome treatment
compared to vehicle control [102]. Additional cell-based
experiments showed that pretreatment with human plasma
exosomes prior to hypoxia-reoxygenation injury resulted in
a significant increase in the population of healthy cells, as
well as reducing the population of cells with a low mitochon-
drial transmembrane potential post-injury [102]. These stud-
ies demonstrated the ability of the exosomes to confer
resilience to oxidative stress injury.

Specificity of exosome signaling to target cells will allow
stimulation of the desired response while decreasing the pos-
sibility of off-target effects. Recently, Alvarez-Erviti et al. uti-
lized exosomes that were engineered to target specific cells
and deliver their exogenous cargo. This study utilized allo-
genic dendritic cells transfected to express Lamp2b, an exo-
somal protein, fused to RVG peptide that specifically binds
the acetylcholine receptor [103]. Exosomes isolated from
conditioned media were loaded with exogenous siRNA by
electroporation and then delivered via tail vein injection into
mice. This study exhibited successful and specific delivery of
exosomes to neurons, microglia, and oligodendrocytes in
the brain without nonspecific tissue delivery. Additionally,
gene expression analysis revealed 60% mRNA-level and
64% protein-level knockdown of the siRNA target gene
BACE1, a therapeutic target in Alzheimer’s disease [103].
Furthermore, preexposure with RVG-exosomes did not
attenuate the effect, indicating a lack of immune response
elicited by exosomes [103]. Notably, this approach would
be successful when the target cells display unique receptors
or markers; however, it may also limit the response to a
single cell type.

Figure 2: Transmission electronmicroscopy (TEM) of exosomes isolated from human-induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs). Exosomes are indicated by red arrows, and the size of exosomes was measured by ImageJ analysis. The average mean diameter
of these exosomes was 66.8± 11.5 nm.
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The use of exosomes as a cell-free therapeutic has numer-
ous advantages over stem cell-based transplantation
(Table 3). A drawback for stem cell transplantation lies in
their potential for teratoma formation [104] and fear of
tumorigenicity as cells must pass preclinical in vivo tumori-
genicity testing in order to receive FDA approval [105–
107]. Even with transplantation of highly pure stem cells, ter-
atoma formation is still possible [108] and tumors may
develop years after transplantation [109], even with autolo-
gous grafting [110]. Conversely, the tumorigenic potential
of exosomes is very low as they are a short-term treatment
being readily taken up by target cells or flushed out via the
blood and urine as demonstrated in studies tracking labeled
exosomes [111, 112]. The immunogenicity of exosomes is
also minimal, as compared to stem cells [113]. A mouse study
by Zhu et al. determined the toxicity and immunogenicity of
exosome treatment given over 3 weeks was not significant
[114]; however, longer-term studies are needed. Clinical tri-
als in humans using exosomes to treat cancer have shown
the treatment to be well-tolerated with only low-level
immune responses observed [115–117]. However, it should
be noted that these studies were utilizing exosomes in a ther-
apeutic vaccination strategy and aimed to increase the
immune response against cancer cells. The major limitation
of stem cell therapy for cardiac repair is low survival of trans-
planted cells in the harsh microenvironment of the ischemic
heart. A porcine model of MI treated with MSC injection
showed engraftment of 6% of cells to the ischemic myocar-
dium 10 days after treatment [118]. In addition, although cell
engraftment is poor in the ischemic heart, improvements in
cardiac function are still observed and are credited to the

paracrine effects provided by the transplanted cells [8–10],
in part mediated by exosomes. Thus, exosome treatment
would allow for administration of beneficial paracrine signal-
ing effects without the threat of teratoma formation and very
low risk of tumorigenicity and immunogenicity. Ultimately,
clinical trial results for stem cell transplantation are incon-
sistent, with some showing small improvements [119–121]
and other showing no improvement in cardiac function
[122, 123]. Meanwhile, Tables 1 and 2 illustrate that animal
studies of exosome treatment for MI have yielded similar
results despite derivation from different source cells. How-
ever, successful exosome treatment of chronic and complex
conditions in humans will require much more extensive test-
ing and validation to ensure their safety and efficacy.

11. Potential Challenges of Exosomes in
Cardiac Repair

While exosomes possess great promise as cell-free thera-
peutics, there are several challenges facing its inception
into the clinic. A notable challenge for therapeutic exo-
somes lies in the optimization and standardization of their
isolation. Multiple methods are currently used including
differential centrifugation, antibody-based pulldown, size
exclusion chromatography, and precipitation with polymers,
each with their own advantages and caveats (reviewed in
[124, 125]). The appropriate isolation method would deliver
sterile exosomes with reproducible purity and potency and
would need to be amenable to standards for good
manufacturing practices (GMPs). Downstream of isolation,
dosage regimens and the route of administration remain

Table 3: Comparison of stem cell therapy versus exosomes (cell-free) therapy. Exosomes have several advantages over stem cell
transplantation; however, they also have disadvantages for therapeutic applications, which have been outlined in this table.

References

Cell therapy

Advantages

Potential for multilineage differentiation [4–8]

iPSCs—potential for autologous transplantation [4]

Disadvantages

Inconsistent clinical trial results [114–118]

Low engraftment [6, 7]

Low direct regeneration [8]

Risk of formation of benign teratoma [100, 104]

Fear of tumorigenicity—must pass preclinical in vivo tumorigenicity testing to receive FDA approval [101–103, 105]

Immunogenicity—rejection of allogenic transplants [109]

Exosomes (cell-free) therapy

Advantages

Provides active molecules to target cells—mRNA, miRNA, protein [23–25, 36]

Contents can be modified via source cell manipulation or external means [119]

Very low immunogenicity [99, 110]

Disadvantages

Laborious and inefficient isolation methods [119, 120]

Short-term use only, do not regenerate [14–116]

iPSCs: induced pluripotent stem cells.
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debatable as researchers utilize varying conditions in ani-
mal models. Researchers are using a wide range of doses
(1μg–30μg), using different units for determining dose
(protein amount or particle number), and delivering the exo-
somes via varying routes (infusion, intracoronary injection,
and intramyocardial injection) (Tables 1 and 2). Frequently,
laboratory small animal models are often dosed immediately
after induction of MI, which is not practical in the human
clinical setting. Conversely, a recent randomized study of
acute MI in pigs delivered exosomes 4 weeks after MI, which
is more applicable to the clinic [126]. This study also evalu-
ated two methods of delivery of exosomes from human
cardiosphere-derived cells and determined intramyocardial
injection to be therapeutic and intracoronary infusion to be
ineffective, with doses that were extrapolated from small ani-
mal models [126]. Endpoint measurements in this study at
one month post-treatment showed improved cardiac func-
tion, decreased fibrosis, decreased hypertrophy of cardio-
myocytes, and increased angiogenesis [126]. Whether these
improvements would be maintained long-term is still
unknown and needs to be explored. A successful therapeutic
would have long-lasting effects without eliciting an immune
response that could trigger rejection or clearance. Further-
more, exosome-mediated effects are not based merely on
content but are influenced by a multitude of factors, which
are not fully understood and off-target effects are possible.
For instance, two studies found increased expression of
miR-146a in exosomes, one with CPC-derived exosomes
and the other with EC-derived exosomes. The CPC-derived
exosomes delivered to infarcted mouse hearts inhibited car-
diomyocyte apoptosis, enhanced angiogenesis and improved
LV ejection fraction [55, 127]. In contrast, the EC-derived
exosomes decreased cardiomyocyte metabolic activity in
cell-based assays and promoted pregnancy-associated car-
diomyopathy in mouse models [128]. Although the studies
used different animal models, the differences in outcome
demonstrates the need to better understand the effects of
using exosomes as a therapeutic in a diverse population.

12. Conclusions

Successful cardiac repair post-MI requires tissue regenera-
tion in order to restore cardiac function and decrease LV
remodeling. Studies in both in vitro and in vivo models have
demonstrated that exosome contents are dependent on cell
type and microenvironment in which the cells are cultured.
Furthermore, exosome cargo can be manipulated by altering
the genetics and microenvironment in which the stem cells
are grown to produce beneficial effects on the target cells.
Myriad cell types are present in the heart and coordinated
communication amongst them is paramount to efficiently
regulate cardiac function. A successful exosome therapeutic
regimen for cardiac repair would likely include a combina-
tion of exosomes that contain cargo capable of attenuating
cardiac fibrosis, inducing angiogenesis and improving car-
diac function. Above all, exosomes released by stem cells
seem to have several advantages over transplanting stem
cells directly into the ischemic heart post-MI. However,
further studies are warranted in patients to optimize

dosing and route of administration, as well as study the
immunogenic response and possible side effects for future
clinical application.
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