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Abstract

Fructose consumption causes metabolic diseases and renal injury primarily in the renal cor-

tex where fructose is metabolized. Analyzing gene differential expression induced by dietary

manipulation is challenging. The effects may depend on the base diet and primary changes

likely induce secondary or higher order changes that are difficult to capture by conventional

univariate transcriptome analyses. We hypothesized that dietary fructose induces a genetic

program in the kidney cortex that favors lipogenesis and gluconeogenesis. To test this, we

analyzed renal cortical transcriptomes of rats on normal- and high-salt base diets supple-

mented with fructose. Both sets of data were analyzed using the Characteristic Direction

method to yield fructose-induced gene vectors of associated differential expression values.

A fructose-specific “signature” of 139 genes differentially expressed was extracted from the

2 diet vectors by a new algorithm that takes into account a gene’s rank and standard devia-

tion of its differential expression value. Of these genes, 97 were annotated and the top 34

accounted for 80% of the signal in the annotated signature. The genes were predominantly

proximal tubule–specific, coding for metabolic enzymes or transporters. Cosine similarity of

signature genes in the two fructose-induced vectors was >0.78. These 139 genes of the

fructose signature contributed 27% and 38% of total differential expression on normal- and

high- salt diet, respectively. Principal Component Analysis showed that the individual ani-

mals could be grouped according to diet. The fructose signature contained a greater enrich-

ment of Gene Ontology processes related to nutrition and metabolism of fructose than two

univariate analysis methods. The major feature of the fructose signature is a change in met-

abolic programs of the renal proximal tubule consistent with gluconeogenesis and de-novo

lipogenesis. This new “signature” constitutes a new metric to bridge the gap between physi-

ological phenomena and differential expression profile.
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Introduction

Elevated consumption of fructose has been associated with metabolic disorders and salt-sensi-

tive hypertension [1]. However, the connection between fructose metabolism and the patho-

genesis of fructose consumption-associated diseases remains unresolved and controversial [2].

An interesting hypothesis is that the abundance of fructose in fruits occurring at the end of

summer or wet-season preludes times of food scarcity, and may have been selected for by evo-

lution as a trigger for fat accumulation; the “fat switch” [3, 4]. Such altered metabolism and

appetite, seen, for example in hibernation, are genetically programmed mechanisms. Although

there may have been an adaptive advantage to the “fat switch” in evolutionary terms, in the

present environment of food abundance even moderate amounts of fructose may lead to path-

ological conditions including renal failure, hypertension, and cardiovascular disease [5, 6].

The renal cortex can contribute significantly to plasma glucose and lipids depending on

metabolic state. The proximal tubule of the nephron is the only renal tissue that expresses fruc-

tokinase (ketohexokinase) [7, 8] and catabolizes fructose [9, 10]. Cells of this segment can use

the carbon backbone of fructose to synthesize both glucose and lipids, and in the Krebs cycle

to generate ATP. We have previously shown that dietary fructose (20% fructose beverage for 7

days) enhances the ability of angiotensin II to stimulate Na reabsorption in this segment [11],

a process dependent on oxidative phosphorylation. However, it is unknown whether dietary

fructose initiates a genetic program in the renal cortex that favors an altered metabolic state

and lipogenesis, as in the liver [12].

Transcriptome signatures are proving useful in cancer, immunology and other fields [13–

15], but have yet to be applied in detail to nutritional problems. This absence is explained, at

least partially, by the greater complexity of metabolic changes in response to dietary interven-

tions. There are several problems that need to be addressed to obtain informative data of dif-

ferential expression (DE) of genes when assessing the effect of dietary manipulations [16].

First, the effects of adding or changing a nutrient to a base diet will depend on the composition

of the base diet and amount and length of supplementation. Second, metabolic states are influ-

enced by a number of poorly or uncontrollable variables, such as the gut microbiome or circa-

dian rhythm, that increase the variance of baseline gene expression. Third, changes in diet

would be expected to lead to primary metabolic changes, which then trigger higher order DE

of other genes. The serial responses could result in a potentially large number of small changes

in gene expression that are difficult to identify, but, nevertheless, are relevant to the physiology.

Such changes are not likely captured by univariate analyses. Furthermore, no consensus cur-

rently exists on the criteria by which to identify the complete set of differentially expressed

genes.

To overcome many of the problems associated with such studies we: 1) used a two-by-two

design in which the effects of fructose were examined on two base diets; 2) converted expres-

sion data to gene vectors with associated DE values with the multivariate Characteristic Direc-

tion (CD) method [17]; and 3) developed a new algorithm that combines the results from two

base diets and identifies a cut-off for differentially expressed genes called “rank/deviation”.

The primary focus of this report is on evaluation of the effectiveness of this approach over cur-

rently used methods in identifying the gene programs expressed in response to fructose.

Here we report for the first time the effects of dietary fructose on DE of genes in the renal

cortex. Most of the highest ranked DE genes relate to enhanced gluconeogenesis and lipogene-

sis. These processes are known to occur in the proximal tubule under some metabolic condi-

tions, but the extent of fructose control of these processes has not been investigated. Principal

Component Analysis and Cosine Similarity confirmed effectiveness of our approach in identi-

fying DE genes. Advantages of our methods were demonstrated by comparing results to those
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from two conventional univariate analyses: ANOVA and Bayesian Analysis of Variance for

Microarrays (BAM) [18–20]. Most importantly, the CD method allows identification of gene

programs, whereby the relative expression changes of genes in response to a stimulus consti-

tute a new quantitative metric to bridge the gap between physiological phenomena and differ-

ential expression signatures.

Materials and methods

Animal model and sample collection

Fig 1 provides an outline of experimental design and analysis. To overcome the problem of a

dietary supplement-base diet interaction, we analyzed differential gene expression in response

to fructose supplementation using rats on two different base diets (Fig 1A) producing four

treatment groups of 4 animals each. The normal-salt base diet contained 0.60% NaCl (Prolab

Isopro RMH 3000, 22.5% protein, 5.5% fat, 51.6% carbohydrates and an energy content of 4.18

kcal/g) while the high-salt diet contained 4% NaCl (Harlan TD.92034, 19.4% protein, 5.2% fat

and 47.5% carbohydrates, providing 3.1 kcal/g). Two groups received 20% fructose in the

drinking water for 7 days to catch early effects of fructose before onset of the known chronic

pathologies [12]. Base diets and fructose delivery protocols were based on a well-characterized

model [5, 21]. The study was approved by the Institutional Animal Care and Use Committee

of Case Western Reserve University. All experiments were conducted in accordance with the

National Institutes of Health Guidelines for the Care and Use of Laboratory Animals.

Fig 1. Outline of experimental design and analysis. A) 2 x 2 experimental design of the animal food with 2 different base diets supplemented with 20% fructose in the

drinking water. The 2 x 2 design allows analysis of fructose-induced DE effects on both normal- and high-salt base diets. These results are designated as ΔF(NS) and ΔF

(HS), respectively. It also allows an analysis of expression changes due to consumption of different base diets, both in the absence or presence of supplemental fructose.

The results from this type of analysis are designated as ΔS(-F) and ΔS(+F), respectively, because the normal-salt diet is used as control. B) Transcriptome analysis scheme

to extract a fructose-specific DE vector (signature) by the multivariate CD method (upper analysis flow) and generate gene lists by the univariate methods of ANOVA

and BAM (lower analysis flow). The multivariate and univariate methods result in different types of primary data (middle column): CD generates a vector with a DE

value (vi) for each gene, which is normalized so that
Xn

i¼1

ðviÞ
2
� 1. The univariate methods of ANOVA and BAM generate lists of DE genes, depending on the cut-off

criteria (e.g., p� 0.05 for ANOVA). To find fructose-specific DE that is common to both base diets, the information from ΔF(NS) and ΔF(HS) is combined. With CD, a

gene vector ΔF(common) is created with DE values as geometric means of those of ΔF(NS) and ΔF(HS). The genes with the top most DE values, low enough variance,

and similar effects on the two base diets are extracted to yield CD ΔF(signature) as detailed in Fig 2. In the univariate methods, genes with fructose-specific DE are

identified by applying the significance criteria simultaneously to both ΔF(NS) and ΔF(HS) and omitting genes with changes in opposite direction. Those fructose-

specific genes identified by ANOVA and BAM that are part of the fructose-specific CD ΔF(signature) are then mapped onto this signature, i.e., located on the vector CD

ΔF(signature) (last column).

https://doi.org/10.1371/journal.pone.0201293.g001

Transcriptome signature for dietary fructose

PLOS ONE | https://doi.org/10.1371/journal.pone.0201293 August 1, 2018 3 / 23

https://doi.org/10.1371/journal.pone.0201293.g001
https://doi.org/10.1371/journal.pone.0201293


Experimental animals were male Sprague-Dawley rats (Charles River Breeding Laborato-

ries, Wilmington, MA) weighing between 101 and 125 g. They were allowed 5 days for accli-

mation to the facility and housed in pairs under normal rat housing conditions with a 12-hour

light cycle and access to food and fluids ad libitum. They were randomly assigned to one of

four groups.

Because of the previous characterization of the animal model, only weight was monitored

in this study as surrogate for the beginning of fructose-induced obesity. This parameter was

normal for all groups and showed no difference between groups (S8 Table).

After 7 days of the treatment, rats were anesthetized with ketamine (100 mg/kg bw IP) and

xylazine (20 mg/kg bw IP), and given 2 IU heparin (IP). Surgical instruments and working

space were decontaminated with RNase Away Reagent (Life Technologies, #10328–011). The

abdominal cavity was opened and the kidneys cooled-down by pouring cold saline on them.

Then, the right kidney was excised, rapidly submerged in a large volume of cold saline, and

transferred to a trans-illuminated acrylic plate at 4˚C. The tissue sample was a ~1 mm-thick

slice of superficial cortex from a sagittal cut. The sample was immediately transferred to a tube

containing 1 ml RNAlater (Qiagen; #76104) and kept at -20˚ C until extraction. Total RNA

was extracted using miRNeasy Mini Kit (Qiagen; #217004) according to the manufacture’s rec-

ommendations. Quality control was assessed by measuring the 260/280 absorbance ratio. All

analyzed samples had 260/280 ratios > 1.8.

Microarray data

Microarray data were generated from the total RNA by the Gene Expression and Genotyping

Facility (GEGF.net) of the Case Comprehensive Cancer Center according to the Affymetrix

WT Plus protocol and gene chip RaGene-2_0-st. This chip uses 214,954 probes in 30,472 Tran-

scriptClusterIDs, 62.2% of which are annotated. The data are available in the NIH GEO data-

base under GSE103110 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103110).

Analyses of the Affymetrix image files were carried out on a desktop computer with win-

dows 8.1 as operating system. The image files were converted to expression data and normal-

ized by Expression Console build 1.4.1.46 using the RaGene-2_0-st data file and the robust

multi-array average method. Other parameter settings included use of quartile for normaliza-

tion and median polish for summarization. Further analyses to extract differentially expressed

genes were carried out with expression data at the TranscriptClusterID (gene) level and con-

version to gene symbols was made only in the final steps using RaGene-2_0-st-v1.na36.rn5.

transcript.csv.

Microarray data analysis with the Characteristic Direction (CD) method

In an attempt to overcome the problem of identifying important genes in spite of high variance

of baseline expression, we used the multivariate CD method for analysis [17] implemented on

R [22]. The CD method calculates a vector “V” of a differential expression value (DE value) for

each TranscriptClusterID between groups “a” and “b” as follows:

V ¼
P� 1

� ðma � mbÞ ð1Þ

Whereby Ʃ is the covariance matrix of the data, and μa and μb are the vectors of the means

of the expression values of each TranscriptClusterID from the experimental groups “a” and

“b”, respectively (Fig 1A). Four gene vectors with associated DE values were generated: 1)

effect of fructose on a normal-salt diet: CD ΔF(NS); 2) effect of fructose on a high-salt diet: CD

ΔF(HS); 3) effect of the high- versus the normal-salt diet in the absence of fructose: CD ΔS(-F);

and 4) in the presence of fructose: CD ΔS(+F). Then each of the 4 vectors (with elements DE
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valuei = vi) was normalized as follows:

Xn

i¼1

ðviÞ
2
� 1 ð2Þ

with “i” ranging from 1 to n, where “n” represents the number of genes.

The normalized vector values quantitatively reflect the relative contribution to differential

expression of all genes. To easily extract the most important genes, vectors are sorted in

descending order of the absolute of the squared v i value and genes are indexed so that “i” indi-

cates the positional rank after sorting.

Identifying the common fructose signature

Fig 1B outlines our strategy for identifying a common signature of DE for the fructose effect

on the two base diets. To combine the information from the CD ΔF(NS) and CD ΔF(HS) vec-

tors, a secondary vector CD ΔF(common) with common values “vc” was generated by gene-

wise calculating the geometric mean of the values (vi) of ΔF(NS) and ΔF(HS), whereby the geo-

metric mean of two numbers v1i and v2i is defined as follows:

1. if v1i and v2i are greater than zero, vci ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1i � v2i

p

2. if v1i and v2i are less than zero, vci ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1i � v2i

p

3. if the product (v1i � v2i) is less than zero, vci ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1i � v2i

p
�
ffiffiffiffiffiffiffi
� 1
p

, i.e., an imaginary

number.

By extending the definition of geometric mean to the square root of a negative number as

an imaginary one, CD ΔF(common) captures not only average up- or down-regulated genes

through the real “vc” values, but also changes that occur in opposite directions on the two base

diets through imaginary “vc” values.

A corresponding CD ΔS(common) was generated from CD ΔS(-F) and CD ΔS(+F).

Error estimate for CD vectors

To estimate the error in the “v” value of each gene in the primary CD vectors, 100 null vectors

were calculated from random pairs of mean-corrected expression data of individual animals,

rather than the mean difference between groups. The mean-corrected expression sets from

experimental and control animals were combined for this purpose, providing for 8 individual

expression data and 7! possible pairs. The mean value of the 100 null vectors was close to zero.

The procedure for calculating null vectors follows Clark et al. [17], except that sorting is omit-

ted. It uses the same co-variance matrix and normalization factor as for the primary CD vec-

tors. The standard deviations (SD) of the null vectors for each TranscriptClusterID was used

as estimate for the error of “vi” values of the corresponding vectors.

For a secondary vector, such as CD ΔF(common), the SD of its “vc” values is derived from

the two primary vectors as follows:

SDcommoni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD1i � SD2i

p
ð3Þ

Cosine similarity calculations

Similarity of 2 vectors of identical dimensions is easily assessed by calculating the cosine of the

angle between them: an angle of 0o with a cosine value of 1 indicates perfect alignment while

90o or cosine 0 reflects orthogonal vectors with complete dissimilarity.

Transcriptome signature for dietary fructose
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Given two vectors, A and B, the cosine similarity, cos(θ), is represented using a dot product

A•B and magnitude kAk and kBk as:

cosðyÞ ¼
Xn

j¼1

Aj � Bj

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1
Aj2

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1
Bj2

r !

ð4Þ

where Aj and Bj are components of vector A and B respectively [23]. The calculations were

implemented in R [22]. Gene vectors subjected to analysis were sorted in the same gene space

according to the criteria indicated in the legends.

Extraction of top differentially expressed genes from CD vectors

The CD (R-package GeoDE, version 1) uses an empirical cut-off to select the top differentially

expressed genes without taking into account possible errors of “v” values. This cut-off identi-

fied about ~7 k genes out of a total of ~30 k. To focus on the important genes, we developed 2

inclusion/exclusion criteria based on rank and error considerations:

1) We define an enrichment score (ES) for the gene’s “v” value and a cut-off based on the

“v” value of a vector with equal contributions of all genes. Only genes with ES values greater

than zero are included. In mathematical terms, for any gene with positional rank ‘i ‘, an enrich-

ment score ESi is defined as

ESi ¼ jvi
2j � ð1=nÞ ð5Þ

whereby vi represents the DE value of each gene. ESi = 0 when |vi2| = (1/n). (1/n) is the squared

expression value for a vector where all genes contribute equally to DE, i.e.,�
ffiffiffiffiffiffiffiffi
1=n

p
. Excluded

genes are those with ES values� 0. To find all genes with (1/n), gene vectors are resorted in

descending order of ES values and re-indexed in terms of positional rank ‘i‘. Then a cumulative

distribution function (CDF) of [vi2 − (1/n)] is constructed, i.e.,

CDFðESiÞ ¼
Xi

1

½vi
2 � ð1=nÞ� ð6Þ

At the maximum of CDF(ES), i.e., at CDF(ES)max, ESi’ 0, thus identifying a cut-off rank

“imax”. Given the asymmetrical distribution of ESi, for all higher “i”s ESi� 0.

2) To balance rank of the “v” value for inclusion with the magnitude of the error for exclu-

sion, the squared value of the estimated error for each gene’s “v” value is added to the CDF.

The new function with error CEi is defined as follows:

CEi ¼ CDFðESiÞ þ 2 � SDi
2 ð7Þ

If CEi> CDF(ES)max, then the uncertainty of the “v” value is considered too high and the

gene is excluded from the set of top most differentially expressed genes. This use of a CDF is

based on a modification of a function used by Clark et al. [17] and implemented in Excel.

The Eqs 5–7 apply to both primary and secondary vectors and thus apply to both “v” and

“vc”. Note, that there is change in the definition of ESi between Eq 5 and subsequent ones in

that only Eq 5 contains the absolute value of “v2”. This is necessary to appropriately rank imag-

inary “vc” values.

Principal component analysis (PCA)

For PCA analysis, the expression data set for 200 TranscriptClusterIDs was analyzed using the

prcomp() function in R [22]. The top most ranked TranscriptClusterIDs from the real part of
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CD ΔF(common) and a similarly calculated CD ΔS(common) were identified and their expres-

sion data were subjected to PCA analysis. The data matrix from all 16 animal samples was cen-

tered and variance normalized.

Analysis by univariate methods

We also analyzed DE by two univariate methods: 1) ANOVA using Affymetrix Transcriptome

Analysis Console (TAC) (Version 3.0); and 2) Bayesian Analysis of Variance for Microarrays

[20] (BAMarray, http://www.bamarray.com) run at the highest stringency. ANOVA and BAM

generate lists of individual genes whose expression has reached statistical significance. Statisti-

cal significance depends on baseline variance, fructose-induced fold-changes in expression,

and prior knowledge of variance patterns. ANOVA generates a list of genes with associated

mean expression changes and p-values, while BAM generates a list of genes with its own asso-

ciated Zcut statistics. Fructose-induced genes were considered those on a single diet with

p<0.05 with ANOVA and an absolute value of Zcut>2.4 with BAMarray, while fructose-spe-

cific genes were identified by these statistics on both diets.

Quantitative polymerase chain reaction (qPCR)

qPCR was carried with a Qiagen custom 96-well RT2 PCR assay according to the supplier’s

instructions with an ABI StepOnePlus thermocycler. The Qiagen validated primers were for

Pck1 (Rn.104376), G6pc (Rn. 10992), Tmem50a (Rn. 957), Actb (Rn. 94978), Gapdh (Rn.

91450), Lrp2 (Rn. 26430), Agtrap (Rn. 8471), Hmgcs2 (Rn. 29594), and Slc13a2 (Rn. 10821).

The plates contained controls for rat genomic DNA contamination, positive PCR, and reverse

transcription. The raw signals were routinely monitored for amplification in the log-linear

phase with the program LinRegPCR.exe [24] (http://www.hartfaalcentrum.nl) and analyzed by

the Cy0 method which calculates initial rates of amplification based on the entire time course

of amplification [25] (https://www.cy0method.org). The Cy0 method was implemented on a

Mathcad15 program. The Cy0 method was shown to be superior to the Δ method in a large

scale series of experiments [26]. Data were normalized with respect to the expression of Gapdh

or Actb.

Gene Ontology (GO) enrichment analysis

The enrichment analysis of the fructose-specific CD gene list was carried out with the Database

for Annotation, Visualization and Integrated Discovery (DAVID, version 6.8, https://david.

ncifcrf.gov). Questionable gene annotations were cross-checked with Genecards (https://www.

genecards.org/). Erroneous entries, when realized during the analysis, were corrected (S7

Table) and parameters of enrichment, significance and false discovery rate (FDR) recalculated.

Statistical methods

p< 0.05 was used as significance criterion for t-tests, ANOVA, and the EASE test used by

DAVID (a modified Fisher exact test). BAMarray comes with its own statistics of “Zcut”.

Absolute Zcut values of> 2.4 were considered statistically significant as indicated by the soft-

ware program.

Results

Analysis of fructose-induced DE by the Characteristic Direction method

To test our hypothesis, and overcome the problem of interactions between a fructose supple-

ment and the base diet, we studied the effects of fructose on two base diets, designated here as

Transcriptome signature for dietary fructose

PLOS ONE | https://doi.org/10.1371/journal.pone.0201293 August 1, 2018 7 / 23

http://www.bamarray.com/
http://www.hartfaalcentrum.nl/index.php?main=files&fileName=LinRegPCR.zip&description=LinRegPCR:%20qPCR%20data%20analysis&sub=LinRegPCR#references
https://www.cy0method.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://www.genecards.org/
https://www.genecards.org/
https://doi.org/10.1371/journal.pone.0201293


normal- and high-salt diet (Fig 1A). Expression data were generated from total RNA of super-

ficial kidney cortex by the Affymetrix RaGene-2_st chip. The primary ProbetSetID expression

data were summarized at the gene (TranscriptClusterID) level and analyzed for differential

expression as shown in Fig 1B. With the CD method (Fig 1B, upper arrows), primary fructose-

induced gene vectors with associated DE values were generated, designated as CD ΔF(NS) and

CD ΔF(HS) for normal- and high-salt base diets, respectively. The normalized changes in

expression values of the genes comprising these vectors ranged from about ±0.3 for the highest

up-regulated and down-regulated genes to ±10−9 for the lowest ones. For comparison, a vector

where all genes make the same contribution to overall differential expression, would have val-

ues of�
ffiffiffiffiffiffiffiffi
1=n

p
, where n = number of genes, or ~±0.006 for our data set with ~30k genes. The

apparent paradox of getting DE values lower than
ffiffiffiffiffiffiffiffi
1=n

p
in real data vectors is a consequence

of the normalization so that when some DE values in a vector are> j
ffiffiffiffiffiffiffiffi
1=n

p
j others become <

j
ffiffiffiffiffiffiffiffi
1=n

p
j.

Useful criteria for a cut-off of differentially expressed genes have not been developed. For

example, current implementation of CD (R-package GeoDE, version 1) uses an empirical cut-

off based on an in-silico model. With this, we identified ~7,000 genes affected by fructose out

of a total of ~30,000. This high fraction of identified genes did not provide useful insight into

the physiological processes affected by fructose, the primary purpose of our study.

To address this problem, we developed a new algorithm to define the cut-off point for sig-

nificant changes in expression called “rank/deviation”. As the name implies “rank/deviation”

takes into account both a gene’s DE value and its standard deviation as demonstrated for CD

ΔF(NS) in Fig 2 and explained in detail in the legend. With this new approach the number of

significant genes differentially expressed by dietary fructose was 1814 and 1745 on normal-

and high-salt diet, respectively (Table 1, S1 and S2 Tables). These fructose-induced gene sets

contain many genes which are present on only one of the lists or whose expression changes go

in opposite directions on the two diets. In fact,<10% of the differentially expressed genes on

each diet are common and change in the same direction. This result indicates that the basal

metabolic state determined by the type of base diet influences the effect of fructose supplemen-

tation on gene expression.

The low percentage of the significant fructose-induced genes common to both base diets

prompted us to combine ΔF(NS) and ΔF(HS) by gene-wise calculation of the geometric mean

of the DE values into a fructose-specific gene vector CD ΔF(common) (see Methods). Applica-

tion of the cut-off algorithm to CD ΔF(common) yields a vector of 240 significantly changed

genes (S1 Fig). Not all these genes change in the same direction on the two base diets. The 58%

that change in the same direction constitute a fructose-specific CD ΔF(signature). This vector

is comprised of 139 genes, of which 97 are annotated (Tables 1 and 2 and S3 Table). The

remaining 42% with opposing fructose-induced changes indicate a substantial interaction of

fructose with base diet.

For the normalized CD vectors, the square of a gene’s DE value can be regarded as its frac-

tional contribution to overall differential expression. Analysis of the annotated fructose signa-

ture in this respect reveals that the top 34 ranked genes account for 80% of the differential

expression in this set. Thus, it is likely that the subset of 34 genes represents the primary

response to fructose (Table 2). As shown in Fig 3, expression of 26 of these genes is predomi-

nantly or exclusively localized to the proximal tubule. The majority of the genes code for meta-

bolic enzymes or transporters for metabolites as opposed to receptors, transcription factors,

structural proteins, or secreted or degradative enzymes. The functions associated with these

genes indicate a clear shift in the metabolic characteristics of the proximal nephron.
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Principal component analysis (PCA)

PCA analysis [27] was used to study whether the CD selected genes could differentiate among

different dietary treatments. PCA analysis was carried out with the expression data of the top

200 genes identified from CD ΔF(common) and CD ΔS(common), generated in analogous

manner. Fig 4 shows how the expression data from each animal project onto the first two prin-

ciple components. The four different dietary treatment groups can clearly be distinguished as

they occupy different areas on the plot. These data also demonstrate that fructose alone and

salt alone have different effects on gene expression, and that there is a significant interaction

between these two parameters.

Fig 2. Selection of significant DE genes from CD ΔF(NS). Genes are selected based on their contribution to overall DE provided their variance is not too high. Each

gene with DE value (vi) is assigned an enrichment score ESi defined as ESi = |vi2| − (1/n). To assess a gene’s contribution, genes are sorted in descending order of ESi and

then assigned a positional rank “i”, ranging from 1 to n, the total number of genes. The “blue line” represents the early portion of a plot of the cumulative distribution

function CDFðESiÞ ¼
Xi

1

½vi
2 � ð1=nÞ� (Eq 6 in Methods), versus “fractional rank” (i/n). This type of plot allows identification of the maximum value of the CDF (green

line) and a fractional rank of (imax). At (imax), the gene’s |vi2|’ (1/n), the value expected for a vector where all genes make equal contributions. All genes with higher

positional ranks than “imax” can thus be excluded on the basis that their |vi2| is less than (1/n) (or ESi� 0) and their contribution to overall DE is minor. To account for

the uncertainty of the DEvalue the standard deviation (SD) is included. i.e., 2�SD2 of each gene’s DE value is added to its CDF(ESi) value (“red dots”) (Eq 7 in Methods).

For illustration purposes, only every 40th point is shown. The genes with red dots below the green line have a sufficiently high DE value and sufficiently low SD to be

included in the significant DE genes in terms of induced fructose effects.

https://doi.org/10.1371/journal.pone.0201293.g002
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Cosine similarity and contribution to total DE

The fructose signature is a vector of genes and their quantitative relationships in terms of

induced expression. Thus, we next checked whether the fructose signature is well represented

in the fructose-induced CD vectors ΔF(NS) and ΔF(HS) by measures of cosine similarity and

contribution to total differential expression. For this purpose, CD ΔF(NS) and CD ΔF(HS) vec-

tors were sorted according to the ranking of CD ΔF(signature) and the cosine similarity calcu-

lated between truncated CD ΔF(NS) and CD ΔF(HS) vectors (Fig 5A upper curve, blue).

Indeed, the similarity was very high with a cosine value of 0.97 for the top 3 genes of the fruc-

tose signature and remained > 0.78 when all 139 fructose signature genes were included. In

contrast, the behavior is very different when unrelated CD vectors are compared. For this pur-

pose, the expression data were analyzed by CD for the effect of diet (high versus normal salt)

and two gene vectors generated termed CD ΔS(-F) and CD ΔS(+F) in absence and presence of

fructose, respectively (Fig 1A and Methods). Comparison between CD ΔS(-F) (effect of high-

salt diet in the absence of fructose) and CD ΔF(HS) (effect of fructose with a high-salt diet),

sorted also according to CD ΔF(signature), demonstrated dissimilarity with the exception of a

single gene (Pck1) (Fig 5A, lower curve; orange). Pck1 is highly ranked in all 4 primary vectors

(DE values of 0.22, 0.16, 0.19, and 0.16 for ΔF(HS), ΔF(NS), ΔF(+F), and ΔS(-F), respectively).

Comparison of other combinations of vectors yielded cosine similarities in between the 2

curves of ΔF(NS) vs ΔF(HS) and ΔS(-F) vs ΔF(HS).

To assess significance of these cosine values, cosine similarity was calculated between ΔF

(NS) and 100 random null vectors generated as described in the Methods section. These cosine

values ranged from -0.25 to +0.25 with a peak around 0, as expected for null vectors (S2 Fig).

Thus, the observed high cosine values between 0.97 and 0.78 (Fig 5A) for the signature genes

Table 1. Fructose diet-dependent differentially expressed genes of kidney cortex.

differentially expressed genes/

TranscriptClusterIDs

Method Experimental Condition down up total

Characteristic Direction

(CD)

± fructose–normal salt chow = CD ΔF(NS) 741 1073 1814

(for cut-off see Methods) ± fructose–high salt chow = CD ΔFHS) 1023 722 1745

CD ΔF(signature) 56 83 139

annotated CD ΔF(signature) 37 60 97

Genes representing 80% of information from

annotated CD ΔF(signature)

9 25 34

common to CD, ANOVA, and BAMarray 1 5 6

ANOVA (p < 0.05) ± fructose–normal salt chow = ANOVA ΔF(NS) 830 756 1586

± fructose–high salt chow = ANOVA ΔF(HS) 1044 1378 2422

ANOVA ΔF(common) 51 57 108

annotated ANOVA ΔF(common) 48 39 87

common to ANOVA and BAMarray 14 8 22

common to CD and ANOVA 3 7 10

BAMarray (super

accuracy)

± fructose–normal salt chow = BAM ΔF(NS) 329 451 780

± fructose–high salt chow = BAM ΔF(HS) 515 598 1113

BAM ΔF(common) 17 15 32

annotated BAM ΔF(common) 15 9 24

common to CD and BAMarray 1 6 7

https://doi.org/10.1371/journal.pone.0201293.t001
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in ΔF(NS) vs. ΔF(HS) comparison indicate significant similarities in the response of gene pro-

grams to fructose on both base diets.

Another parameter of interest is the extent of the contribution of the fructose signature

genes to total differential expression, based on the squared DE value. Fig 5B shows cumulative

distribution functions of fractional contributions as a function of fractional gene rank for all 4

CD vectors sorted in same descending order as the signature genes. For the fructose-induced

vectors ΔF(HS) and ΔF(NS), the contributions of the 139 signature genes account for 38% and

27%, respectively, of total DE. Interestingly, the signature genes are also represented in the

base diet-induced vectors ΔS(-F) and ΔS(+F) with 11% and 13%, respectively. This means that

the high-salt diet affects many of the same genes as fructose, but obviously not necessarily in

the same direction or magnitude as judged from the cosine similarity of ΔS(-F) vs ΔF(HS) in

Fig 5A.

Comparison of CD with univariate models and qPCR

We next compared the fructose effects found by the CD method to those from two widely used

univariate models, ANOVA and BAMarray, the software implementation of BAM [20] (Fig

1B, lower arrows). Table 1 provides a comparison of the number of fructose-induced genes

con a single diet and fructose-specific genes common to both base diets identified by all 3 anal-

ysis methods as well as the ones common to different methods, with p�0.05 for ANOVA and

Table 2. Partial list of annotated ΔF(signature) genes (complete list in S3 Table).

Rank Gene DE Value of fructose-specific,

annotated genes

CDF (DE value)2 (%) of annotated CD ΔF

(signature)

Annotation

1 Pck1 �+& 0.441 19% Cytosolic Phosphoenolpyruvate Carboxykinase

2 G6pc �#& 0.341 31% Glucose-6-phosphatase catalytic subunit

3 Gatm 0.248 37% Mitochondrial L-Arginine-Glycine Amidinotransferase

4 Bhmt 0.175 40% Betaine—Homocysteine S-Methyltransferase

5 Acsm3 0.173 43% Mitochondrial Middle-Chain Acyl-CoA Synthetase

6 Slc25a10 0.168 46% Mitochondrial Succinate Transporter

7 Miox 0.157 49% Myo-Inositol Oxygenase

8 Aadat 0.155 51% Mitochondrial Transaminase with broad substrate

specificity

9 Klk1 0.151 53% Glandular Kallikrein 1

10 Slc5a8 0.149 55% Sodium-Coupled Monocarboxylate Transporter 1

17 Tkfc # 0.106 66% Bifunctional ATP-Dependent Dihydroxyacetone Kinase/

FAD-AMP

21 Slc2a5 +# 0.097 70% Glucose/Fructose Transporter

22 Slc5a10 # 0.097 71% Sodium-Glucose/Fructose Cotransporter 5, Sglt5

26 Khk +# 0.087 74% Ketohexokinase of fructose to fructose-1-phosphate.

28 Hmgcs2 & 0.085 76% Mitochondrial 3-Hydroxy-3-Methylglutaryl-CoA Synthase

(ketogenesis)

44 Prss8 � 0.069 85% Serine Protease 8 (Prostasin)

57 Slc13a2 � 0.058 90% Renal Sodium-Dependent Dicarboxylate Transporter

93 Agtrap � 0.044 99% Angiotensin II Receptor Associated Protein

94 Tmem50a � 0.044 99% Transmembrane Protein 50A

� = genes identified as significant with all 3 analysis methods

+ = genes in GO terms "response to fructose" or "cellular response to fructose stimulus"

# = genes for enzymes/transporters of fructose metabolism

& = genes identified as significant in high-salt diet by qPCR using Actb as reference and 2-sided t-test.

https://doi.org/10.1371/journal.pone.0201293.t002
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|Zcut| > 2.4 for BAMarray. The order of magnitude of identified genes on a single diet was

similar with all 3 methods, but provides little insight because < 10% are common to normal-

and high-salt diets in any of the methods. This is a well recognized problem, as illlustrated by

the fact that with ANOVA none of the fructose-induced genes on a single diet reached signifi-

cance after adjusting for multiple comparisons.

Only six fructose-specific genes were identified by all three analysis methods and are

mapped onto the CD ΔF(signature) in Table 2 (marked by “�”). Interestingly, 2 of these are the

most highly ranked genes (Pck1 and G6pc), while the other 4 are ranked below 40. Thus,

many highly ranked genes of CD ΔF(signature) in between were not identified by the univari-

ate methods.

qPCR is widely used in conventional transcriptome analyses by univariate methods to con-

firm the differential expression of identified genes. Therefore, expression by qPCR was deter-

mined for five of the common significant genes, Hmgcs2, and reference/control genes

(Gapdh, Actb, Lpr2). The selection was made to check both very high ranking (Pck1, G6pc

Fig 3. Distribution of expression of 32 of the top annotated fructose signature genes along the nephron.

Expression data are from the database at https://hpcwebapps.cit.nih.gov/ESBL/Database/NephronRNAseq/All_

transcripts.html [8]. Nephron segments: S1, S2, S3 = segment 1, 2, and 3 of proximal tubule, respectively; SDL = short

descending limb of the loop of Henle; LDLOM and LDLIM = long descending limb of the loop of Henle in the outer

and inner medulla, respectively; mTAL and cTAL = medullary and cortical segments of thick ascending limb,

respectively; DCT = distal convoluted tubule; CNT = connecting tubule; CCD = cortical collecting duct; OMCD and

IMCD = outer and inner medullary collecting duct, respectively. Attempts were made to map the top 34 genes of the

fructose signature; whose DE represent 80% of the fructose signature DE. However, 2 genes are not present in the data

base or have zero expression. The heat map was generated with Morpheus software https://software.broadinstitute.org/

morpheus.

https://doi.org/10.1371/journal.pone.0201293.g003

Fig 4. Principal component analysis (PCA) to distinguish among the 4 groups of animal treatments (±fructose on 2 different base diets). PCA analysis was carried

out with the expression data of the 100 top fructose-specific plus 100 top diet-specific Affymetrix TranscriptClusterIDs, i.e., genes regardless of whether they are

annotated or not.

https://doi.org/10.1371/journal.pone.0201293.g004
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with ranks 1 and 2) and very low ranking (Slc13a2, Agtrap, Tmem50a with ranks 57,93, and

94) common significant genes as well as one identified only by CD with intermediate ranking

(Hmgcs2 with rank 28). Overall, the precision of qPCR in identifying differentially expressed

genes was only significant when Actb was used as a reference but not Gapdh (S5 Table) and

revealed as a positive correlation between microarray and qPCR data (S3A and S3B Fig). The

qPCR data showed statistical significance for Hmgcs2 for both base diets and for Pck1 and

G6pc with the high-salt diet.

Gene Ontology (GO) enrichment

To assess consistency of the results with prior knowledge, the annotated genes of CD ΔF(signa-

ture) and the fructose-specific univariate gene lists were analyzed with the recently updated

DAVID 6.8 bioinformatic resource [28] (https://david.ncifcrf.gov/) in terms of enrichment for

GO terms from “Biological Process” and mitochondrial “Cellular Component” (Table 3). The

mitochondrial terms were included because mitochondrial metabolism plays a key part in

changes of cellular metabolism and we previously reported enhanced respiration in response

to angiotensin II in fructose-fed rats [11]. The terms “response to nutrient”, “cellular response

to fructose stimulus”, and “response to fructose” were significantly enriched (genes marked by

“+” in Table 2). Furthermore, 11 of the 13 significantly enriched processes are concerned with

responses to nutrients or metabolism.

A similar analysis for the gene lists of univariate ANOVA or BAM yields less support for

fructose-induced metabolic processes. For example, GO:terms of “response to nutrients” or

“response to fructose” are not enriched (see S6 Table for GO:Biological Process and S7 Table

for GO:Cellular Component:mitochondrion).

Fig 5. Similarity and importance of the fructose signature in CD ΔF(NS), ΔF(HS), ΔF(-F) and ΔF(+F). A) To compare similarity, vectors of just the fructose

signature genes were extracted from CD ΔF(NS), ΔF(HS), ΔS(-F), and ΔS(+F) and the cosine of the angle between pairs of truncated vectors calculated. Truncation

retains the top most genes sorted according to ΔF(signature) with the number of genes in the truncated vectors as indicated on the abscissa. A minimal, meaningful

number of genes for comparison is 3, yielding the cosine of the angle between 2 vectors in 3D-space. The upper curve shows ΔF(NS) versus ΔF(HS) and the lower one

ΔS(-F) versus ΔF(HS). B) Contributions of fructose signature genes to total differential expression in the different CD vectors. The fractional contribution to differential

expression is calculated as the sum of the squared DE values (or (vector length)2) of the truncated CD vectors, sorted and truncated as in A.

https://doi.org/10.1371/journal.pone.0201293.g005
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Discussion

We report here for the first time a transcriptome signature induced by dietary fructose in a

mammalian kidney. This CD ΔF(signature) consists of a vector of 139 genes characterized by a

quantitative relationship of DE values among them. Several different physiological and meth-

odological aspects of the research approach and analysis protocols are important for success in

this project: 1) metabolism of fructose by the proximal renal nephron; 2) design considerations

for dietary experiments; and 3) greater power of the multivariate CD method to extract DE

genes in spite of high baseline variance as compared to univariate analysis methods and to gen-

erate quantitative DE gene vectors; and. 4) a new cut-off algorithm called rank/deviation to

select significant genes with the CD method.

Experimental validation of the results is based on consistency with prior knowledge of

metabolism, in particular renal one, and internal consistency based on several tests discussed

below in detail.

Effect of dietary fructose on proximal tubule metabolism

Expression changes were measured in superficial renal cortex samples on the assumption that

the data reflect effects in the proximal tubule. Superficial cortex as proxy is justified because

proximal tubules comprise most of the mass, and fructose metabolizing enzymes are present

only in this segment [7–9]. It has the advantage of rapid sample processing, thereby avoiding

in-vitro, post-mortem changes of mRNA. Furthermore, the bulk of the most important identi-

fied DE genes were proximal tubule-specific (Fig 3) indicating that the fructose-induced

Table 3. Enrichment of GO terms for CD ΔF(signature) from DAVID (v. 6.8).

GO:biological process Identified Genes Fold

Enrichment

EASE score (modified Fisher

exact p-value)

Benjamini p-

value

FDR

0007584~response to nutrient CUBN, GATM, HMGCS2, OXCT1, PKLR,

KLK1

23 4.60E-06 0.001 6.09E-

05

0046835~carbohydrate

phosphorylation

KHK, TKFC, XYLB 66 0.001 0.115 0.011

0032868~response to insulin KHK, HMGCS2, HADH, PCK1 20 0.001 0.087 0.013

0071422~succinate transmembrane

transport

SLC25A10, SLC13A3 354 0.005 0.320 0.070

0015744~succinate transport SLC25A10, SLC13A3 354 0.005 0.320 0.070

0055085~transmembrane transport SLC5A8, SLC13A3, SLC22A5, SLC5A10 10 0.007 0.342 0.094

0071332~cellular response to fructose

stimulus

SLC2A5, PCK1 213 0.009 0.349 0.114

0014823~response to activity OXCT1, HADH, PCK1 17 0.012 0.390 0.150

0009749~response to glucose KHK, CTSL, PKLR 15 0.016 0.433 0.192

0032869~cellular response to insulin

stimulus

HMGCS2, PKLR, PCK1 13 0.021 0.487 0.246

0009750~response to fructose KHK, SLC2A5 89 0.022 0.461 0.252

0001889~liver development HMGCS2, ACO1, RGN 11 0.029 0.525 0.319

0006880~intracellular sequestering of

iron ion

FTL1L1, FTL1 59 0.032 0.538 0.353

GO:cellular constituents (relevant to

metabolism)

0005739~mitochondrion # Gatm, Acsm3, Slc25a10, Adh1, Hadh, Car5b,

Hmgcs2, Aadat, Oat, Oxct1

3.5 0.001 3.75E-04 0.014

# corrected for incorrect inclusion/exclusion of genes in GO term, fold-enrichment, p-values etc

https://doi.org/10.1371/journal.pone.0201293.t003
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genomic effects occur indeed mainly in the proximal tubule under our experimental condi-

tions. While some of the genes, such as mitochondrial Slc25a10, Prss8, or Agtrap are expressed

in multiple segments, differential expression may only represent proximal nephron effects, pri-

marily because that is where fructose metabolism occurs.

Metabolic studies have provided considerable knowledge about changes under conditions

of food abundance and starvation as well as in response to a fructose diet at times of food

abundance, although much more for liver than proximal tubule. In terms of overall body

metabolism, the liver and proximal tubule share many features as they both provide fuel for

other tissues depending on nutritional state and type of diet. For example, they share the

capacity for gluconeogenesis, lipogenesis, ketogenesis, and fructose metabolism via fructose-

1-phosphate [29, 30]. The knowledge that proximal tubules metabolize fructose via fructose-

1-phosphorylation has been used previously to link fructose-dependent renal damage to local

fructose metabolism; inhibition or deletion of the enzyme ketohexokinase, which catalyzes

fructose-1-phosphorylation, was shown to protect animals and humans from renal damage

caused by fructose [31–34].

Consistency of our results with prior knowledge was evaluated through Gene Ontology

enrichment (DAVID) of biological processes and mitochondrial association, and literature on

metabolism. Of the 95 annotated genes recognized by DAVID (2 Affymetrix annotated genes

were not recognized) 24 were enriched in processes related to metabolism in general or specifi-

cally to fructose (Table 3). The 24 genes were in the top 34 of the annotated fructose signature.

This is a remarkable enrichment given that the database for DAVID has been derived predom-

inantly from non-proximal tubule tissues, and reflects mainly knowledge derived from metab-

olism in liver and other non-renal tissues.

Gene enrichment analysis is informative for processes where overall rates depend on con-

tributions from many steps, but not for those characterized by rate limiting enzymes. Interest-

ingly, the 2 top ranked DE genes are Pck1 and G6pc, which encode the cytosolic enzymes

phospho-enolpyruvate carboxykinase and glucose-6-phosphatase, respectively, are key

enzymes that catalyze irreversible steps in glycero- and gluconeogenesis [35]. Glyceroneogen-

esis, in turn, is key to de-novo triglyceride synthesis [36, 37], i.e., lipogenesis. Other genes in

the ΔF(signature) have also been associated with lipogenesis (Slc15a10 and Aco1 [38–40]).

Thus, the most important metabolic processes influenced by fructose appear to be gluconeo-

genesis and lipogenesis. This conclusion is in line with the known metabolic capacities of the

proximal tubule.

A change of metabolism towards gluconeogenesis and lipogenesis is further supported by

the many mitochondrial genes whose expression changes (S7 Table). Mitochondrial tricarbox-

ylic acid metabolism plays a particular role in glycero- and gluconeogenesis from amino acids.

Under conditions of excess amino acid degradation relative to oxidative energy needs, excess

tricarboxylic acid cycle metabolites are transported into the cytosol for conversion to glycerol,

glucose, and fatty acids. This process has been termed cataplerosis [41–43] and has been inves-

tigated at the flux, but not the transcriptome level. Fructose-induced cataplerosis is suggested

by the increased levels of Gatm and Slc25a10, coding for mitochondrial transamidinase and

dicarboxylic acid transporter, respectively. Excess mitochondrial fuel is further suggested by

increases in Hmgcs2 which codes for a mitochondrial enzyme considered rate limiting for

ketogenesis [44].

A remarkable cluster of five genes in ΔF(signature) with elevated expression is concerned

with fructose transport and metabolism (marked by “#” in Table 2). An increase in ketohexoki-

nase by dietary fructose had been noted before in liver [45]. The ability of fructose to increase

expression of genes concerned with its own transport and metabolism would suggest the possi-

bility of accelerating rate increases with time on a fructose diet.
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Together these results indicate that 20% fructose in the drinking water for 7 days is suffi-

cient to initiate genetic reprogramming of renal metabolism with increased gluconeogenesis,

ketogenesis—and lipogenesis, i.e., important physiological processes known to occur in proxi-

mal tubules. In addition, they indicate genetic programs for cataplerosis and fructose absorp-

tion and metabolism. While fructose-induced metabolism and starvation share the processes

of renal gluconeogenesis and ketogenesis, a distinguishing feature between them is lipogenesis

with fructose and typically lipolysis in starvation [46–48].

Design considerations for dietary experiments

One of the known difficulties in studying the effect of dietary manipulations is that observed

changes may depend on the base diet and base metabolic state used as control [16]. To circum-

vent this issue, we studied differential expression caused by fructose in the drinking water with

two different base diets (Fig 1). With the CD method of analysis, this 2 x 2 experimental design

results in 2 different fructose-induced vectors, namely ΔF(NS) and ΔF(HS) from which the

high ranking DE genes with similar effects on both diets could be extracted as ΔF(signature).

By design we chose to study the effects of an amount of fructose as may be caused by sea-

sonal fruit consumption, such as bears gorging on blueberries. With consumption of fructose

for only 7 days, the animals do not have confounding factors of longer-term fructose con-

sumption, namely elevated plasma glucose, insulin resistance, or metabolic syndrome [5, 11].

This absence is important because of our interest in the primary gene program in response to

fructose and the likelihood that confounding factors would change gene expression and thus

lead to erroneous functional assignments. A number of rodent models have been established

to generate metabolic syndrome or insulin resistance with fructose diets. These models use up

to 60% of their caloric intake in the form of fructose and time frames from 3 to greater than 12

weeks[1]. Transcriptome signatures obtained under such conditions would most likely include

the pathology rather than the evolutionary, adaptive genetic response to fructose. Given the

absence of metabolic syndrome in our rat model, the ΔF(signature) generated in this study

most likely represents the primary and important higher order genes whose expression is

altered by renal fructose metabolism.

It is noteworthy that CD ΔF(HS) reflects DE under conditions of blood pressure levels that

are about 15 mm Hg higher than for CD ΔF(NS). Blood pressure is thought to be an important

physiological parameter for proximal tubule function. Thus, CD ΔF(HS) likely contains differ-

entially expressed genes that represent responses to blood pressure.

Development of the rank/deviation cutoff for CD gene vectors

Currently the CD package [17] comes with an empirical cut-off algorithm based on an in-silico

model that has little rational basis in terms of physiological function or variance of affected

genes. Case in point, this published method identified ~7,000 fructose-affected genes, about

25% of the total 30,000. Such a high fraction provides little useful information in terms of true

physiological responses. To address this problem, we devised a new algorithm to define the

cut-off point. Our method weights: 1) the contribution of genes to overall DE, and 2) the vari-

ance in the DE values. The contribution of genes to overall DE is quantified as the absolute

value of the square of the DE value, and only genes are considered significant that make greater

contributions than those expected for a vector in which all genes make equal contributions.

The cut-off is easily identified by ranking genes according to their contribution (Fig 2). The

variance was estimated from the distribution of DE values of null vectors from random pairs

of mean-corrected expression data from each set of experimental and control animals. With

this new approach the fructose-induced gene sets represent about 6% of the total (Table 1) and
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likely contain not only primary, but also secondary and higher response genes. Less than10%

of the fructose-induced genes on each diet are common and change in the same direction. The

rank/deviation method is particular effective in extracting the most important DE genes that

respond to fructose in a similar manner on both base diets (S1 Fig) and constitute CD ΔF

(signature).

Multivariate CD method versus univariate ones

The CD method takes into account the information inherent in the covariance matrix of the

expression data, i.e., co-regulation, in addition to the usual mean difference between experi-

mental and control data, and generates a DE vector that quantitatively reflects the relative con-

tribution of each gene to overall differential expression. This multivariate approach is well

suited to extract information about gene programs and is appropriate when the major source

of gene expression variance is in transcriptional regulation of many genes together rather than

fluctuations in individual genes.

The quantitative nature of these vectors has several advantages because well-developed

mathematical tools are available for averaging and comparing similarity of different vectors or

even sub-vectors corresponding to different gene programs and thereby extracting new infor-

mation. We took advantage of these vector properties in calculating average fructose-induced

effects on the base diets in the form of ΔF(common). Averaging needs to be accomplished

using the geometric, rather than the arithmetic, mean of the values in ΔF(NS) and ΔF(HS)

because these are normalized vectors. ΔF(commons) actually contains imaginary numbers for

genes whose fructose-induced expression changes in opposite direction on the 2 different base

diets.

Another advantage is the ability to assess similarity of the response to a perturbation under

different conditions or with different animal models. To assess whether fructose induced simi-

lar gene programs on normal- and high-salt diets we calculated the cosine of the angle between

vectors of the fructose signature genes from CD ΔF(NS) and CD ΔF(HS) (Fig 5A). This angle

does not depend on the magnitude of the response, but only the relative response of fructose

signature genes to each other. To evaluate the significance of the observed value of>0.78, it

was compared to the cosine values between ΔF(NS) and 100 random CD null vectors that are

not only dissimilar to ΔF(NS), but also contain in their ensemble the noise information of the

expression data. These latter values had a distribution around 0 with a range of ±0.25 (S2 Fig)

so that the conclusion of similar fructose responses of animals on both base diets is justified.

Therefore, it is likely that the fructose signature genes are affected by fructose under a wide

range of base diets, not just the 2 actually tested.

One explanation for the greater power of the multivariate CD method in comparison to

conventional univariate methods is that identification of DE genes is less dependent on the

magnitude of the variance. To assess whether indeed the CD method will pick up differentially

expressed genes despite relatively high baseline variance, we compared the coefficients of vari-

ation, i.e., the normalized SD, of the microarray data between two sets of genes from CD ΔF

(signature): 1) several fructose transporters and metabolizing enzymes identified only by CD

ΔF(signature) (marked by “#” in Table 2) and 2) two low ranked genes (Agtrap and

Tmem50a), ranked 93 and 94 out of a total of 97 of the annotated CD ΔF(signature), but also

identified as significant by univariate methods (marked by “�” in Table 2). The expectation

was that univariate methods identify genes based on the ratio of fold-change-to-variance, i.e., a

low baseline variance is required to enable recognition of small fold-changes in expression.

Indeed, while the two low ranked genes have low fold-changes, they also have very low coeffi-

cients of variation, which enabled their identification by ANOVA and BAM, in addition to
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CD. In contrast, the higher ranked fructose metabolizing enzymes have higher fold-changes,

but also higher coefficients of variation so that they were not identified by the univariate meth-

ods (S4 Table). Renal proximal tubule metabolic processes are known to respond to changes of

nutritional and acid/base status, which in turn depend on other variables, such as circadian

rhythm and microbiome, so that high variance is not unexpected for expression of genes cod-

ing for metabolic enzymes. Thus, the importance of low variance for identifying DE genes by

univariate analysis methods can explain their lack of power compared to the CD method. Cer-

tain crucial assumptions underlying univariate methods of analysis have been previously criti-

cized as inappropriate for expression data of complex multicellular organisms[49].

Interestingly, qPCR has the same drawbacks in terms of requiring low biological variance so

that our qPCR analysis of several genes turned out to be no more informative than the micro-

array data (S5 Table).

The greater power of the CD method over univariate analysis was clearly evident in the gene

enrichment analysis by DAVID. Only the CD method identified sufficient numbers of genes

relevant for metabolism so that the biological processes of “response to nutrients” or “response

to fructose” from the Gene Ontology data base were significantly enriched (S6 Table).

Apart from providing physiological context information on annotated genes, the CD

method also brings out the gap in knowledge between molecular biology and function. 29% of

the TranscriptClusterIDs of CD ΔF(signature) are not annotated and their functions are

unknown at present. Some of these genes without known function are highly ranked and

would be expected to deserve high priority in future research. For example, TranscriptCluster-

IDs 17809429 and 17826846 (RGD1560687) are ranked #4 and #5 below Pck1, G6pc, and

Gatm (S3 Table).

Conclusion

The specific fructose-induced gene signature reported here constitutes a new type of physio-

logic metric for characterizing physiological phenomena. Our analysis shows that the CD

method allows extraction of gene programs, i.e., co-regulated genes, from differential expres-

sion experiments. With more than one base diet, it is possible to extract information that is

valid over a wider range of base diet composition. The expression changes of the fructose sig-

nature genes are consistent with fructose-induced programs of gluconeogenesis, lipogenesis,

ketogenesis, and cataplerosis in proximal tubules. Thus, these genes provide a solid starting

point for more targeted research into detailed downstream effects of fructose metabolism to

sort out the players responsible for the pathology associated with high fructose. While renal

fructose metabolism is clearly implicated in mediating pathogenesis of acute renal injury [31–

34], importance of various downstream events mediating the cellular/metabolic reprogram-

ming remains controversial [50–52]. The approach of combining analysis by CD with averag-

ing of gene vectors and the newly described “rank/deviation” cutoff method has wider

importance beyond fructose and the proximal tubule. First, it has greater power than univari-

ate methods; second, the quantitative nature of signature gene vectors allows rational integra-

tion of information from differential expression experiments with different types of dietary

manipulations or with different animal or cell models, e.g., by similarity analysis. Therefore,

this analysis method can substantially contribute to mapping transcriptome profiles to physio-

logical functions. The strategy and methods are clearly applicable to many dietary problems.
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