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Facilitated by advances in the separation sciences, mass spectrometry and informatics,
glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured
enabling new insights into the complex glycoproteome. While diverse quantitative glyco-
proteomics strategies capable of mapping monosaccharide compositions of N- and O-
linked glycans to discrete sites of proteins within complex biological mixtures with con-
siderable sensitivity, quantitative accuracy and coverage have become available, develop-
ments supporting the advancement of structure-focused glycoproteomics, a recognised
frontier in the field, have emerged. Technologies capable of providing site-specific infor-
mation of the glycan fine structures in a glycoproteome-wide context are indeed neces-
sary to address many pending questions in glycobiology. In this review, we firstly survey
the latest glycoproteomics studies published in 2018–2020, their approaches and their
findings, and then summarise important technological innovations in structure-focused
glycoproteomics. Our review illustrates that while the O-glycoproteome remains compar-
ably under-explored despite the emergence of new O-glycan-selective mucinases and
other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is
increasingly used to profile the N-glycoproteome to tackle diverse biological questions.
Excitingly, new strategies compatible with structure-focused glycoproteomics including
novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based
detection methods are rapidly emerging revealing glycan fine structural details including
bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information
with protein site resolution. Glycoproteomics has clearly become a mainstay within the
glycosciences that continues to reach a broader community. It transpires that structure-
focused glycoproteomics holds a considerable potential to aid our understanding of
systems glycobiology and unlock secrets of the glycoproteome in the immediate future.

Introduction
The human genome encodes a plethora of enzymes, receptors, and transporters that concertedly facili-
tate and regulate protein glycosylation, the covalent attachment of complex carbohydrates (glycans) to
polypeptides. Glycosylation is a prevalent and structurally diverse type of protein modification central
to many biological processes including cellular development [1], lectin-mediated cell–cell communica-
tion [2], adhesin-based host-microbial interactions [3,4], and immunity [5–7]. Glycans also aid the
folding and impact the solubility and integrity of glycoproteins, as well as regulate their susceptibility
to proteolytic cleavage to mention a few of their modulatory functions [8–10].
Dysregulation of the glycosylation machinery often leads to aberrant protein glycosylation. Altered

glycophenotypes can arise from and, in other cases, lead to a broad range of pathologies, amongst
others, cancer [11–13], infection and inflammation [14–17], and schizophrenia [18]. Furthermore,
glycans are functional effectors of genetic and epigenetic disease risk [19]. Consequently, unravelling
the dynamics and the glycan remodelling associated with changes to the cellular milieu under normal
physiology and during disease conditions have been a long-standing goal of glycobiologists; such
advances are required to promote the next generation of glycoprotein-based diagnostics and therapeu-
tics [20,21].
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Glycoproteomics, the system-wide study of glycans linked to proteins or peptides, is a powerful analytical
discipline capable of identifying and quantifying physiological or disease-driven aberrations in protein glycosy-
lation arising from changes in the glycoprotein level, site occupancy (macro-heterogeneity) and/or glycosylation
pattern at individual sites (micro-heterogeneity) [22]. Mass spectrometry (MS)-based analysis of intact glyco-
peptides as opposed to the study of detached glycans (glycomics) or formerly glycosylated peptides (site
mapping) is an attractive analytical strategy since only intact glycopeptide (or glycoprotein) analysis is able to
provide direct evidence for the site-specific glycosylation of proteins. Intact glycopeptide profiling, however,
remains analytically challenging when applied to crude biological mixtures given the fact that both the chemical
structure of the glycan, the peptide modification site, and the identity of the peptide carrier need to be correctly
identified and quantified for each glycopeptide.
The field of glycoproteomics has for these reasons received considerable attention over the past years. As pre-

viously reviewed [22–34], diverse LC–MS/MS-driven glycoproteomics tools and strategies capable of quantita-
tively mapping monosaccharide compositions of N- and O-linked glycans to peptides and, in favourable cases,
to discrete sites of proteins in complex biological mixtures are now available. This has led to a body of literature
exploring the glycoproteome in various biological systems, some with considerable coverage, as demonstrated
by studies detecting thousands of intact N- and O-glycopeptides within a single glycoproteomics experiment
[35–43]. While the identification accuracy of some of the reported glycopeptides from such studies may be
questioned due to the analytical challenges outlined above [44–46], these examples illustrate that the technology
is now getting ready to address pending questions in systems glycobiology.
A recognised limitation, however, is that most glycoproteomics strategies, at present, do not provide informa-

tion of the glycan structure beyond the generic monosaccharide composition i.e. hexose (Hex),
N-acetylhexosamine (HexNAc), deoxyhexose (dHex), and N-acetylneuraminic acid (NeuAc) or even, in some
cases, simply consider the glycans as a largely undefined protein modification based on their molecular mass.
The structural elucidation of peptide-linked glycans beyond their monosaccharide compositions is often
inferred from our growing knowledge of the related yet species-specific biosynthetic pathways responsible for
the glycoprotein formation that exist across the areas of life [47,48]. This lack of concrete evidence for the
glycan fine structure is an important shortcoming given that glycobiological processes are often governed by
specific rather than generic glycan structures and substructures (glycoepitopes) occupying distinct sites on their
carrier proteins. Detailed site-specific glycan profiling of the glycoproteome, herein referred to as structure-
focused glycoproteomics, capable of discriminating isomeric monosaccharide residues e.g.
N-acetyl-β-D-glucosamine (β-linked GlcNAc) versus N-acetyl-α-D-galactosamine (α-linked GalNAc), key topo-
logical differences e.g. antenna (α1,2/3/4-) versus core (α1,6-) fucosylation and triantennary (β1,4/6-) versus
bisecting (β1,4-) GlcNAc-containing glycans, and isomeric glycosidic linkage types e.g. α2,3- vs α2,6-sialylation
is consequently considered one of the next important frontiers in glycoproteomics.
This review will first provide an overview of the most recent glycoproteomics studies published in the period

2018–2020, their approaches and their findings, and then summarise important technological developments
supporting the emergence of structure-focused glycoproteomics.

Recent N- and O-glycoproteomics studies (2018–2020)
Our survey of the most recent literature identified a total of 28 studies applying LC–MS/MS-based glycoproteo-
mics to biological samples, Figure 1. While our previous review revealed that glycoproteomics studies carried
out in the period 2014–2016 typically reported between 100 and 2000 unique (non-redundant) intact N- and
O-linked glycopeptides [22], studies published since 2018 are now routinely identifying and quantifying thou-
sands of glycopeptides, some even beyond 10 000 and 20 000 intact glycopeptides [49,50].
It is widely recognised that the glycoproteome coverage depends on the complexity and dynamical range of

the biological sample(s) being studied, the amount of protein starting material (often high mg/low mg protein
levels), and, notably, relates directly to the accuracy and confidence by which the reported glycopeptides are
identified [22]. Regardless of these constraints, the recent glycoproteomics studies have clearly reached a greater
glycoproteome coverage over a relative short period indicating that the glycoproteomics technologies are
rapidly maturing. We therefore decided to carefully mine these recent glycoproteomics papers to explore how
the studies were technically performed, how data were collected and how the data provided new insight into
the glycoproteome, Table 1.
With the exception of a single study exploring the plant N-glycoproteome [71], these recent glycoproteomics

papers all investigated tissues, bodily fluids (e.g. sera) or cell lines of human origin or from rodent model
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systems derived under different (patho)physiological conditions. This illustrates that glycoproteomics currently
is used to predominantly address glycobiological questions related to human health and disease.
The published studies either used glycoproteomics to qualitatively or quantitatively map a particular glyco-

proteome of interest, e.g. the serum O-glycoproteome [57] or alternatively performed comparative glycoproteo-
mics to elucidate the site-specific N- or O-glycosylation changes between two or more patient groups e.g.
patients with prostate cancer (PCa) and benign prostatic hyperplasia [52] or over a period of interest, e.g. longi-
tudinal profiling during lactation [66] or neonatal heart development [69].
In the surveyed studies, data were most frequently collected using data-dependent acquisition (DDA) by

employing higher-energy collision dissociation (HCD-), stepped collision energy (SCE)-HCD-, electron-transfer
dissociation (ETD)- and/or electron-transfer/higher-energy collision dissociation (EThcD-) MS/MS acquisition
strategies (discussed below). Our survey also illustrated that targeted re-isolation and orthogonal fragmentation
of glycopeptide ions are increasingly performed using diagnostic oxonium ions arising from HCD-MS/MS
commonly referred to as product-dependent (pd) acquisition [60,66,67,71]. Data-independent acquisition
(DIA), albeit less common, has also been used to profile mixtures of glycopeptides [57,72–76]. Various search
engines, most commonly the commercially available Byonic [77,78], and academic tools, amongst others,
GPQuest [79] and GPSeeker [56], were used to identify glycopeptides from the obtained raw data.

Figure 1. Glycoproteome coverage reported by recent glycoproteomics studies published in the period 2018–2020 arranged by

the studied species and publication year. The studies included in this overview all performed large-scale glycoproteomics

analysis of complex biological samples from unaltered or only mildly manipulated biological sources and reported a significant

number of intact glycopeptides. Studies not matching these criteria and studies reanalysing existing glycoproteomics data

were left out. We apologise for any omission of studies published in this period that we may have failed to identify in our survey

of the literature. The coverage as measured by the reported unique (non-redundant) intact N-glycopeptides (yellow bars) and

O-glycopeptides (blue bars) has been plotted for each study. Details of these 28 glycoproteomics studies including their full

references are provided in Table 1.
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Table 1 Recent N- and O-glycoproteomics studies published in the period 2018–2020 Part 1 of 4

Biological sample (species)

Approach
1) Mass spectrometer
2) MS/MS method (energy level
applieda)
3) Data acquisition
4) Data analysis
5) Quantification

Glycoproteome
coverageb

1) Glycopeptides
2) Glycosites
3) Glycoproteins Main findings/novelty Reference

Sera from PCa patients and healthy
individuals (human)

1) Q-Exactive
2) SCE-HCD (25 ± 10% NCE)
3) DDA
4) Mascot v2.4
5) Label-free (XICs)

1) 3447(N)

2) 970(N)

3) 257(N)

• Site-specific identification and
quantification of the sialylated
N-glycoproteome in sera from PCa
patients and healthy donors

Bollineni
et al. [51]

Breast cancer PANC1 and PKM2
knockout cell lines (human)

1) Orbitrap Fusion Lumos Tribrid
2) EThcD (SA 33% NCE)
3) DDA
4) Byonic v2.9.38 in Proteome
Discoverer v2.1
5) DiLeu

1) 1067(N)

2) 311(N)

3) 205(N)

• Identification of site-specific
N-glycosylation differences in PKM2
knockout breast cancer and parental
cells

Chen et al.
[39]

Urine from patients with PCa and
BPH (human)

1) Q-Exactive HF
2) HCD (29% NCE)
3) DDA
4) Byonic v2.6.46
5) TMT

1) 954(N)/965(O)

2) 1310(N)

3) 729(N)/160(O)

• Identification of a panel of 56
N-glycopeptides able to discriminate
PCa and BPH patients

Kawahara
et al. [52]

Resting and activated primary T
cells (human)

1) LTQ-Orbitrap Elite
2) HCD (27 eV)-pd-ETD (SA 35 eV)
and inclusion list-based HCD (27 eV)/
ETD (SA 35 eV)/CID (35 eV)
3) DDA
4) Byonic v2.0 in Proteome
Discoverer v1.4
5) Label-free (XIC)

1) 2219(O)

2) 851(O)

3) 1045(O)

• Identification and subcellular
localisation of O-GlcNAcylated
proteins expressed by T cells
• Found changes in the site-specific
O-GlcNAcylation during T cell
activation

Woo et al.
[53]

Tumour and adjacent control
tissues from patients with kidney
cancer, T cells and sera (human)

1) Q-Exactive HF and Orbitrap Fusion
Lumos Tribrid
2) ETD/HCD (36% NCE)
3) DDA
4) Sequestc in Proteome Discoverer
v2.2.
5) Label-free (spectral counting)

1) 4827(O)

2) 3055(O)

3) 1060(O)

• Specific enrichment of
O-glycopeptides in complex clinical
samples using OpeRATOR
• Identified site-specific
O-glycosylation differences between
kidney tumour and adjacent tissues

Yang et al.
[40]

Serum from patients with (non-)
crescentic IgA nephropathy and
healthy donors (human)

1) Q-Exactive HF and Orbitrap Fusion
Lumos Tribrid
2) HCD, EThcD
3) DDA
4) Byonic v2.10.21
5) Dimethyl labelling

1) 499(O)

2) 173(O)

3) 49(O)

• Identification of site-specific changes
in O-glycosylation associated with
crescentic IgA nephropathy

Zhang et al.
[54]

Breast cancer MCF-7 cell line and
matching MCF-7 stem cells
(human)

1) Q-Exactive
2) SCE-HCD (30 ± 10% NCE)
3) DDA
4) GPSeekerc

5) Diethyl labelling

1) 2558(N)

2) 727(N)

3) 640(N)

• Identified differences in the
site-specific N-glycosylation between
cancer cells and cancer stem cells

Wang et al.
[55]

HepG2 liver cancer cell line and
LO2 normal liver cell line (human)

1) Q-Exactive
2) SCE-HCD (30 ± 10% NCE)
3) DDA
4) GPSeekerc

5) Dimethyl labelling

1) 5405(N)

2) 1218(N)

3) 1077(N)

• Structure-focused glycoproteomics
study revealing site-specific N-glycan
differences in HepG2 and LO2

Xiao and
Tian [56]

Continued
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Table 1 Recent N- and O-glycoproteomics studies published in the period 2018–2020 Part 2 of 4

Biological sample (species)

Approach
1) Mass spectrometer
2) MS/MS method (energy level
applieda)
3) Data acquisition
4) Data analysis
5) Quantification

Glycoproteome
coverageb

1) Glycopeptides
2) Glycosites
3) Glycoproteins Main findings/novelty Reference

Serum from healthy donors
(human)

1) Orbitrap Fusion Tribrid
2-3) ETD (SA 25% NCE)/SCE-HCD
(27 ± 5% NCE)-DDA; SCE-HCD
(27 ± 5% NCE)-DIA
4) Sequest TH, ptmRS in Proteome
Discoverer v1.4, v2.2 and
Spectronaut v11.0 with a large
O-glycopeptide spectral library
5) Label-free (XIC)

1) 269(O)

2) 253(O)

3) 159(O)

• Amongst the first DIA-based
glycoproteomics studies
• Deep profiling of the serum
O-glycoproteome without
glycopeptide enrichment

Ye et al. [57]

Urinary exosomes from male
donors (human)

1) Orbitrap Fusion Lumos Tribrid
2) SCE-HCD (35 ± 5%
NCE)-pd-EThcD (SA 15% NCE)
3) DDA
4) Protein Prospector v5.22.1,
pGlyco v2.0
5) Label-free (XIC)

1) 3144(N)

2) 604(N)

3) 378(N)

• N-glycoproteome and site-specific
micro-heterogeneity of human urinary
exosomes

Brown et al.
[42]

DG75 Burkitt’s lymphoma cells
(human)

1) Orbitrap Fusion and Lumos Tribrid
2) HCD (25% for MS2, 35% NCE for
MS3)
3) DDA
4) pGlyco v2.0
5) TMT

1) 5367(N)

2) 855(N)

3) 528(N)

• Optimised strategy for quantitative
site-specific glycopeptide analysis
• Site-specific glycosylation changes
upon inhibition of the fucosylation
process

Fang et al.
[58]

Tumour and control tissues from
high-grade serous ovarian
carcinoma patients (human)

1) Q-Exactive and Orbitrap Fusion
Lumos Tribrid
2) HCD (38% NCE)
3) DDA
4) GPQuest v2.1
5) TMT

1) 3202(N)

2) 1690(N)

3) Not reported

• Differences in site-specific
N-glycosylation and abundance of
glycosylation enzymes in tumour and
control tissues

Hu et al.
[59]

PCa and BPH tissues (human) 1) Q Exactive HF-X
2) HCD (35% NCE)
3) DDA
4) Byonic v2.6.46
5) TMT

1) 7447(N)/522(O)

2) 1085(N)/308(O)

3) 540(N)/178(O)

• The use of integrated N- and
O-glycome and glycoproteome
profiling revealed key glycan changes
associated with PCa progression

Kawahara
et al. [43]

Oncogene-transformed MCF10A
breast epithelial cells (human)

1) Orbitrap Fusion Lumos Tribrid
2) HCD (30% NCE)-pd-AI-ETD
3) DDA
4) Byonicc

5) Label-free (XIC)

1) 2459(N)

2) 785(N)

3) 480(N)

• Oncogene-induced remodelling of
the surface glycoproteome and the
global cellular glycoproteome

Leung et al.
[60]

Urine from healthy donors (human) 1) Q-Exactive
2) SCE-HCD (30 ± 10% NCE)
3) DDA
4) GPSeekerc

5) Label-free (spectral counting)

1) 2986(N)

2) 419(N)

3) 327(N)

• Site-specific N-glycopeptide analysis
of human urinary glycoproteome with
putative N-glycan structural
information

Shen et al.
[61]

Serum from healthy donors
(human)

1) Q-Exactive
2) HCD (33% NCE)
3) DDA
4) pMatchGlyco v1.2 (spectral library
of de-N-glycopeptides)
5) Label-free (XIC)

1) 22 677(N)

2) 1036(N)

3) 526(N)

• Site-specific N-glycosylation of
serum glycoproteins with very high
glycoproteome coverage

Shu et al.
[50]

Continued
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Table 1 Recent N- and O-glycoproteomics studies published in the period 2018–2020 Part 3 of 4

Biological sample (species)

Approach
1) Mass spectrometer
2) MS/MS method (energy level
applieda)
3) Data acquisition
4) Data analysis
5) Quantification

Glycoproteome
coverageb

1) Glycopeptides
2) Glycosites
3) Glycoproteins Main findings/novelty Reference

ADR-resistant MCF-7/ADR cell line
and matching MCF-7/ADR cancer
stem cell line (human)

1) Q-Exactive
2) SCE-HCD (30 ± 10% NCE)
3) DDA
4) GPSeekerc

5) Diethyl labelling

1) 4016(N)

2) 1102(N)

3) 1014(N)

• Differences in site-specific
N-glycosylation between cancer cells
and cancer stem cells

Xu et al. [62]

Plasma from papillary thyroid
carcinoma patients and healthy
donors (human)

1) Orbitrap Fusion Lumos Tribrid
2) SCE-HCD (30 ± 10% NCE)
3) DDA
4) pGlyco v2.2.0
5) Qualitative

1) 1644(N)

2) 862(N)

3) 369(N)

• Profiling of the medium- and
low-abundant plasma glycoproteome
(reported circulating glycoproteins
down to 0.5 ng/ml levels)

Zhang et al.
[63]

Liver tumour and para-cancerous
tissues from HCC patients (human)

1) Orbitrap Fusion Lumos Tribrid
2) HCD (37% NCE)
3) DDA
4) GPQuest v2.0
5) TMT

1) 4741(N)

2) 1184(N)

3) 894(N)

• Differences in site-specific
N-glycosylation in HCC patients with
low and high levels of α-fetoprotein

Zhao et al.
[64]

Urine from healthy male and female
donors (human)

1) Q-Exactive
2) HCD (30% NCE)
3) DDA
4) Byonicc

5) Label-free (XIC)

1) 1300(O)

2) Not reported
3) 435(O)

• Gender differences identified in the
urine O-glycoproteome

Zhao et al.
[65]

Milk from healthy donor (human) 1) Orbitrap Fusion Lumos Tribrid
2) HCD (30% NCE)-pd-EThcD (SA
27% NCE)
3) DDA, SIM, PRM (30% NCE)
4) Byonic v3.2.0 in Proteome
Discoverer v2.2
5) Label-free (XIC)

1) 1697(N)

2) 191(N)

3) 110(N)

• Dynamics in the site-specific
N-glycosylation over the lactation
period

Zhu et al.
[66]

CHO-K1 subclone (mouse) 1) Q-Exactive
2) HCD (32% NCE)
3) DDA
4) GPQuest v2.0
5) Label-free (spectral counting)

1) 10 338(N)

2) 1162(N)

3) 530(N)

• Macro- and micro-heterogeneity of
the N-glycoproteome of the lysate and
culture media of CHO-K1 cells

Yang et al.
[49]

Brain tissue (mouse) 1) Orbitrap Fusion Lumos Tribrid
2) HCD (28% NCE)-pd-AI-ETD
3) DDA
4) Byonicc

5) Qualitative

1) 5662(N)

2) 1545(N)

3) 771(N)

• Application of AI-ETD to complex
N-glycopeptide mixtures
• Site-specific identification of isomeric
glycans using oxonium ions
• Creative visualisation of
glycoproteomics data

Riley et al.
[41]

L6 myoblasts cell line and
myotubes (rat)

1) Orbitrap Fusion Tribrid
2) HCD (40% NCE)-pd-EThcD/CID
(35% NCE)
3) DDA
4) Byonicc in Proteome Discoverer
v2.1.0.801
5) TMT

1) 2751(N)

2) Not reported
3) Not reported

• Longitudinal monitoring of
site-specific N-glycosylation during
myogenesis and muscle development

Blazev et al.
[67]

Brain tissue from AD APP/PS1
transgenic and wild-type models
(mouse)

1) Triple-TOF 4600 and Orbitrap
Fusion Tribrid
2) SCE-HCD (30 ± 10% NCE)
3) DDA
4) pGlyco v2.0
5) Label-free (n/a)

1) 3524(N)

2) 1493(N)

3) 722(N)

• Differences in site-specific
N-glycosylation in brain tissue from AD
and wild type mice

Fang et al.
[68]

Continued
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Regarding the sample preparation, most studies used trypsin digestion or, less commonly, combinations of
proteases e.g. trypsin and Glu-C, Lys-C or chymotrypsin, and employed some form of glycoprotein or glyco-
peptide enrichment prior to the LC–MS/MS detection. In fact, glycoproteomics is rarely applied directly to
complex biological samples without any type of enrichment [57]. Hydrophilic interaction liquid chromatog-
raphy (HILIC), lectin affinity chromatography e.g. concanavalin A (ConA), Vicia villosa agglutinin (VVA),
Jacalin, wheat germ agglutinin (WGA), Ricinus communis agglutinin (RCA), and less common strategies
including mixed anion-exchange chromatography, TiO2, and chemical and chemoenzymatic methods, were
used to enrich glycopeptides. HILIC-based solid phase extraction (SPE) represents one of the least biased glyco-
peptide enrichment methods given the considerable (local) hydrophilicity shared by most N-glycopeptides [80],
but may not quantitatively capture the less hydrophilic (shorter) O-glycopeptides and truncated
N-glycopeptides [81–83]. To increase the glycoproteome coverage, some studies used multi-step enrichment
protocols including sequential glycoprotein enrichment using Jacalin affinity chromatography followed by gly-
copeptide enrichment using HILIC [54] or employed sequential glycopeptide enrichment using HILIC and
multi-lectin affinity (ConA, WGA and RCA 120) [39], while others applied parallel glycopeptide enrichment
using ConA and mixed mode strong anion exchange-HILIC [60], or employed glycopeptide prefractionation
using high-pH reversed-phase LC after the glycopeptide enrichment step [42].
The enriched glycopeptides were, as expected, most commonly separated and detected using reversed-phase

nano-scale LC–MS/MS on various Orbitrap platforms including the Q-Exactive or Tribrid systems. Only few
studies used other online separation techniques including HILIC-LC, which reportedly was able to separate sia-
loglycopeptide isomers in complex mixtures [56]. Although frequently used in proteomics, we did not identify
any recent glycoproteomics studies using Q-ToF instrumentation or indeed the more recent timsToF for
large-scale glycopeptide detection.
While the pre-2016 glycoproteomics studies were found to be rather qualitative in their approaches by

simply reporting lists of identified glycopeptides as reviewed [22], our survey of the post-2018 glycoproteomics

Table 1 Recent N- and O-glycoproteomics studies published in the period 2018–2020 Part 4 of 4

Biological sample (species)

Approach
1) Mass spectrometer
2) MS/MS method (energy level
applieda)
3) Data acquisition
4) Data analysis
5) Quantification

Glycoproteome
coverageb

1) Glycopeptides
2) Glycosites
3) Glycoproteins Main findings/novelty Reference

Heart tissue (mouse) 1) Orbitrap Fusion Lumos Tribrid
2) SCE-HCD (20% and 33% NCE)
3) DDA
4) GPQuestc

5) Label-free (XIC)

1) 2925(N)

2) 1016(N)

3) 864(N)

• Site-specific changes in
N-glycosylation during the loss of
regenerative capacity of neonatal
mouse hearts early in life

Li et al. [69]

CHO-K1 cells with FUT8 knockout
and wild type (mouse)

1) Q-Exactive and Orbitrap Fusion
Lumos Tribrid
2) HCD (32% NCE)
3) DDA
4) GPQuest v2.0
5) Label-free (spectral counting)

1) 2634(N)

2) 459(N)

3) 243(N)

• Global alteration in the
N-glycosylation including the lack of
core fucosylation in CHO-K1 cells
upon FUT8 disruption

Yang et al.
[70]

Arabidopsis thaliana microsomes
from wild-type and
β-1,2-xylosyltransferase mutant
(plant)

1) Orbitrap Fusion Lumos Tribrid
2) HCD (30% NCE)-pd-ETD or ETD
3) DDA
4) Byonic v2.6 in Proteome
Discoverer v2.1
5) Label-free (XIC)

1) 1110(N)

2) 492(N)

3) 324(N)

• Mapping of the structural
heterogeneity of N-glycosylation in
Arabidopsis
• Absence of Xyl in xylt mutant plants

Zeng et al.
[71]

The table provides information of the biological samples, experimental conditions, the glycoproteome coverage and key findings of each study plotted in Figure 1.
aAs stated in the respective papers;
bThe glycoproteome coverage is here indicated as the reported unique (non-redundant) intact glycopeptides, glycosylation sites and glycoproteins. (N) refers to
N-glycosylation and (O) refers to O-glycosylation;
cSoftware version not reported.
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papers shows that glycopeptide quantification is now commonly applied. Approaches include label-free quanti-
fication by XIC or spectral counting [50,65], isotopic dimethyl [54] or diethyl [55] labelling as well as TMT
[52,64] and DiLeu [39] labelling, which collectively enable different types of glycopeptide quantitation strategies
all regularly used in the field. While glycoproteome mapping studies typically quantify the relative abundance
of all glycoforms observed at each glycosylation site to establish a stoichiometric site-specific glycoprofile, com-
parative glycoproteomics studies often compare the relative quantity of individual glycopeptides or the glyco-
profile at each site between conditions. The glycosylation site occupancy levels are unfortunately still rarely
reported in glycoproteomics given the loss of this information in studies using glycopeptide enrichment.
In addition to the above-mentioned glycoproteomics studies performed on glycoprotein samples from

unaltered biological sources, the SimpleCell technology, which manipulates cells to homogenously express trun-
cated O-GalNAc glycans (Tn and sialyl-Tn (sTn)) on mucins and mucin-like domains due to the inactivation
of the chaperone COSMC, represents an important innovation relevant for glycoproteomics [84–88]. The
SimpleCell technology has not only opened exciting avenues to study the challenging mucin glycobiology
including how O-glycans impact proteolytic cleavage events, the substrate-specificity of GalNAc-transferases
and the role of O-GalNAc glycans in cell–cell interactions and cell differentiation [89–93], but has also
improved our ability to profile the critically underexplored O-glycoproteome. Glycoproteomics efforts using the
SimpleCell technology to study mucin-type glycosylation in different human and other mammalian cell lines
have led to an impressive database (http://www.glycoproteomics.somee.com/), comprising a total of 18 397
unique O-glycopeptides spanning 10 197 O-glycan sites from 2039 O-glycoproteins within the human
O-glycoproteome supported by glycopeptide MS/MS evidence.

Innovations in structure-focused glycoproteomics
The following section summarises recent innovations within the emerging field of structure-focused glycoproteo-
mics including improvements in the sample preparation, glycopeptide separation, and LC–MS/MS-based detec-
tion. The discussed innovations are summarised in Figure 2. Advances in glycopeptide data analysis and novel
search strategies including, amongst several others, MSFragger-Glyco and O-Pair Search [94,95] will not be
covered in this review. Readers are instead referred to recent review literature on this topic [96,97].

Innovations in sample preparation
New glycoproteomics-friendly proteases
Bacterial proteases capable of cleaving mucin-type O-glycan motifs and thereby aiding the profiling of densely
glycosylated mucin domains and non-mucin O-glycoproteins often left undigested with conventional proteases
are rapidly emerging. The commercial OpeRATOR originally derived from the mucin-degrading Akkermansia
muciniphila, and the secreted protease of C1 esterase inhibitor (StcE) from Escherichia coli represent prominent
examples of recently reported mucinases [98–100].
OpeRATOR cleaves N-terminal to O-glycosylated Ser/Thr in Pro-rich sequences thereby generating peptides

carrying N-terminal O-glycosylation for easy site assignment [40,101]. However, site assignment based on the
OpeRATOR cleavage pattern alone or with HCD-MS/MS is not ideal given that more than half of all
OpeRATOR-generated glycopeptides reportedly contain multiple O-glycans [46] including adjacent O-glycan
sites prone to be missed by OpeRATOR [94]. In contrast, EThcD-MS/MS provides, in favourable cases, unam-
biguous site identification of OpeRATOR-generated O-glycopeptides [46]. Studies exploring the substrate
requirements of OpeRATOR indicated that it 1) does not cleave non-glycosylated Ser/Thr [101], 2) preferen-
tially cleaves core 1-type O-glycans and, albeit at a much slower rate, core 3-type O-glycans [40,102,103], and
3) shows poor or no activity against sialylated O-glycans and core 2-type structures [103].
The mucin-selective StcE cleaves the Xxx-Ser/Thr peptide bonds in consensus sequences containing Ser/Thr

(P2) — Xxx (P1) — Ser/Thr (P10) motifs where Xxx is any amino acid residue [104]. Unlike P1 and P10, glyco-
sylation of Ser/Thr in the P2 position is a strict requirement for StcE activity [104]. StcE displays activity
towards motifs carrying various O-glycans including the di-sialyl-T antigens (di-sT) and core 2-type glycopep-
tide structures and thus complements OpeRATOR as a tool for mucin glycoprofiling.
Other bacterial serine and zinc metalloproteinases have also expanded the toolkit for O-glycoproteome ana-

lysis [99]. Pic from E. coli and BT4244 from Bacteroides thetaiotaomicron preferentially cleave N-terminal to
glycosylated Ser/Thr (P10) carrying truncated Tn/T or Tn/T/sT O-glycans, respectively. In contrast, the
M60-like protease AM0627 from A. muciniphila preferentially cleaves peptide bonds between two adjacent
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Figure 2. Technical innovations supporting the advancement of structure-focused glycoproteomics.

The advances and the structural information they provide have been separated into sample preparation including protein

digestion, glycoepitope labelling and enrichment, online separation and LC–MS/MS detection of intact N-glycopeptides (yellow)

and O-glycopeptides (blue). See key for symbol and linkage nomenclature [105].
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O-glycosylated Ser/Thr residues [99]. Finally, AM0908 and AM1514 are also M60-like proteases expressed by
A. muciniphila that were found to cleave N-terminal to glycosylated Ser/Thr (P10) with a preference for
unoccupied Ser/Thr motifs in the P1 position [99].
While the above mucinases specifically act on glycoproteins containing mucin domains, ZmpC from

Streptococcus pneumoniae, which reportedly cleaves peptide bonds in the vicinity of O-glycosylation sites, acts
on both mucin and non-mucin proteins [99]. The O-glycopeptidase CpaA expressed by several Acinetobacter
strains cleaves N-terminal to glycosylated Ser/Thr in Pro (P1) — Ser/Thr (P10) motifs irrespective of the sialyla-
tion status of the P10-localised O-glycan substrate on both mucin and non-mucin O-glycoproteins [100].
While the clear substrate preference of most of the newly discovered proteases including OpeRATOR and

StcE limits their use for global (unbiased) glycoproteome profiling, they have already proven valuable in studies
aiming to map particular subsets of the glycoproteome. Notably, none of the proteases appears to be fully spe-
cific for a single glycan structure or glycoepitope emphasizing the importance of downstream glycan character-
isation if used for structure-specific glycoproteomics workflows. Collectively, these new proteases have a
considerable potential of advancing the field of glycoproteomics; their advent promises to accelerate particularly
the analysis of the under-studied O-glycoproteome in the immediate future.

Glycoepitope labelling
Chemoenzymatic and metabolic labelling methods enable visualisation and detection of glycoepitopes of inter-
est in a cellular or tissue setting. These technologies that have been developed over the past two decades are
gaining popularity and have a considerable potential for advancing structure-focused glycoproteomics [106].
While metabolic labelling approaches aim to metabolically incorporate functional and easy-to-detect tags into
newly synthesised glycoproteins (or other glycoconjugates) in living cellular systems, chemoenzymatic labelling
approaches focus on incorporating such probes after glycoprotein formation without making use of the meta-
bolic pathways [106,107].
Recognised limitations of metabolic labelling include the potential of adversely perturbating the living system

being explored in particular if artificial metabolic precursors are supplemented at relatively high (micromolar)
concentrations [108]. Furthermore, incomplete and unspecific incorporation of the supplemented probes are
also commonly experienced [109,110] including the off-target labelling of cysteine residues of some metabolic
labelling reagents [111–113]. However, a more specific labelling approach designed to target O-GalNAcylated
proteins was recently reported [114]. In that study, precision labelling of O-GalNAcylated proteins was per-
formed by supplementing membrane-permissive caged N-(S)-azidopropionylgalactosamine (GalNAzMe)-1-
phosphate probes to cells transfected with a pyrophosphorylase AGX1 mutant in order to biosynthesize uridine
diphosphate (UDP)-GalNAzMe donor molecules for downstream GalNAzMe-based labelling of target
O-glycoproteins. UDP-GalNAzMe-mediated labelling of O-GalNAc proteins can be further enhanced by trans-
fecting cells with an engineered ‘bump-and-hole’ GalNAc-T2 double mutant that contains an enlarged active
site and exhibits increased activity for UDP-GalNAzMe as compared with UDP-GalNAc [114–117].
Diverse chemoenzymatic labelling methods that employ various glycosyltransferases and unnatural monosac-

charide analogues have been developed over the past decade [107,118–121]. For example, the bacterial
β-(1,4)-N-acetylgalactosaminyltransferase CgtA from Campylobacter jejuni that targets NeuAcα2,3Gal-R sub-
strates has been used to label HEK293T cell surface N- and O-glycoproteins with N-azidoacetylgalactosamine
(GalNAz), an unnatural analogue of GalNAc [120]. GalNAz incorporation enables convenient click chemistry-
driven biotinylation, which, in turn, facilitates the enrichment of labelled targets using streptavidin agarose or
detection by western blot, fluorescence microscopy, or LC–MS/MS. Recently, CgtA was used to label
NeuAcα2,3Gal-containing glycopeptides derived from human serum glycoproteins with GalNAz [122]. The
informative GalNAz reporter ions at m/z 245.09 generated upon SCE-HCD-MS/MS enabled the detection and
sialyl-linkage annotation of 1236 N-glycopeptides from 161 human serum glycoproteins. In another study, cell
surface-located sT O-glycoproteins expressed by the MCF7 breast cancer and HT29 colon cancer cell lines were
labelled, captured and detected using cytidine-50-monophosphate-NeuAc-biotin and recombinant human
ST6GalNAc-IV expressed in baculovirus insect cells [123].
Other approaches have specifically targeted the disease-relevant O-GalNAc glycoepitope (Tn antigen)

[124,125]. For example, a study showed that α-linked GalNAc (Tn) and β-linked GlcNAc O-glycopeptides can
be discriminated by selective oxidation of the O-GalNAc residues by galactose oxidase from Dactylium den-
droides facilitating Tn glycopeptide enrichment using hydrazide solid-phase capture and methoxyamine
(CH3ONH2) mediated release [126]. This selective labelling strategy adds a 27 Da mass tag (CH3-O-N=R with
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an associated water loss (-H2O) upon derivatisation) to all Tn glycopeptides, which, in turn, enables their
detection using diagnostic oxonium ions at m/z 171.0765 (144.0656 + 27.0109) and m/z 195.0764 (168.0655 +
27.0109) upon HCD-MS/MS. A similar oxidation-based labelling approach was recently used to enrich
O-glycopeptides carrying core 1-type O-glycans including Tn, sTn, T, sT, and di-sT antigens [127]. In that
enrichment study, which also employed hydrazide capture and methoxyamine release, tryptic glycopeptides
derived from human serum glycoproteins were treated with PNGase F and chemically desialylated, before the
exposed Gal and GalNAc residues were oxidised by D. dendroides galactose oxidase.
OpeRATOR was also recently used for the digestion and release of resin-conjugated labelled Tn

O-glycoproteins expressed by human Jurkat cells and in pancreatic cancer sera using a method called
EXoO-Tn [128]. In short, the EXoO-Tn method involves: (i) trypsinization and desialylation of the extracted
proteins, (ii) Tn glycopeptide enrichment using VVA lectin, (iii) isotopic labelling of the Tn glycopeptides with
heavy Gal(13C6) by the recombinant human C1GalT1 glycosyltransferase in complex with its chaperone
C1GalT1C1 using an artificial UDP-Gal(13C6) nucleotide sugar donor, (iv) digestion by OpeRATOR, and
finally v) LC–MS/MS-based detection of the Gal(13C6)-capped Tn glycopeptides using diagnostic oxonium ions
at m/z 372.2 (13C6 variant of HexHexNAc) that can discriminate labelled Tn glycopeptides from endogenous T
glycopeptides. This approach enabled the identification of 1011 Tn glycopeptides from 480 glycoproteins
expressed by Jurkat cells while considerably fewer Tn glycoproteins were identified from pancreatic cancer sera.
Furthermore, selective isotopic labelling and quantification of O-GlcNAcylated glycoproteins was recently

achieved by employing UDP-GalNAz, a recombinant mutant of bovine β1,4-galactosyltransferase 1
(GalT1Y289L) and the isotope-tagged cleavable linker (isoTCL) [129] or an isotope-coded photocleavable probe
[130]. Both strategies facilitate selective tagging, enrichment, and isotopic labelling of O-GlcNAcylated glyco-
proteins. Others have used wild-type bovine GalT1 and natural UDP-Gal to label β-linked GlcNAc
O-glycopeptides derived from glycoproteins expressed by MCF-7 cells, which were then selectively oxidised by
D. dendroides galactose oxidase ahead of enrichment by hydrazide capture [131]. The resulting O-GlcNAcGal
glycopeptides could be distinguished from the endogenous O-GalNAcGal glycopeptides by their different
oxonium ion ratios (discussed below).
Finally, sialyl linkage information, important to understand many processes related to sialoglycobiology

[132,133], can be obtained at the glycoproteome-wide level by applying linkage-selective labelling approaches.
For example, α2,6-linked sialic acid residues can be selectively labelled using ethanol creating a 28 Da mass tag
by the esterification with C2H5OH (and an associated water loss) while α2,3-sialic acid residues can be select-
ively labelled using ethylenediamine generating a 42 Da mass tag by the amidation with C2H4(NH2)2 (and an
associated water loss) of immobilised glycoproteins [134]. In that study, the derivatised sialoglycoproteins were
characterised using on-bead digestion and HILIC-SPE glycopeptide enrichment before the labelled sialoglyco-
peptide isomers were detected by the chemically unique oxonium ions arising from the derivatised α2,3-(m/z
334.1/316.1) and α2,6-linked (m/z 302.1) sialoglycopeptides upon HCD-MS/MS.

Enrichment strategies
The enrichment methods used in glycoproteomics have been comprehensively reviewed [135]. While some enrich-
ment strategies including HILIC-SPE aim to capture the entire complement of glycopeptides to provide a quantita-
tive view of the glycoproteome [80], structure-specific enrichment approaches aim to capture only a subset of
glycopeptides carrying specific glycan structures. In the latter cases, information of the glycan structure can either
be inferred from the capture, or, more appropriately if used for structure-focused glycoproteomics, be supported by
direct mass spectral evidence of the captured glycopeptides/glycoproteins using downstream detection.
Natural and genetically engineered lectins form a diverse class of glycan-binding proteins that can be used to

enrich subsets of glycoepitopes carried by glycoproteins, glycopeptides or other glycoconjugates. For example,
BTL from Bryothamnion triquetrum [136], PhoSL from Pholiota squarrosa [137,138] and SL2-1 [139] from
Streptomyces rapamycinicus are known to recognise α1,6- (core) fucosylated N-glycans. Thus, binding to any of
these lectins indicates that the captured glycoproteins carry core fucosylation, an observation that ideally
should be supported by MS or other types of orthogonal evidence. Lectins that recognise other N-glycan struc-
tural features include Phaseolus vulgaris erythroagglutinin (PHA-E) and Calystegia sepium lectin (Calsepa) that
bind bisecting β1,4-GlcNAc structures, Maackia amurensis lectin (MAL) that recognises α2,3-sialic acid resi-
dues and Sambucus nigra agglutinin (SNA) and Sambucus sieboldiana agglutinin (SSA) that both bind
α2,6-sialic acid residues [140–142]. Furthermore, the recombinant human macrophage galactose-like C-type
lectin (MGL)-Fc chimeric protein was recently used to enrich Tn glycopeptides from ovarian cancer cells and
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tissues [143]. Finally, engineered lectins displaying enhanced or tailored recognition of particular glycan epi-
topes including, amongst others, core fucose recognised by the recombinant N224Q mutant of the Aleuria aur-
antia lectin (AAL), and O-GlcNAc recognised by the Agrocybe aegerita lectin (AANL) mutant AANL6 have
the potential of expanding the enrichment tool box for structure-focused glycoproteomics [144–149].
Catalytically inactive hydrolases have also proven valuable for structure-specific glycopeptide enrichment.

Recently, a mutant form of the Clostridium perfringens O-GlcNAcase (CpOGAD298N), which retained the
binding but not the hydrolytic properties towards O-GlcNAc epitopes [150], was used to enrich β-linked
GlcNAcylated O-glycoproteins from HeLa cell lysates and Drosophila embryo lysates [151]. Furthermore, the
commercially available catalytically inactive mutant form of the OpeRATOR OgpAH205A/E206A (GlycOCATCH,
Genovis AB., Sweden) was shown to bind O-glycopeptides suggesting that this pseudo-protease may serve as
another enrichment tool for mucin-type glycosylation [103]. The catalytically-inactive StcEE447D conjugated to
beads was also able to enrich MUC16 from an OVCAR-3 cell line [104]. Both the StcEE447D mutant and a
BT4244E575A mutant form of the B. thetaiotaomicron BT4244 metalloproteinase (discussed above) were found to
be valuable for the detection of mucins using western blotting and for their direct visualisation in tissues [99].
Furthermore, recombinant antibodies displaying affinity towards glycoepitopes are relevant tools for

structure-focused glycoproteomics [152–157]. For example, the recombinant mouse anti-Tn IgM ReBaGs6 was
used to immunoprecipitate Tn-containing glycoproteins from Tn-positive Colo205 SimpleCells lysates for
downstream mass spectrometry identification [154]. Smart anti-glycan reagents (SAGRs) represent another
exciting type of emerging affinity tools [156,157]. SAGRs are chimeric proteins comprising murine IgG Fc and
the single-chain variable lymphocyte receptors (VLRs) secreted by Petromyzon marinus VLRB+ lymphocytes
(B-like cell) upon immunisation with different glycoconjugates, cells and tissues of interest. This innovative
technology enables SAGRs to recognise glycan determinants with considerable affinity. Finally, the emergence
of artificial glycan-directed antibodies generated by glycopeptide imprinting represents a new interesting
avenue that may contribute to structure-focused glycoproteomics in the future [158,159].

Improvements in glycopeptide separation
Glycopeptide separation prior to mass spectrometry detection, commonly performed using reversed-phase
nano-scale LC, is an important component of most, if not all, glycoproteomics experiments. Current strategies
for the isomeric separation of glycopeptides were recently reviewed [160].
The glycopeptide retention behaviour on reversed-phase LC columns, which is governed primarily by the

peptide hydrophobicity, and, secondly, by the properties of the conjugated glycan(s) i.e. size, shape and mono-
saccharide composition particularly the sialic acid content, was recently studied to generate better prediction
tools utilising retention time as orthogonal information for glycopeptide identification and characterisation
[161–163]. While typically not allowing for separation of glycopeptide isomers, a recent study found that
reversed-phase LC may separate isomeric N- and O-glycopeptides at elevated temperatures [164].
Whilst commonly used for glycomics [165,166], porous graphitised carbon (PGC) LC is still under-utilised

in glycoproteomics despite its potential for isomeric separation of relatively small N- and O-glycopeptides gen-
erated by nonspecific proteolysis [167–170] or by trypsin [171]. Larger glycopeptides bind irreversibly to PGC
LC columns [172,173]. Similar to the PGC-based separation of sialoglycans [174–176], PGC LC reportedly
retains α2,3-sialoglycopeptides better than isomeric α2,6-sialoglycopeptides [177], a separation feature that
appears to be temperature-dependent [178]. Alternatively, HILIC LC can be used for the separation of intact
glycopeptide isomers [56,179] and glycoproteins [180]. HILIC LC coupled with multiple reaction monitoring
was used to profile isomeric α2,3- and α2,6-sialoglycopeptides derived from human prostate-specific antigen
[181], the latter isomer displaying a greater LC retention [182]. Others have used HILIC LC to separate topo-
logical N-glycopeptide isomers of human hemopexin in order to assign the position of the fucose residues on
N-glycans (core versus outer arm) and to elucidate the glycan arm position of α2,6-sialic acid residues [183]. A
study comparing different HILIC stationary phases recently reported that HALO penta-HILIC provides better
isomeric separation of N-glycopeptides than the more widely used ZIC-HILIC phase [184].
Furthermore, isomeric α2,3- and α2,6-sialoglycopeptides possess different electrophoretic mobilities facilitat-

ing their separation using capillary electrophoresis (CE)-ESI-MS [185,186]. Recent improvements in the CE
hyphenation methods have increased the sensitivity and reproducibility of glycopeptide analysis by CE-MS
[187,188] and opened interesting avenues for CE-based glycoproteomics [189]. In fact, CE-MS even showed the
potential to separate intact glycoproteoforms [190–193]. LC and CE methods for intact glycoprotein separation
were recently reviewed [194].
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Aiming to benefit from their orthogonal separation properties, studies employing multi-dimensional separ-
ation of glycopeptides are emerging. For example, an online two-dimensional PGC and reversed-phase LC
setup was used to separate glycopeptides from simple mixtures [195–198]. Another study used offline reversed-
phase LC prefractionation coupled with CE to profile N-glycopeptides generated from human α-1-acid glyco-
protein [199]. The potential of multi-dimensional approaches to separate isomeric N-glycopeptides was demon-
strated using offline HILIC LC coupled with PGC LC to fractionate a simple mixture of bovine RNase B
glycopeptides [200] as well as offline reversed-phase LC prefractionation coupled with online HALO
penta-HILIC LC to separate glycopeptides from HepG2 and LO2 cell lysates [56].
Finally, ion mobility spectrometry (IMS), a gas-phase alternative to the chromatographic and electrophoretic

separation of glycopeptides, is an emerging separation technique in structure-focused glycoproteomics. When
coupled with mass spectrometry, IMS-MS is evidently capable of separating isomeric glycopeptide ions based
on their differential conformational size and shape resulting in different drift times [201,202]. Direct IMS-MS
analysis showed the potential to separate α-GlcNAc and α-GalNAc-containing glycopeptide epimers [203,204],
isomeric O- and N-glycopeptides differing only in the position of the glycosylation site [204–206], α- and
β-GalNAc anomeric glycopeptides [204], and epimeric O-glycopeptides carrying either Gal or Glc residues or
alternative Glc or Man residues on the same site [207]. The detection of CID-MS/MS-generated B3-type ions
(m/z 657.24, corresponding to NeuAcα2,3Galβ1,4GlcNAc or NeuAcα2,6Galβ1,4GlcNAc fragments) by
IMS-MS enabled the discrimination of isomeric N- and O-sialoglycopeptides; these two types of B3 ions
display NeuAc linkage-specific drift times [206,208]. IMS-MS has also demonstrated a potential to separate
intact glycoproteins [209], an observation that deserves to be explored further as the field moves towards
top-down glycoprotein analysis.

Improvements in LC–MS/MS detection
Glycoproteomics has recently witnessed many key advances in mass spectrometry-based analysis of glycopep-
tides [25,32,34]. As discussed below, most advances relevant to structure-focused glycoproteomics involve
improvements in the dissociation methods and intelligent glycopeptide-centric LC–MS/MS data acquisition
methods, both of which have led to a greater volume and quality of the spectral data generated from glycopro-
teome profiling experiments.

Hybrid-type fragmentation methods yield high content glycopeptide spectra
Hybrid-type fragmentation methods that combine multiple dissociation methods include EThcD-MS/MS [210–
213] widely used in glycoproteomics (see Table 1 for examples) and the less common AI-ETD-MS/MS method
restricted to few specialist labs [41,60]. Fragmentation methods that employ multiple energy schemes to target
more complete analyte dissociation most prominently the SCE-HCD-MS/MS method are also frequently used
in large-scale glycopeptide profiling studies [37,51,56,214,215]. The benefits of hybrid-type fragmentation
methods for glycoproteomics were recently summarised [216].
Confident and detailed glycopeptide characterisation from MS/MS spectral evidence rely on the presence of

oxonium ions (internal glycan fragments), B-type ions (non-reducing end glycan fragments), Y-type ions (intact
glycopeptide fragments), and b-/y- and c/z-type ions (peptide fragments) [217,218]. The peptide fragments may
be present with and without the conjugated glycan moieties. These different ion types inform on different parts
of the glycopeptide molecule. The SCE-HCD- and EThcD-MS/MS methods have been purpose-build and tai-
lored to intact glycopeptide analysis and are now widely recognised to be well-suited for N- and O-glycopeptide
analysis at scale [37,54,219]. Relative to the conventional dissociation methods including resonance activated
(ion trap) or beam-type (Q-ToF) CID-, HCD- and ETD-MS/MS, the SCE-HCD- and EThcD-MS/MS fragmen-
tation methods yield more informative and content-rich fragment mass spectra containing both peptide and
glycan fragments required for unambiguous or more complete glycopeptide spectral assignment.
Glycopeptide-friendly variants of the more common fragmentation methods available on most instruments have
also been developed and include the low-energy beam-type CID- and HCD-MS/MS methods that generate
spectra rich in oxonium and B-type ions useful in structure-focused glycopeptide analysis (discussed below).
Finally, ultraviolet photodissociation (UVPD)-MS/MS, which utilises high-energy laser photons for the acti-

vation and fragmentation of ions represents a less conventional fragmentation method of glycopeptides [220–
222]. HCD-triggered-UVPD-MS/MS and EThcD-MS/MS were recently tested for their ability to locate
O-GlcNAc sites on peptides from recombinant human and Drosophila melanogaster glycoproteins [223]. In
that study, 193 nm UVPD-MS/MS showed a considerable potential for accurate site allocation by generating a

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). 173

Biochemical Society Transactions (2021) 49 161–186
https://doi.org/10.1042/BST20200222

https://creativecommons.org/licenses/by-nc-nd/4.0/


range of O-GlcNAc-containing peptide backbone fragments (a-/x- and c-/z-type ions) and in fact outperformed
EThcD-MS/MS with respect to the spectral quality and the sequence coverage of the identified glycopeptides
[223]. In another study, high-energy UV (213 nm) combined with low-energy infrared photodissociation
(10.6 mm) (HiLoPD) was applied to an O-GalNAc-peptide from human erythropoietin [224]. The authors
demonstrated that HiLoPD showed a higher backbone ion retention efficiency of GalNAc than UVPD-MS/MS.
Despite these promising reports, future experiments are required to evaluate the potential of UVPD-MS/MS for
large-scale glycopeptide analysis.

Diagnostic ions for glycoform-specific assignment
Similar to the use of diagnostic ions to identify glycan fine structures in LC–MS/MS-based glycomics
[175,176,225], diagnostic ions are important for the glycoform-specific assignment of glycopeptide spectra.
Diagnostic ions have been used to discriminate isomeric glycopeptide features such as O-GlcNAc versus
O-GalNAc glycopeptides [226,227], sialyl linkage of both N- and O-sialoglycopeptides [228], core versus
antenna fucosylated N-glycopeptides [229–231], antenna versus bisecting GlcNAcylated N-glycopeptides
[230,232], and glycopeptides containing various other N- and O-glycan motifs [231,233–235]. Some examples
of diagnostic ions for the glycoform-specific assignment of glycopeptides are briefly discussed below.
The ratio between the signal intensities of two groups of two HexNAc-specific oxonium ions i.e. (m/z 138 +

m/z 168) and (m/z 126 +m/z 144), referred as the GlcNAc/GalNAc ratio, generated using ion trap CID- or
HCD-MS/MS, is reportedly able to discriminate between GlcNAc- and GalNAc-containing N- and
O-glycopeptides [226,227]. In support, multiple glycoproteomics studies have applied this approach to distin-
guish extended α-linked GalNAc and β-linked GlcNAc O-glycopeptides [36,131,236,237], glycopeptides carry-
ing either a single O-GlcNAc or O-GalNAc residue [238] or, more crudely, to simply classify O- and N-glycan
types on peptides [41,197]. Furthermore, α2,3- and α2,6-sialyl linkage information was obtained by determin-
ing the signal intensity ratio of the HCD-MS/MS-derived oxonium ions specific for LacNAc (m/z 204 +m/z
366) and NeuAc (m/z 274 +m/z 292) following an elaborate signal normalisation process that considers both
the glycan composition and the LacNAc structure (Galβ1,3GalNAc or Galβ1,4GlcNAc) [228].
Different diagnostic ion signal intensity ratios were also reported to inform on structural features of the

glycan antenna. For example, core (α1,6-) and antenna (α1,2/3/4-) fucosylation can be differentiated based on
the intensity ratios of B- or Y-type ions generated upon low-energy beam-type CID-MS/MS as demonstrated
on glycopeptides derived from human prostate specific antigen and α-1-acid glycoprotein [229]. Moreover,
diagnostic ions for HexNAc1Hex1Fuc1 (m/z 512) and HexNAc1Hex1Fuc1NeuAc1 (m/z 803) were reported to
evidence antenna-localised fucosylation [230]. The authors noted that these diagnostic ions were also present,
albeit at low levels, in spectra arising from core fucosylated glycopeptides [229,230]. Conversely, core fucosyla-
tion can reportedly be identified based on characteristic Y1-type ions (peptide + GlcNAc1Fuc1) generated at
relatively high dissociation energies [229].
Furthermore, characteristic Y-type ions (i.e. peptide + HexNAc3Hex1 and peptide + HexNAc3Hex1Fuc1) gener-

ated via low-energy HCD-MS/MS can be used to indicate bisecting GlcNAc-containing glycopeptides as demon-
strated for different mammalian model glycoproteins and glycoproteins from rat renal tissues [230,232]. B- and
Y-type ions generated upon EThcD-MS/MS carried out with low supplemental energy were also found to be
useful to establish the glycan topology as was shown for extended O-sialoglycopeptides obtained from human
urine [234,235]. Diagnostic B-type ions generated by low-energy HCD-MS/MS were also found to reveal various
structural motifs of the glycan antenna of glycopeptides derived from recombinant human glycoproteins and
HEK293 secretomes including outer arm N,N-diacetyllactosamine (LacdiNAc), sialylated LacdiNAc, fucosylated
LacdiNAc, sialylated GalNAc, and polyLacNAc amongst other motifs [231]. Furthermore, a Hex2HexNAc1 (m/z
528.19) to Hex1HexNAc1 (m/z 366.14) intensity ratio above 0.3 upon SCE-HCD-MS/MS was recently shown to
indicate the presence of α-galactosyl epitopes (i.e. Galα1,3Galβ1,4GlcNAc-R) carried by complex-type
N-glycopeptides as demonstrated for mice spleen and lung tissues and plasma [233]. The absence of a particular
Y-type ion (peptide + HexNAc2Hex4) characteristic for hybrid- or oligomannosidic-type N-glycans represents
complementary evidence of α-galactosylation. Finally, negative-mode detection in LC–MS/MS-based glycopep-
tide analysis may enhance the information of the fine structure of peptide-linked glycans by generating diverse
glycan fragment ions upon ion trap CID-, HCD-MS/MS and CID-MS3 [239].
Lastly, albeit not the focus of this review, it is worthwhile to highlight just a few exciting advances of

glycopeptide-search algorithms and machine learning tools that have opened interesting avenues for more effi-
cient classification of N- and O-glycopeptides and their isomeric structural features [96,97]. Developments in
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such informatics areas have for example enabled the crude classification of N- and O-glycopeptides from
human serum based on the intensities of various oxonium ions generated by HCD-MS/MS [240]. Machine
learning-based classification was also applied to discriminate core- versus antenna-fucosylation using B- and
Y-type ions generated by ion trap CID-MS/MS as demonstrated for N-glycopeptides from human plasma pro-
teins [241,242]. Finally, a new computational algorithm named O-GlycoProteome Analyzer was shown to be
able to identify mucin-type O-glycosylation (e.g. core 1 versus core 2) in human urine and plasma using the
GlcNAc/GalNAc ratio (see above) and other B- and Y-type diagnostic ions generated by HCD-MS/MS [243].
Collectively, the above studies reporting on diverse improvements in the LC–MS/MS-based detection of gly-

copeptides illustrate the immense potential of using advanced fragmentation methods and diagnostic ions in
innovative ways to elucidate glycan fine structural features at the glycopeptide level. It is clear that further opti-
misation of the dissociation methods including the applied energy setups, activation times and triggering mode
(s) as well as comprehensive benchmarking and standardisation across instruments and informatics improve-
ments are still required to enhance the utility of diagnostic ions for large-scale glycopeptide characterisation in
future glycoproteomics experiments. Efforts to reduce the co-isolation of glycopeptide precursors and attempts
to limit the in-source fragmentation of labile glycopeptide features, both recognised as significant analytical
challenges in glycoproteomics [58,227,244,245], are examples of other important areas that should receive
attention as the glycoproteomics methods develop.

Conclusion
This review has compiled and surveyed a considerable body of recent literature, some papers literally
‘hot-off-the-press’, employing quantitative glycoproteomics to study the complexity and dynamics of the
human and other mammalian glycoproteomes with unprecedented sensitivity and coverage. The increasing
publication activity and quality in this area of science from an expanding group of research laboratories around
the world is highly encouraging and indicates that the glycoproteomics technologies are reaching (and are
actively being applied by) the community. As abundantly exemplified in Table 1, quantitative glycoproteomics
is now sufficiently mature to tackle a range of complex biological questions from new angles. Human health
and disease appear to be principle application areas of the recent glycoproteomics studies, but given the ubiqui-
tous nature of glycoproteins, the technologies discussed herein can readily or with some adjustments be applied
more widely to other biological areas of life science.
As the sample handling, instrumentation and bioinformatics solutions for glycopeptide analysis continue to

evolve, it is expected that studies achieving an even greater glycoproteome coverage will soon emerge allowing
us to access the low-to-medium abundance glycoproteins in complex biological specimens. The innovative use
of new mucin-friendly proteases to generate O-glycopeptides with favourable MS properties is particularly
exciting since such novel approaches will dramatically benefit studies seeking to improve the coverage of the
hitherto ‘dark’ mucin O-glycoproteome.
While such advances promise to reveal many of the secrets hidden in the low abundance glycoproteome, it

is crucial that the technology improvements also eventually will open avenues for glycopeptide profiling directly
from biological samples without the need for glycopeptide enrichment or other types of sample perturbation.
Methods compatible with minimal sample handling and processing are required to generate workflows with
higher sample throughput and reproducibility, and, importantly, to establish a fully quantitative view of the gly-
coproteome including information of the site occupancy currently not captured with most existing methods.
Moreover, ensuring high identification accuracy of the reported glycopeptides is imperative. Automated iden-

tification of intact glycopeptides is a comparably complex and highly error-prone process relative to the analyte
identification in most other areas of proteomics [25,45,97]. Robust probability-based false discovery rate-driven
search engines and algorithms for intact glycopeptides are still required to propel the field forward. Adding to
the informatics advances needed to achieve such important improvements, ‘glycomics-assisted glycoproteomics’
represents a complementary strategy that can guide the glycoproteomics data analysis to lower the glycopeptide
false discovery rates while simultaneously addressing the complexity of the glycome [35,43,67,246,247].
Another significant limitation, indeed the focus of this review, is that current glycoproteomics methods still

only allow assignment of generic monosaccharide compositions of glycans rather than the glycan fine structural
features to discrete protein sites. It is widely recognised that knowledge of the glycan fine structures is a pre-
requisite to understand the effect of glycosylation on protein function. Technologies that can uncover the intri-
cate details of the heterogenous glycan structures decorating each site of proteins in mixtures, herein referred to
as ‘structure-focused glycoproteomics’ have remained a holy grail of glycobiology [248].
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As discussed in this review, the field has recently witnessed many exciting innovations supporting the
advancement of structure-focused glycoproteomics. Importantly, these developments target different parts of
the glycoproteomics workflow spanning sample preparation including new glycoform-selective proteases and
chemoenzymatic labelling and enrichment methods, over innovations within the separation sciences involving
both improved LC, CE and IMS approaches to improvements in diverse areas of mass spectrometry-based
detection. The emerging O-glycan-specific mucinases and chemoenzymatic labelling approaches, and advances
in the acquisition and fragmentation schemes yielding high content fragment mass spectra appear to dominate
the innovation space and are likely to contribute significantly to glycoform-focused O- and N-glycoproteome
profiling in the near future. We surprisingly did not identify any large-scale glycopeptide studies using sequen-
tial exoglycosidase treatment to obtain information of the terminal glycoepitopes, a strategy often used in glyco-
mics [249], highlighting just one example serving to illustrate that all methodological avenues are still not
explored in the context of structure-focused glycoproteomics.
Notwithstanding these exciting developments, structure-focused glycoproteomics remains in its infancy and

the field still faces significant challenges ahead. Similar to the existing composition-focused glycopeptide
mapping technologies, structure-focused glycoproteomics should ideally move towards unbiased profiling and
quantitation of the glycoproteome. This is particularly important when the technology is applied in ‘discovery-
mode’ as opposed to targeted glycoproteomics studies where a specific glycopeptide form or a class of glycoepi-
topes are profiled to address a specific research question. Most innovations discussed herein including the
developments of new labelling, digestion and enrichment methods target specific subsets of the glycoproteome
and are thus incompatible with unbiased quantitative glycoproteome profiling. In contrast, LC–MS/MS
methods that can elucidate subtle differences of all introduced glycopeptide forms either by improved separ-
ation and/or via mass spectral evidence may in our view have a stronger potential to facilitate fully quantitative
yet still structure-centric glycoproteome profiling in the future.
Finally, it is clear that the field of structure-focused glycoproteomics should already now begin to prepare for

a downstream integration with the other ‘omics disciplines including glycomics, transcriptomics, and metabolo-
mics, while simultaneously paying close attention to and align with the exciting advances emerging in the area
of top-down analysis of intact glycoproteins [250–254].
Glycoscientists have for years recognised that no single technology can provide a holistic and comprehensive

understanding of the structural and functional heterogeneity inherently associated with protein glycosylation.
While a full implementation of structure-focused glycoproteomics hold a tremendous potential to enhance our
insight into pending glycobiological questions, it is clear that such technologies are but few amongst many
tools that glycoscientists will need to draw on to explore the fascinating world of glycobiology in years ahead.

Perspectives
• Importance: Glycoproteomics is a powerful quantitative technology that enables scientists to

study the entire complement of glycoproteins expressed by cells, tissues or organisms at a
given time, space and condition. Detailed site-specific characterisation of glycan structures in
a glycoproteome-wide context, herein referred to as ‘structure-focused glycoproteomics’ is
considered one of the next frontiers to be targeted to advance the field further and to address
many pending questions in glycobiology.

• Current understanding and challenges: Our survey has revealed a rapidly growing body of lit-
erature employing quantitative glycoproteomics to study the dynamics and complexity of the gly-
coproteome with unprecedented sensitivity and coverage demonstrating that the technology is
maturing and ready to be applied to biology. Notably, many novel innovations spanning new che-
moenzymatic labelling, digestion, enrichment, separation and mass spectrometry detection strat-
egies compatible with structure-focused glycoproteomics have recently emerged revealing
glycan fine structural details with protein site resolution. Challenges in the field include a high
false discovery rate of glycopeptides reported in glycoproteomics papers, a lack of standardisa-
tion of the data collection, analysis, interpretation, reporting and sharing, and incomplete integra-
tion with other ‘omics disciplines (glycomics, transcriptomics..) and top-down MS approaches.
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• Future directions: Our review illustrates that structure-focused glycoproteomics holds a con-
siderable potential to become a key tool in the emerging area of systems glycobiology and
unlock secrets of the glycoproteome in years to come.
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