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Abstract: Electronic transport measurement using modulated photocurrent (MPC) spectroscopy
is demonstrated herein in working organic photovoltaics (OPVs) before and after AM1.5G
irradiation. OPVs with bulk heterojunction (BHJ) using prototypical donor and acceptor materials,
poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1–2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)
carbonyl] = hieno [3–4-b]thiophenediyl]] (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester
(PC71BM), were fabricated. The OPVs had inverted structures (BHJs are formed on transparent
conductive oxide substrates). The photovoltaic performance of PTB7:PC71BM OPVs was characterized
and the best power conversion efficiency was obtained at PTB7 content of 40 wt%. Electron and hole
mobility were determined with MPC spectroscopy in PTB7:PC71BM OPVs and were well balanced at
PTB7 content of 40 wt%. Degradation of the photovoltaic performance of PTB7:PC71BM OPVs with
PTB7 content of 40 wt% caused by AM1.5G irradiation was studied. MPC spectroscopy showed that
the well-balanced mobility was not affected by AM1.5G irradiation. The degradation of OPVs was
not due to changes in the electronic transport properties, but mainly to the reduced short circuit
current (Jsc) and fill factor (FF). The origin of this reduction is discussed.

Keywords: organic photovoltaics; electronic transport properties; modulated photocurrent
spectroscopy; degradation

1. Introduction

Organic semiconductor thin films have unique properties such as flexibility, printability, and
low cost, and organic photovoltaics (OPVs) can be formed on curved surfaces and flexible substrates
for the power sources of mobile devices and applied to light sensing for biological sensors [1].
High power conversion efficiency (PCE) has been achieved using bulk heterojunction (BHJ), a mixture
of donor and acceptor organic semiconducting materials [1]. Recently, the PCE of OPVs has been
remarkably improved (∼14%) [2], mainly because of the development of non-fullerene electron
acceptors [3]. Electronic transport properties of BHJ have a strong impact on the photovoltaic
performance; PCE exhibits the maximum value when electron mobility is equal to hole mobility
(electron and hole mobility are balanced) in BHJ [4]. PCE is further increased by this increased
balanced mobility. Measuring electron and hole mobility is thus fundamentally important, and
generally steady-state trap-free space-charge-limited current (SCLC) expression has been applied to
determine electron and hole mobility in electron-only and hole-only devices (EODs, HODs) of BHJ [5].
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However, the standard SCLC technique cannot be applied to mobility measurement in working OPVs,
hence in degraded working OPVs, because the electronic transport properties caused by photo-induced
degradation in working OPVs are not necessarily the same as those in EODs and HODs.

In a conventional OPV cell configuration, the anode layer typically consists of a thin layer of indium
tin oxide (ITO) coated with a p-type interface layer of poly(3,4-ethy lenedioxythiophene):poly(styrene
sulfonate) (PEDOT:PSS). ITO is frequently used because it is conductive, transparent, and has a high
work function. As a hole transporting layer, PEDOT:PSS forms an ohmic contact with BHJ. The cathode
materials in a conventional OPV are typically low-work function metals such as calcium, aluminum,
and magnesium. Since low-work-function materials are easily oxidized when exposed to air, OPVs
with cathodes must be encapsulated to avoid air exposure.

The inverted OPV configuration reverses the conventional OPV layer sequence with respect to
the ITO substrates to avoid the use of easily oxidized metal cathodes, improve device stability, and
improve overall device performance [6,7]. A layer of a low-work-function material is deposited directly
onto the ITO electrode surface to form the electron transport layer (ETL), thus converting the ITO
to a cathode. Typical ETL materials used in inverted OPVs include cesium carbonate (Cs2CO3), and
n-type metal oxides such as titanium oxide (TiOx) and zinc oxide (ZnO). The anode interlayer, or
hole transporting layer, is most often fabricated from PEDOT:PSS or one of many high-work-function
transition metal oxides, including MoO3, WO3, and V2O5 [8]. Air-stable anodes such as Ag and Au can
be used in inverted OPVs. Many materials used in inverted OPVs can be processed in solution, which
notably lowers the fabrication cost because a vacuum system is not needed, and a roll-to-roll printing
process is available. In fact, several types of solution process for fabricating OPVs have already been
demonstrated, including spray coating [9], gravure printing [10], flexographic printing [11], screen
printing [12] and electrospray deposition [13].

The device stability of inverted OPVs is improved compared to conventional OPVs, as mentioned
above. However, the degradation of photovoltaic performance of inverted OPVs is still a challenging
issue. Degradation mechanisms in OPV are generally complicated and include a variety of processes:
photo-bleaching of the photoactive layer and trap generation [14,15], degradation of the hole
conducting PEDOT:PSS layer [16], ion migration from the electrodes, and morphological changes of the
device [14]. These processes are induced simultaneously by exposing OPVs to sunlight and therefore
are almost inseparable. This complicates the task of revealing the processes responsible for specific
degradation phenomena.

In this paper, we study the degradation of electronic transport properties of inverted OPVs before
and after simulated sunlight (AM1.5G) exposure by means of a modulated photocurrent spectroscopy
(MPC) technique [17]. We have shown that MPC techniques can be applied to the simultaneous
determination of electron and hole mobility in working OPVs with prototypical BHJ. It was therefore
expected that the degradation of electronic transport properties in working OPVs could be studied
separately. Poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl C61 butyric acid methyl ester (PCBM) and
pcoly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1–2-b:4,5-bB]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)
carbonyl]thieno[3–4-b]thiophenediyl]] (PTB7):phenyl C71 butyric acid methyl ester (PC71BM) [1]
are known as prototypical BHJs. Since the device lifetime of inverted OPVs with PTB7:PC71BM
BHJ is shorter than that of inverted OPVs with P3HT:PCBM BHJ and the degradation process of
PTB7:PC71BM OPVs can be easily observed, we studied the degradation process of inverted OPVs
with PTB7:PC71BM BHJ.

2. Modulated Photocurrent Spectroscopy

The expression of MPC can be obtained by solving the current continuity Equation:

µ0F
∂n(x, t)
∂x

+
∂n(x, t)
∂t

= G(x, t) (1)
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where µ0 is charge carrier mobility, F is the electric field in the BHJ of an OPV, n(x, t) is charge carrier
density at position x and time t, and G(x, t) is photogenerated charge carrier density. The equation
is solved under small signal condition (F is uniform), with the contact at x = 0 blocking and the
photocarriers generated uniformly throughout the OPV. We assume G(x, t) = G1 exp(−iωt) and
n(x, t) = n1(x) exp(−iωt), and substitute G(x, t) and n(x, t) into the continuity equation. We then
obtain MPC as

J(ω) =
qLG1

ω2t2
t

[1− iωtt − exp(−iωtt)] (2)

from

J(ω) =
qF
L

∫ L

0
n1(x)dx

where q is the electronic charge and L is the thickness of the BHJ of the OPV. In Equation (2), tt is the
charge carrier transit time, expressed as

tt =
L
µ0F

=
L2

µ0|V −Vbi|
(3)

where V is the voltage applied to the OPV and Vbi is the built-in voltage of the OPV.
As shown numerically and experimentally, we generally observe two peaks, one due to electron

transit and the other to hole transit, in the imaginary part of J(ω), Im[J(ω)]; and the peak frequency,
fmax, is related to tt via tt = (2 fmax)

−1. The value of µ is thus obtained from

µ0 =
2L2 fmax

|V −Vbi|
(4)

We stress that charge carrier mobility can be determined in working OPVs and from the peak
frequencies in Im[J(ω)] spectra in either nondispersive or dispersive transport [18]. In other words,
the peaks in the spectra are observed even in the presence of localized states.

3. Experiment

3.1. Solar Cell Fabrication and Characterization

Inverted OPVs with an effective area of 4 mm2 were fabricated on ITO-coated glass substrates
(Geomatec) with a 2 mm stripe pattern. The device structure was ITO/ZnO (50 nm)/PTB7:PC71BM
(100 nm)/MoO3 (10 nm)/Al (50 nm), as shown in Figure 1 (a photograph of the inverted OPV cell is also
shown), where PTB7 and PC71BM were obtained from 1-Material (OS0007 and OS0633, respectively).
The numbers in parentheses represent the thickness of the layers, and the thickness of ZnO and
PB7:PC71BM was measured by means of a stylus profiler (Alpha-Step, Tencor: Milpitas, CA, USA) and
that of MoO3 and Al by means of a quartz crystal oscillation type deposition controller (CRTM-9200,
Ulvac: Kanagawa, Japan). A patterned ITO glass that was used as a cathode was cleaned using
acetone, 2-propanol, and deionized water and then by an ultraviolet (UV)-ozone method. Subsequently,
a layer of thin ZnO nanoparticles (Sigma-Aldrich, 793361-25ML: St. Louis, MO, USA) was spin-coated
onto the ITO glass surface at 1000 rpm for 60 s. The substrate was then annealed in the ambient
atmosphere for 10 min at 200 ◦C. The BHJ layer was spin-coated onto the ZnO layer from chlorobenzene
solution containing PTB7 and PC71BM at a spin rate of 800 rpm. The weight ratio of PTB7 to mixed
PTB7 and PC71BM solute was changed from 20 to 60 wt%. The mixing ratio of PTB7 was varied
while the concentration of solution was kept constant, so that the resultant BHJ layer thickness
stayed almost the same. Then, 2 wt% (PTB7 and PC71BM) solute with different ratios of PTB7 was
dissolved in chlorobenzene, and 3 vol% 1,8-diiodooctane was dissolved in the chlorobenzene solutions.
After deposition of the BHJ layer, the BHJs were dried for 60 min at 25 ◦C and then annealed for
10 min at 150 ◦C. MoO3 and Al layers were then thermally evaporated successively onto the BHJ layer



Materials 2020, 13, 2660 4 of 15

in a vacuum chamber at a base pressure of 10−3 Pa. All fabrication processes were done in a glove box
filled with nitrogen gas (dew point of −80 ◦C), and the OPVs were taken from the glove box after the
encapsulation. The current density–voltage characteristics were recorded with a source meter (Wacom,
IV02110-07AD1NK: Saitama, Japan) under 100 mWcm−2 AM1.5G irradiation from a solar simulator
(Wacom, WXS-155S-10: Saitama, Japan).

Materials 2020, 13, x FOR PEER REVIEW 4 of 15 

 

successively onto the BHJ layer in a vacuum chamber at a base pressure of 10−3 Pa. All fabrication 
processes were done in a glove box filled with nitrogen gas (dew point of –80 °C), and the OPVs were 
taken from the glove box after the encapsulation. The current density–voltage characteristics were 
recorded with a source meter (Wacom, IV02110-07AD1NK: Saitama, Japan) under 100 mWcm–2 
AM1.5G irradiation from a solar simulator (Wacom, WXS-155S-10: Saitama, Japan). 

 
 

(a) (b) 

Figure 1. (a) Schematic illustration of device structure of inverted OPV and (b) photograph of inverted 
OPV cell. 

3.2. MPC Measurements 

Modulated light with 470 nm emission from a light-emitting diode was irradiated through the ITO 
substrates of OPVs under different biasing conditions. The resulting MPC was detected using a current 
amplifier (FEMTO, DHPCA-100: Berlin, Germany) and a lock-in amplifier (Zurich Instruments, MFLI 
5M-H: Zurich, Switzerland). OPVs were held in a probe station (Thermal Block, SB-LN2PS: Saitama, 
Japan), and MPC measurements were carried out at 25 °C. A block diagram and photograph of the 
experimental setup are shown in Figure 2. 

 

(a) 

 
(b) 

Figure 2. (a) Block diagram and (b) photograph of experimental setup of MPC spectroscopy. 

Figure 1. (a) Schematic illustration of device structure of inverted OPV and (b) photograph of inverted
OPV cell.

3.2. MPC Measurements

Modulated light with 470 nm emission from a light-emitting diode was irradiated through the ITO
substrates of OPVs under different biasing conditions. The resulting MPC was detected using a current
amplifier (FEMTO, DHPCA-100: Berlin, Germany) and a lock-in amplifier (Zurich Instruments, MFLI
5M-H: Zurich, Switzerland). OPVs were held in a probe station (Thermal Block, SB-LN2PS: Saitama,
Japan), and MPC measurements were carried out at 25 ◦C. A block diagram and photograph of the
experimental setup are shown in Figure 2.
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4. Results and Discussion

4.1. OPV Performance

Photovoltaic properties of OPVs with a structure of ITO/ZnO/PTB7:PC71BM/MoO3/Al were
studied at different PTB7:PC71BM weight ratios. PTB7 acts as the electron donor while PC71BM acts as
the electron acceptor. The optimized thickness of the BHJ of OPVs with different PTB7:PC71BM weight
ratios was about 100 nm. Figure 3 shows current density–voltage (J–V) characteristics of the OPVs
under the illumination of AM1.5G, 100 mWcm−2. The solar-cell performances obtained from Figure 3
are shown in Figure 4.
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Figure 3. Current density–voltage (J–V) characteristics of PTB7:PC71BM inverted OPVs with different
PTB7 content under 100 mWcm−2 AM1.5G irradiation at room temperature.
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The open circuit voltage (Voc) is almost independent of PTB7 content. In contrast, distinct peaks
were observed for the short-circuit current density (Jsc), the fill factor (FF), and PCE at PTB7 content
of 40 wt%, which is consistent with what was reported in the literature in PTB7:PC71BM OPVs [19].
PCE, FF, and Jsc of 40 wt% PTB7 OPVs are 6.2%, 63%, and 13.5 mAcm−2, respectively.

4.2. MPC Spectra of Working OPV

Figure 5 shows MPC spectra of OPV with PTB7 content of 60 wt%. Two structures, a shoulder at
(2–4) × 104 Hz and a peak at (3–5) × 105 Hz, are clearly seen and the structures are shifted to higher
frequency regions with increasing effective applied voltage. The transit times were calculated from the
frequencies of the two structures, and the inverse transit times against the effective applied voltage
are shown in Figure 6. The inverse transit times of the two structures are proportional to the effective
applied voltages, indicating that the structures are due to the charge carrier transit. The slopes of
the straight lines in Figure 6 give charge carrier mobility of 5.1 × 10−5 cm2V−1s−1 from the peak and
1.4 × 10−6 cm2V−1s−1 from the shoulder. Figure 6 demonstrates that the simultaneous determination
of electron and hole mobility can be made in working OPVs.
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Electron and hole mobility in OPVs can be assigned by examining the PTB7 content dependence of
MPC spectra. Figure 7 shows MPC spectra at different PTB7 content from 20 to 60 wt%. Two structures
are clearly seen in OPVs with PTB7 content of 30, 50, and 60 wt%, while a single peak is observed
in OPVs with PTB7 content of 20 and 40 wt%. Although two structures are less clearly seen in the
MPC spectrum of OPVs with PTB7 content of 30 wt%, they can be identified from applied voltage
dependence of the frequencies at the structures. We calculated the mobility from the frequencies at the
structures in Figure 7 in PTB7:PC71BM OPVs. Electron and hole mobility in PTB7:PC71BM OPVs with
different PTB7 content are shown in Figure 8. The mobility exhibiting strong anticorrelation with PTB7
content (i.e., strong correlation with PC71BM content) was assigned as electron mobility. Such PTB7
content dependency of electron and hole mobility as assigned is consistent with that reported in the
literature [19], in which electron and hole mobility were determined from SCLC measurements of EODs
and HODs of PTB7:PC71BM BHJ with different PTB7 content. The PTB7 content dependence of hole
mobility is also consistent with that determined by impedance spectroscopy measurements [20–22]
in PTB7:PC71BM OPVs, as shown in Figure 8. Contrary to PTB7 content dependence of electron
mobility, the addition of PC71BM has almost no impact on hole mobility. The content dependence of
hole mobility in Figure 8 is not similar to that observed in another prototypical BHJ OPV, P3HT: PCBM,
in the sense that the addition of PCBM has a strong impact on hole mobility in P3HT:PCBM OPVs [18].
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Figure 7. Imaginary part of MPC spectra of PTB7:PC71BM inverted OPVs with different PTB7 content
under short-circuit conditions. Arrows highlight frequencies at structures due to electron and hole
transit. Structure due to electron transit in 20 wt% PTB7:PC71BM OPV is not observed and may be
located at a higher frequency (>10 MHz).
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Figure 8. PTB7 content dependency of electron and hole mobility and PCE. Hole mobility determined
by impedance spectroscopy (IS) is also shown.

As mentioned above, a single peak in the MPC spectra is observed in OPVs with PTB7 contents of
20 and 40 wt%, as shown in Figure 7. This is because the electron mobility is equal to the hole mobility
in OPVs with PTB7 content of 40 wt%, which is obvious from the SCLC measurements of EODs and
HODs of PTB7:PC71BM BHJ [19]. In 20 wt% PTB7:PC71BM OPVs, the frequency peak due to hole
transit is observed, while the frequency peak due to electron transit may be located above 10 MHz,
which cannot be resolved with the present measurement system.

The PTB7 content dependencies of electron and hole mobility in Figure 8 are fundamentally
different. PTB7 content dependency has been discussed in the literature [19]. Hole conduction paths
are along or between PTB7 chains, which act like conduction networks. PTB7 chains are generally
better connected, and therefore hole mobility is insensitive to PTB7 content in PTB7:PC71BM BHJ.
On the other hand, electron conduction takes place between PC71BM domains, which can be modeled
as small nanoparticles. A drastic increase in electron mobility against PC71BM content is likely to be
due to electron conduction in a cluster formed by the small nanoparticles from below to above the
percolation threshold [23]. An illustration of electron and hole conduction paths in PTB7:PC71BM BHJ
with different PTB7 content is depicted in the literature of [19].

PCE in Figure 8 exhibits the highest value at PTB7 content of 40 wt%, where electron and hole
mobility are balanced, consistent with the results of device simulation [4]. Electron and hole mobility
are well-balanced in the PTB7 content range of 30–40 wt%, while Jsc exhibits the maximum value at
a PTB7 content of 40 wt%. In addition to the well-balanced mobility, the photocarrier generation is
attributable to the maximum PCE of PTB7:PC71BM OPVs.

4.3. Degradation of OPV Performance under AM1.5G Irradiation

Degradation of solar-cell performance was observed in PTB7:PC71BM OPVs with PTB7 content
of 40 wt%, at which the best PCE was observed. The OPVs were continuously exposed at room
temperature, under open circuit or short circuit conditions, to 100 mWcm−2 AM1.5G light for 0–5 h,
while the J–V characteristics were measured at constant time intervals throughout the degradation
experiment. Figure 9 shows the J–V characteristics of the OPVs at different AM1.5G light soaked times
under short circuit conditions. The photoinduced degradation behavior is shown in Figure 10, which
shows the time evolution of the main solar cell parameters (Voc, Jsc, FF, and PCE). All parameters
in Figure 10 degrade. The degradation of PCE is due mainly to the reduction in Jsc and FF to 70% and
72% of their initial values, respectively. Photoinduced degradation similar to that in Figure 9; Figure 10
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was observed in the OPVs degraded under open circuit conditions. The photoinduced degradation
behavior shown in Figures 9 and 10 was also found in five PTB7:PC71BM OPVs with PTB7 content of
40 wt%. Such photoinduced degradation of PTB7:PC71BM OPVs under light irradiation was reported
in the literature [24]; the temporal changes in the main solar cell parameters induced by 5 h AM1.5G
irradiation shown in Figure 10 are almost the same as those reported in the literature [24], in which the
device structure of PTB7:PC71BM inverted OPVs is the same as in the present study.
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Figure 9. J–V characteristics of 40 wt% PTB7:PC71BM inverted OPV under 100 mWcm−2 AM1.5G
irradiation at different stages of photo-induced degradation.
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Figure 10. Photo-induced degradation of photovoltaic performance (Jsc, Voc, FF, and PCE) of 40 wt%
PTB7:PC71BM inverted OPV under 100 mWcm−2 AM1.5G irradiation as a function of irradiation time.

4.4. Electronic Transport Properties in Degraded OPVs

To gain insight into the degradation mechanisms of PTB7:PC71BM OPVs with PTB7 content of
40 wt%, we carried out MPC measurements before and after AM1.5G light soaking. Figure 11 shows
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MPC spectra under different biasing conditions before and after light soaking for 5 h. Single peaks
around 1 MHz and shoulders around 10 kHz are seen. The frequencies of the shoulders do not
depend on applied voltage, reflecting that the shoulders are not due to the transit of charge carriers.
The inverse transit times calculated from the frequencies at the peaks are proportional to the effective
applied voltages, as shown in Figure 12, and the inverse transit times fall on the same straight line
before and after AM1.5G light soaking. The results show that the values of electron and hole mobility
are essentially not changed, and, in addition, electron and hole mobility are still well balanced after
light soaking. Our device simulation shows that electron and hole mobility can be simultaneously
(separately) determined by means of MPC spectroscopy when the electron mobility is 10 times higher
or lower than the hole mobility, showing that the photoinduced change in mobility is very small in the
present case. Figures 11 and 12 demonstrate that MPC spectroscopy is applicable to the study of
changes in the transport properties of working OPVs after light soaking.
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Figure 11. Imaginary part of MPC spectra of 40 wt% PTB7:PC71BM inverted OPV at different applied
voltages (a) before and (b) after 5 h of photoinduced degradation. Arrows highlight frequencies from
which charge carrier transit times were calculated.
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Figure 12. Effective applied voltage dependency of inverse transit times calculated from Figure 11
before and after 5 h of photoinduced degradation.

4.5. Photoinduced Degradation Mechanism in OPVs

Although the electronic transport properties are not changed in PTB7:PC71BM OPVs after AM1.5G
light soaking, the solar cell performance is degraded, as shown in Figure 9. We examined the incident
photon to current conversion efficiency (IPCE) spectra before and after AM1.5G light soaking, and
found that IPCE was reduced after light soaking, but the shapes of the IPCE spectra were not essentially
changed, indicating that photoinduced decomposition or oxidation does not take place in PTB7:PC71BM
BHJ [25,26]. It has been reported that a possible origin of the degradation in PTB7:PC71BM OPVs is the
growth of PC71BM domains upon light soaking [27]. We believe that this is the case in the present
study. The increase in PC71BM domain size reduced the interface area of PTB7 and PC71BM, leading
to reduced photocarrier generation efficiency (hence, Jsc). Photocarrier generation efficiency was
measured from the reverse bias J–V characteristics under AM1.5G irradiation [28], and were reduced
from 9.1 × 1021 cm−3s−1 to 6.6 × 1021 cm−3s−1. We point out here that the slight decrease in Voc caused
by AM1.5G light soaking in Figure 10 is due mainly to the decreased photocarrier generation efficiency,
because the bimolecular recombination constant γ was not strongly affected by light soaking and was
3.1 × 10−11 cm3s−1 and 1.2 × 10−11 cm3s−1 before and after light soaking, respectively (the bimolecular
recombination constants were measured by an open circuit photovoltage decay experiment [29]).

The increase in PC71BM domain size did not affect electron and hole mobility. Hole mobility was
originally insensitive to PC71BM content, as shown in Figure 8, and it is likely that it was insensitive to
the domain size as well. Electron mobility was also insensitive to the domain size of PC71BM. We carried
out a Monte Carlo simulation for percolative hopping transport in a simple cubic lattice (hopping sites
were placed on lattice points with certain occupation probability) to explain the transient transport
properties [23], studied by means of time-of-flight transient photocurrent experiments in molecularly
doped polymers, which are formed by the doping of holes or electrons transporting small molecules to
electrically inactive polymer binders such as polystyrene and polymethylmethacrylate. The molecularly
doped polymers are an important class of materials for the model percolative hopping system and for
photoreceptors in electrophotographic applications. We found that simulated drift mobility abruptly
increased just above the percolation threshold and slightly increased well above the threshold. The
growth of PC71BM domains induced by AM1.5G light soaking can be regarded as the increased size
of clusters of dense hopping sites on the lattice points well above the percolation threshold, and the
simulated drift mobility was not greatly dependent on the configuration of the clusters at constant
occupation probability, which is well above the threshold. The electron transport of PTB7:PC71BM BHJ
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with PTB7 content of 40 wt%, which is well above the percolation threshold [19], is therefore insensitive
to the domain size of PC71BM.

In addition to the decrease in Jsc, the reduction in FF contributes almost equally to the degradation
of photovoltaic performance of PTB7:PC71BM OPVs. First, we examine the influence of transport
properties on FF before and after AM1.5G irradiation. The transport properties are closely related to
FF; the competition between charge extraction and recombination is expressed as a single parameter θ,
and it was demonstrated from the experiments and device simulation of OPVs that this parameter is
directly related to FF [30], and is defined as

θ =
γGL4

µnµpV2
bi

(5)

Parameter θ was slightly reduced after AM1.5G irradiation (we used the values of Voc instead of
Vbi) mainly because of the reduction in G. According to [30], a slight reduction in parameter θ leads to
improvement of FF, indicating that changes in the transport properties of PTB7:PC71BM OPVs induced
by AM1.5G irradiation are not the origin of the reduction in FF.

Then we carried out the equivalent circuit analysis based on a one-diode model [31] to examine
the relationship between FF and the equivalent circuit components. We fitted the following expression
to J–V characteristics in Figure 9:

J = Js

[
exp
{

q(V − JRs)

nkT

}
− 1
]
+

V − JRs

Rsh
− Jlight (6)

where Js is the reverse saturation current, q is the electronic elementary charge, n is the diode ideality
factor, k is the Boltzmann constant, Rs is the series resistance, Rsh is the shunt resistance, T is the
temperature, and Jlight is the photocurrent. The fitting was done using a combination of the genetic
algorithm (GA) and Levenberg–Marquardt algorithm (LMA) [31].

LMA has been widely used to solve nonlinear least squares problems (curve-fitting problems) [32].
LMA is a gradient-based search algorithm and is very powerful once the starting point is close to the
global minimum. Thus, choosing the initial point is very important for the algorithm. If the initial
point is not appropriate, then LMA finds only a local minimum. On the other hand, GA mimics the
natural selection and evolution process and is a nongradient algorithm [33,34]. After relatively lengthy
computation time, GA generates a suboptimal result from the whole search space (in the present case,
the whole search space of the components of the equivalent circuit in Equation (6)). Compared to
LMA, given enough evolution time, GA is more likely to produce a result near the global minimum
and find the global minimum after extremely lengthy computation time. If the result near the global
minimum found by GA is used as the starting point of LMA, the global minimum can be found easily.
The combination of LMA and GA can thus find a global minimum after acceptable computation time.

The drastic changes caused by AM1.5G irradiation over 5 h are reductions in both Jlight (11.9
to 8 mAcm−2) and Rsh (96.0 to 10.6 kΩcm2), while the other parameters are almost unchanged
(Js = (9.0 − 12) × 10−5 mAcm−2, Rs = 20.7 − 24.2 Ωcm2, and n = 2.29 − 2.52). It has been known
that a reduction in Rsh causes a reduction in FF [35,36], and in the present case, the reduction in FF
of PTB7:PC71BM inverted OPVs caused by AM1.5G irradiation is due to the reduction in Rsh. It is
likely that the reduction in Rsh is caused by the formation of a shunting path in ZnO during AM1.5G
irradiation [37,38]. The formation of the shunting path is a unique degradation process in inverted
OPVs, in which ZnO thin films are coated onto ITO substrates as electron transport layers.

We briefly discuss possible ways of mitigating the degradation in inverted PTB7:PC71BM OPVs.
As mentioned above, the degradation is likely due to the increased size of PC71BM domains
in PTB7:PC71BM BHJ and the appearance of shunting paths in ZnO. Chemical modification of
fullerene [39] in BHJ may be a way to suppress the changes in morphology of BHJ, i.e., the size of
PC71BM before and after AM1.5G irradiation. Newly developed amorphous oxide alloys such as
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InGaO and GaZnSnO [40] may not form shunting paths by AM1.5G irradiation. A study investigating
the photoinduced degradation of inverted OPVs with such an electron transport layer instead of ZnO
would be valuable. In addition, the formation of a polyethyleneimine layer with a thickness of several
nanometers onto ZnO is another way to suppress the shunting path, because it is expected that the
polyethyleneimine layer passivates the shunting paths in ZnO [41,42].

5. Conclusions

We studied the electronic transport properties of working PTB7:PC71BM OPVs with inverted
configuration using MPC spectroscopy before and after AM1.5G irradiation. The photovoltaic
performance (Jsc, Voc, FF, and PCE) of PTB7:PC71BM OPVs with different PTB7 content was characterized
from their J–V characteristics, and the best power conversion efficiency was obtained at PTB7
content of 40 wt%, consistent with the literature. Electron and hole mobility was determined with
MPC spectroscopy in working PTB7:PC71BM OPVs, and the overall behavior of their PTB7 content
dependency was consistent with that measured in EODs and HODs of PTB7:PC71BM BHJ with the
SCLC technique. AM1.5G irradiation to PTB7:PC71BM OPVs at PTB7 content of 40 wt% for 5 h degraded
PCE, due mainly to the reduction in Jsc and FF to 70% and 72% of their initial values, respectively, and
caused almost the same degradation of the photovoltaic performance of PTB7:PC71BM OPVs under
open and short circuit conditions. MPC spectroscopy was carried out on degraded PTB7:PC71BM
OPVs. AM1.5G irradiation did not cause the changes in mobility and hence the degradation was not
due to changes in the electronic transport properties. The degradation of the OPVs was due mainly to
the growth in PC71BM domains and the formation of shunting paths in ZnO.
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