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Abstract

Contributing to and maintaining public goods are important for a functioning society.

In reality, however, we see large variations in contribution behavior. While some indi-

viduals are not cooperative, others are highly so. Still others cooperate only to the

extent they believe others will. Although these distinct behavioral types clearly have

a divergent social impact, the sources of heterogeneity are poorly understood.

We used source-localized resting electroencephalography in combination with a

model-free clustering approach to participants' behavior in the Public Goods Game

to explain heterogeneity. Findings revealed that compared to noncooperators, both

conditional cooperators and unconditional cooperators are characterized by higher

baseline activation in the right temporo-parietal junction, an area involved in social

cognition. Interestingly, conditional cooperators were further characterized by higher

baseline activation in the left lateral prefrontal cortex, an area involved in behavioral

control. Our findings suggest that conditional cooperators' better capacities for

behavioral control enable them to control their propensity to cooperate and thus to

minimize the risk of exploitation by noncooperators.
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1 | INTRODUCTION

In modern human society, many of the pressing issues such as depletion

of natural resources, intergroup conflicts, and security of basic social sys-

tems require numerous individuals to contribute to, or maintain, public

goods. Despite the pervasiveness of cooperation, there is substantial het-

erogeneity in people's propensity to cooperate (e.g., Declerck & Boone,

2018; Epstein, Peysakhovich, & Rand, 2016; Fehr & Schurtenberger,

2018; Fischbacher, Gächter, & Fehr, 2001; Kurzban & Houser, 2001;

Nowak & Highfield, 2011). We know from daily life that some individuals

are very cooperative and pay large personal costs to benefit the common

good. They cooperate even though others might not cooperate as much

(“unconditional cooperators”)—leaving them at risk of exploitation by

noncooperative others. Other individuals solely aim to maximize their

own welfare; thus, they free-ride on the cooperation of others (“nonco-

operators”). Still other individuals might be inclined to cooperate but

are willing to do so only to a certain extent. They cooperate as much as

they assume everyone else cooperates; hence, their cooperation levelThomas Baumgartner and Franziska M. Dahinden contributed equally to this work.
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is conditional on their belief about others' cooperation (“conditional

cooperators”).

Previous attempts to explain heterogeneity in cooperative behav-

iors mainly focused on demographic or psychological variables, such as

stable personality traits, but yielded rather variable results (e.g., Epstein

et al., 2016; Kurzban & Houser, 2001; Volk, Thöni, & Ruigrok, 2011).

The observed inconsistencies (e.g., findings that could not be replicated)

might be due to the subjective nature of the employed self-report mea-

sures (personality questionnaires), which are prone to various biases,

such as demand characteristics and social desirability (e.g., the tendency

of participants to answer questions in a manner that will be viewed

favorably by others). Hence, the use of objective individual trait mea-

sures might be beneficial in understanding individual differences in

human cooperative behavior.

One such ideal trait measure is the task-independent neural baseline

activation measured by resting electroencephalography (EEG). Resting EEG

can be measured objectively and demonstrates both high temporal stability

(Cannon et al., 2012; Dünki, Schmid, & Stassen, 2000; Williams et al., 2005)

and high specificity (i.e., the extent to which a given EEG pattern uniquely

belongs to a given person; Näpflin, Wildi, & Sarnthein, 2007). Studies inves-

tigating its temporal stability revealed test–retest reliabilities of up to 0.8

over a period of 5 years, while those exploring its specificity revealed rec-

ognition rates of up to 99%. Due to high intraindividual stability and

specificity, resting EEG provides an ideal neural trait marker to investigate

interindividual differences in cooperative behavior. Furthermore, prior lit-

erature linking psychological processes to neural functioning shows that

neural traits allow inferences about the psychological processes that

underlie individual differences in behavior (e.g., Gianotti et al., 2009;

Gianotti, Nash, Baumgartner, Dahinden, & Knoch, 2018; Hahn et al.,

2015; Knoch, Gianotti, Baumgartner, & Fehr, 2010; Schiller, Gianotti,

Nash, & Knoch, 2014; Studer, Pedroni, & Rieskamp, 2013).

To measure individual differences in group-based cooperative behavior,

we employed a well-established and widely used paradigm for measuring

cooperation in groups, that is, the four-person public goods game (PGG).

The PGG mimics a social situation where a group of people simultaneously

face a choice between acting cooperatively and contributing to a public

good—which increases the whole group's payoff but comes at a personal

cost—and acting uncooperatively and thereby increasing one's personal

payoff only. Several studies have confirmed the external validity of this par-

adigm and showed that participants' behavior in a PGG significantly predicts

their cooperative behavior in everyday life (e.g., Bluffstone, Dannenberg,

Martinsson, Jha, & Bista, 2015; Carlsson, Johansson-Stenman, & Nam,

2014; Fehr & Leibbrandt, 2011; Rustagi, Engel, & Kosfeld, 2010).

In order to identify the full set of behavioral types that constitute the

repertoire of group-based cooperative behaviors among the participants

of our study (N = 137), we used a fully data-driven and model-free classi-

fication approach. Furthermore, because people's contribution behavior

can be influenced by their beliefs about others' contribution behavior

(e.g., Fischbacher & Gächter, 2010; Neugebauer, Perote, Schmidt, &

Loos, 2009), we additionally elicited their belief about the average contri-

bution of the other participants. This belief allowed us to further charac-

terize the distinct behavioral types that emerged from the data-driven

classification procedure.

Previous evidence from task-dependent studies using fMRI indicates

that brain regions associated with social cognition (e.g., temporo-parietal

junction [TPJ], dorsomedial prefrontal cortex [DMPFC]), emotional empa-

thy (e.g., insula), and behavioral control processes (e.g., lateral regions of

the prefrontal cortex) play an important role in cooperation and prosocial

behavior. For example, previous studies demonstrated an association

between task-dependent activation of the TPJ and generous choices in a

donation task (Hare, Camerer, Knoepfle, O'Doherty, & Rangel, 2010),

cooperative choices in a Prisoners' Dilemma Game (Rilling, Sanfey,

Aronson, Nystrom, & Cohen, 2004), and altruistic choices in different

versions of the Dictator Game (Hutcherson, Bushong, & Rangel,

2015; Park et al., 2017; Strombach et al., 2015). Furthermore, struc-

tural brain characteristics of the TPJ have been shown to be associ-

ated with altruistic choices in a Dictator Game (Morishima, Schunk,

Bruhin, Ruff, & Fehr, 2012). Further, it has also been shown that

task-dependent activations in brain areas associated with affective

sharing and empathy, such as the anterior insula, drive altruistic acts in

empathy tasks (Hein, Silani, Preuschoff, Batson, & Singer, 2010; Lamm,

Decety, & Singer, 2011; Tusche, Boeckler, Kanske, Trautwein, & Singer,

2016). Finally, various task-dependent studies demonstrated that lateral

areas of the prefrontal cortex are involved in strategic choices in fair-

ness norm compliance (e.g, Tusche et al., 2016), and in the Prisoner's

Dilemma Game (e.g., Fermin et al., 2016; Steinbeis, Bernhardt, & Singer,

2012). These task-dependent studies are complemented by task-

independent studies demonstrating that structural brain characteristics

of the lateral PFC are linked to strategic choices in a Dictator Game

with and without punishment threat (Suzuki, Niki, Fujisaki, & Akiyama,

2011). Moreover, one recent patient study investigated group-based

cooperation using the PGG (Wills, FeldmanHall, NYU PROSPEC Collab-

oration, Meager, & Van Bavel, 2018). This study showed that patients

with lesions in the lateral prefrontal cortex are less likely to cooperate.

However, although these previous studies help to understand the

neural mechanism of cooperation or prosocial behavior, none of these

studies used a cluster-based approach to disentangle distinct behav-

ioral types in a PGG. Accordingly, we know little about the distinct

neural traits that allow the characterization of the behavioral types in

group-based cooperation. Since we applied a model-free cluster

approach we did not know a-priori how many and what kind of

behavioral types we would find. However, based on the findings men-

tioned above, we speculate that unconditionally cooperative types in

the PGG might show high levels of baseline activation in the TPJ

and/or DMPFC and conditional types might show more lateral PFC

baseline activation due to the strategic nature of conditional group-

based cooperation. Since the previous studies only allowed for tenta-

tive hypotheses, we conducted whole-brain corrected analyses to

uncover the neural traits of different behavioral types in the PGG.

2 | MATERIALS AND METHODS

2.1 | Sample and procedure

We measured neural baseline activation and cooperative behavior in

137 healthy individuals (mean age = 21.1; SD = 3.0, 105 female). We
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recruited participants for one academic year in order to collect as many

participants as possible during that time. Note that the EEG data collec-

tion and the behavioral data collection (PGG) were conducted in differ-

ent sessions (see below for details). Data were analyzed after the

collection was complete. Note that this study is part of a larger project

(Gianotti, Dahinden, Baumgartner, & Knoch, 2019; Gianotti, Lobmaier,

Calluso, Dahinden, & Knoch, 2017). Four participants (three female)

were excluded from analysis because of technical problems during EEG

or behavioral recordings. All participants were right-handed and had no

history of neurological or psychiatric disorders or alcohol and drug

abuse. The study was approved by the local ethics committee and con-

ducted according to the principles expressed in the Declaration of Hel-

sinki. All participants gave written informed consent and were informed

of their right to discontinue participation at any time. Participants

received 40 Swiss francs (CHF 40; CHF 1 ≈ USD 1) for participating, in

addition to the money earned in the cooperation paradigm. The EEG

data collection and the measurement of group-based cooperative

behavior took place in different sessions and were separated by several

weeks (mean = 13.8, SD = 8.7). When including the time lag between

the two data collections as a covariate in the analyses, the results are

not affected (see Table S1).

2.2 | EEG recording and processing

For EEG data collection, participants were individually invited to the

EEG laboratory. At the beginning of the session, participants gave

written informed consent and completed a handedness inventory

(Chapman & Chapman, 1987). Participants were then seated in a

sound-attenuated and electrically shielded chamber that was dimly lit

and contained an intercom connection to the experimenters. EEG was

recorded during rest with open or closed eyes; the instructions for eye-

opening/closing were given via intercom. The protocol consisted of 20 s

with the eyes open followed by 40 s with the eyes closed, repeated five

times (such a protocol guarantees minimal fluctuations in participants'

vigilance state). In line with previous neural trait studies (Baumgartner,

Gianotti, & Knoch, 2013; Gianotti et al., 2009; Kam, Bolbecker, O'Donn-

ell, Hetrick, & Brenner, 2013; Li et al., 2017; Vecchio et al., 2013), data

analysis were based on the 200-s eyes-closed condition.

EEG was recorded from 60 Ag/AgCl electrodes arranged in a

10–10 system montage (Nuwer et al., 1998) at a sampling rate of

500 Hz (bandwidth: 0.1–250 Hz). FCz and CPz were the recording

and ground electrodes, respectively. Horizontal and vertical electro-

oculographic signals were recorded with electrodes at the left

and right outer canthi and one electrode at the right infraorbital area.

Eye-movement artifacts were corrected using independent compo-

nent analysis. EEG signals from channels with corrupted signals were

interpolated. Computerized artifact rejection was applied (maximal

voltage step: 15 μV; maximal amplitude: ± 100 μV; minimal allowed

activity in intervals of 100-ms length: 0.5 μV), and the data were also

examined visually to eliminate residual artifacts (e.g., large movement-

related artifacts). All available artifact-free 2-s EEG epochs were

extracted and recomputed against the average reverence. On average,

there were 87.1 epochs (SD = 16.7) available per person. A fast

Fourier transformation (using a square window) was applied to each

epoch and channel to compute the power spectra with 0.5 Hz resolu-

tion. The spectra for each channel were averaged over all epochs

for each participant. Absolute power values were integrated for the

following seven independent frequency bands, according to Kubicki

and colleagues (Kubicki, Hermann, Fichte, & Freund, 1979): delta

(1.5–6 Hz), theta (6.5–8 Hz), alpha1 (8.5–10 Hz), alpha2 (10.5–12 Hz),

beta1 (12.5–18 Hz), beta2 (18.5–21 Hz), and beta3 (21.5–30 Hz).

2.3 | Intracortical source localization

The intracerebral electrical sources that generated the scalp-recorded

EEG activity were estimated with sLORETA (standardized low-resolution

electromagnetic tomography; Pascual-Marqui, 2002). This method is a

discrete, 3D distributed, linear, minimum-norm inverse solution that com-

putes electric neuronal activity as current density (A/m2) without assum-

ing a predefined number of active sources. The sLORETA solution space

consists of 6,239 voxels (voxel size: 5 × 5 × 5 mm3) and is restricted to

cortical gray matter and the hippocampi, as defined by the digitized Mon-

treal Neurological Institute (MNI) probability atlas. The sLORETA method

has been validated in several studies combining EEG/MEG source locali-

zations with other localization methods, such as functional Magnetic

Resonance Imaging (e.g., Nuwer et al., 1998; Vecchio et al., 2013) and

Positron Emission Tomography (e.g., Mobascher et al., 2009). Further,

the method has been validated with experimental data for true genera-

tors, invasive implanted depth electrodes, whose locations were known

(Zumsteg, Friedman, Wieser, & Wennberg, 2006; Zumsteg, Lozano,

Wieser, & Wennberg, 2006). Using the automatic regularization method

in the sLORETA software, we chose the transformation matrix with the

signal-to-noise ratio set to 10. To reduce confounds without regional

specificity, sLORETA images were normalized for each participant to a

total power of one and then log-transformed before statistical analyses.

2.4 | The public goods game

Behavioral data collection took place at a behavioral laboratory with

24 interconnected computer terminals. Participants were randomly

assigned to cubicles where they could take their decision in complete

anonymity from the other participants. They were then randomly

assigned to groups of four, endowed with 20 points (1 point = CHF

0.5) each, and faced with the decision (one-shot) to either keep their

endowment or contribute all or part of it to a public good (0–20

points). Each point contributed was doubled by the experimenter and

the sum divided equally among all group members. Hence, each point

contributed increased the aggregate group payoff but decreased the

contributing individual's payoff. Note that doubling the contributions

is the most classical and widely used multiplier in the PGG. Immedi-

ately after the contribution decision, participants reported their belief

about the average contribution of the other three group members

(0–20 points). The participants' final payoff in the PGG consisted of

the earnings they gained from the public good and the points they

had not contributed. Participants received written instructions and

control questions ensured their understanding of the game.
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2.5 | Personality questionnaire

At the end of the behavioral session, participants completed the

Honesty–Humility subscale of the HEXACO personality framework

(Ashton & Lee, 2007), which has been associated in some studies with

individual differences in cooperative behavior (e.g., Zumsteg, Lozano,

et al., 2006). The Honesty–Humility subscale is a 10-item question-

naire that measures participants' level of fairness, sincerity, greed

avoidance, and modesty on a five-point Likert scale.

2.6 | Statistical analyses

First, we classified individuals into meaningful behavioral types

based on their cooperative behavior. For this purpose, we applied

the two-step cluster analysis in SPSS (version 24.0). This clustering

procedure divides participants into different clusters based on

similarity/dissimilarity in their behavior. Importantly, this algorithm

is thus naïve to the researchers' assumptions about the probable

number of clusters/types as it automatically determines the optimal

number of clusters. The optimal number of clusters (i.e., the mini-

mal number that best accounts for the variability in the data) is

automatically determined by a two-step procedure. The first step

calculates the Schwarz-Bayesian information Criterion (BIC) for

each number of clusters within a specified range and uses it to find

the initial estimate for the number of clusters. The second step

refines the initial estimate by finding the largest relative increase in

distance between the two closest clusters in each clustering stage.

The resulting statistics of the obtained cluster solution proved its

good quality (silhouette measure of cohesion and separation = 0.7).

Note that a silhouette measure above 0.5 corresponds to a good

cluster solution.

Second, we conducted whole-brain corrected analyses of vari-

ance (ANOVAs) in the different frequency bands to compare the

neural baseline activations of the behavioral types that had emerged.

Since ANOVAs are not implemented in the sLORETA software, nor-

malized, and log-transformed current density values for each voxel

and participants were exported from sLORETA to Matlab. ANOVAs

were then performed on each voxel using the anova1 function in

Matlab and specifying the between-subjects factor with three levels

(three behavioral types). The corrections for multiple testing were

incorporated using the nonparametric permutation tests described in

Nichols and Holmes (Nichols & Holmes, 2001). In details, 5,000 per-

mutations were run in order to estimate the empirical probability dis-

tributions. The statistical F-images were then thresholded at the

corresponding critical probability threshold (corrected for multiple

comparisons at p < .05), and voxels with statistical values exceeding

this threshold have their null hypotheses rejected. In order to control

for potential gender effects, we performed all ANOVAs with gender

as covariate. However, please note that our findings hold if we do

not control for gender (see Table S2). Thus, gender did not affect our

results.

Third, for regions that displayed significant, whole-brain corrected

differences between the three behavioral types, the respective voxel

with the strongest effect was used as the center for spherical regions

of interest (ROIs; radius: 10 mm). Averaged current density values

were extracted for all voxels within these ROIs for visualization and

further analyses (please see results section for details).

3 | RESULTS

3.1 | Emergence of the behavioral types

In order to identify the behavioral types present in our study sample,

we conducted a two-step cluster analysis of participants' coopera-

tive behavior. This analysis yielded a solution with three distinctive

clusters. The first cluster included 26 participants (19.5%) who dem-

onstrated a very high level of cooperation; they contributed on aver-

age 19.0 points (95.0% of their endowment; SD = 1.8 points). The

second cluster included 32 participants (24.1%) who demonstrated a

very low level of cooperation; they contributed on average only 2.3

points (11.6% of their endowment; SD = 2.1 points). The third cluster

included 75 participants (56.4%) who demonstrated a moderate level

of cooperation; they contributed on average 9.4 points (47.1% of

their endowment; SD = 2.2 points). Please note that we also ran an

additional two-step cluster analysis on participants' contribution and

belief scores. Both cluster solutions led to the same optimal number

of behavioral types and almost identical allocation of the participants

to the three behavioral types (see Table S3 for details).

3.2 | Characterization of the behavioral types

To characterize the behavioral types that emerged from the cluster anal-

ysis, we explored their cooperative behavior in relation to their beliefs

about their counterparts' average contributions. This information helps

to clarify the motives behind the cooperative or uncooperative behaviors

of the distinct behavioral types. For example, did the individuals of the

highly cooperative behavioral type contribute almost all of their

endowment because they believed everyone would contribute a

similar amount? Or did they contribute almost all of their endow-

ment even though they suspected that the others would not contrib-

ute as much, thus being aware that their high level of cooperation

could be exploited by others who would not be as cooperative? In

order to clarify this, we generated a difference score by subtracting

the value of participants' beliefs from their own contributions (con-

tribution-minus-belief score).

The cluster that consisted of the participants with the highest

level of contribution (N = 26) was characterized by positive values on

the contribution-minus-belief score (mean = 5.6; SD = 3.7, see

Figure 1) and these positive values were significantly different from

zero (t-test against zero: t[25] = 7.832, p < .001), indicating that these

individuals contributed more to the public good than they believed

the others would contribute. Furthermore, their contribution was not

significantly correlated with their belief about the others' average con-

tribution (r = .124, p = .545). Thus, it seems that these individuals did

not condition their contributions on their beliefs about the others'

contributions but instead even took the risk of being exploited by
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others. Hence, we refer to the individuals of this behavioral type as

“unconditional cooperators.”.

In sharp contrast, the group of participants with the lowest level

of contribution (N = 32) was characterized by negative values on the

contribution-minus-belief score (mean = −4.6; SD = 4.3, see Figure 1)

and these negative values were significantly different from zero (t-test

against zero: t[31] = −6.030, p < .001), indicating that these individuals

contributed less to the public good than they believed the others would

contribute. Furthermore, their contribution was not significantly corre-

lated with their belief about the others' average contribution (r = −.247,

p = .174). We refer to the individuals of this behavioral type as

“noncooperators.”

Finally, the group of participants with moderate levels of contribution

(N = 75) was characterized by values close to zero on the contribution-

minus-belief score (mean = 0.4; SD = 1.9; t-test against zero: t[74] = 1.948,

p = .060, see Figure 1), indicating that these individuals contributed about

as much to the public good as they believed the others would contribute.

Indeed, their contribution was significantly correlated with their belief

about the others' average contributions (r = .527, p < .001). Thus, it seems

that the contribution level of these individuals depended on their beliefs

about the others' contribution levels. Hence, we refer to the individuals of

this behavioral type as “conditional cooperators.”

So far, we have characterized each of the three behavioral types sep-

arately, but we have not yet directly tested whether the behavioral types

statistically differ in contributions, beliefs, and contribution-minus-belief

scores. Thus, we next tested for differences between the three behav-

ioral types. ANOVAs demonstrated a significant main effect for contribu-

tions (F[2,130] = 453.631, p < .001; explained variance = 87.5%;

observed power = 100%; Figure 1a), beliefs (F[2,130] = 50.728, p < .001;

explained variance = 43.8%; observed power = 100%; Figure 1b), and

also for contribution-minus-belief scores (F[2,130] = 82.979; p < .001;

explained variance = 56.1%; observed power = 100%; Figure 1c). Post

hoc pairwise comparisons revealed significant differences between

all three behavioral types in contributions (pairwise comparisons: all

F > 240.840; all p < .001), beliefs (pairwise comparisons: all F > 20.077;

all p < .001) and contribution-minus-belief scores (pairwise compari-

sons: all F > 70.490; all p < 0.001).

The three behavioral types did not differ in the personality traits

of honesty and humility (ANOVAs: all F[2,129] ≤ 0.859, p ≥ .426), nor

in age (F[2,129] = 0.765, p = .468).

3.3 | Neural trait signatures of the behavioral types

To examine whether the emerged behavioral types can be characterized

by distinctive neural signatures, we conducted whole-brain corrected

source localization analyses that compared the task-independent neural

baseline activations between the behavioral types. For that purpose, a

fast Fourier transformation was applied to compute the power spectra

of each EEG channel. The resulting power values were integrated for the

following seven independent frequency bands (Kubicki et al., 1979): delta

(1.5–6 Hz), theta (6.5–8 Hz), alpha1 (8.5–10 Hz), alpha2 (10.5–12 Hz),

beta1 (12.5–18 Hz), beta2 (18.5–21 Hz), and beta3 (21.5–30 Hz). The

intracerebral electrical sources that generated the scalp-recorded EEG

activity were estimated for each frequency band with sLORETA

(Pascual-Marqui, 2002).This established method computes electric neu-

ral activity as current density in cortical gray matter (see methods

section for details).

(a) (b) (c)

F IGURE 1 Contribution, belief and contribution-minus-belief scores of the three behavioral types. The bar graph in (a) illustrates the
contribution level (0–20 points) of the three behavioral types that emerged from the model-free cluster analysis. Unconditional cooperators (green)

contributed on average 19.0 points to the public good, noncooperators (blue) contributed on average 2.3 points to the public good, and conditional
cooperators (orange) contributed on average 9.4 points to the public good. The bar graph in (b) illustrates the level of participants' beliefs about the
others' average contributions (0–20 points). Unconditional cooperators believed that the others contributed on average 13.4 points, conditional
cooperators believed that the others contributed on average 9.0 points, and noncooperators believed that the others contributed on average 6.9
points. The bar graph in (c) illustrates the difference between participants' contribution and their beliefs about the others' contributions
(contribution-minus-belief) by behavioral type. Unconditional cooperators contributed substantially more to the public good than they believed the
others would contribute (positive value), noncooperators contributed substantially less to the public good than they believed the others would
contribute (negative value), and conditional cooperators contributed as much to the public good as they believed the others would contribute (value
close to zero). Error bars represent standard errors of the mean. The asterisks denote means that are significantly different from each other
(at p < .05). Note that Figure S1 depicts these behavioral findings as box plots [Color figure can be viewed at wileyonlinelibrary.com]
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Analyses of variance (ANOVAs) revealed two brain areas that

showed significant differences (whole-brain corrected) between the

behavioral types, the right temporo-parietal junction in the beta2

frequency band (TPJ; cluster size: 15 voxels; BA: 22/39/40; peak MNI

coordinates: x = 60, y = −60, z = 15; F[2,129] = 5.490, p = .005;

explained variance = 7.8%; observed power = 84.3%; Figure 2a), and

the left lateral prefrontal cortex in the beta2 and beta3 frequency

bands (LPFC; beta2: cluster size: 19 voxels; BA: 9/45/46; peak MNI

coordinates: x = −55, y = 25, z = 25; F(2,129) = 6.066, p = .003;

explained variance = 8.6%; observed power = 87.9%; Figure 2b;

beta3: cluster size: 72 voxels; BA: 9/10/45/46/47; peak MNI coordi-

nates: x = −55, y = 25, z = 25; F(2,129) = 6.113, p = .003; explained

variance = 8.7%; observed power = 88.2%; Figure 2c). There were nei-

ther significant differences between the distinct behavioral types in

any other brain regions, nor in any other frequency band (all p > .268).

Pairwise comparisons between the behavioral types revealed a

distinctive pattern in the right TPJ and left lateral PFC. As shown in

Figure 2d, unconditional and conditional cooperators both showed

higher beta2 current density in the right TPJ than noncooperators

(unconditional cooperators vs. noncooperators: F(1,55) = 11.896,

p = .001; explained variance = 17.8%; observed power = 92.3%; con-

ditional cooperators vs. noncooperators: F(1,104) = 8.149, p = .005;

explained variance = 7.3%; observed power = 80.7%). Interestingly,

the two cooperative types did not differ with respect to beta2 current

density in the right TPJ (F[1,98] = 0.527, p = .469).

As shown in Figure 2e,f, conditional cooperators showed higher

beta2 and beta3 current density in the left lateral PFC than both

noncooperators (beta2: F(1,104) = 9.886, p = .002; explained vari-

ance = 8.7%; observed power = 87.6%; beta3: F(1,104) = 10.125,

p = .002; explained variance = 8.9%; observed power = 88.3%) and

unconditional cooperators (beta2: F(1,98) = 5.613, p = .020; explained

variance = 5.4%; observed power = 65.0%; beta3: F(1,98) = 4.961,

p = .028; explained variance = 4.8%; observed power = 59.7%). Nonco-

operators and unconditional cooperators did not differ significantly

with respect to beta2 or beta3 current density in the left lateral PFC

(beta2: F(1,55) = 0.286, p = .595; beta3: F(1,55) = 0.557, p = .459).

Since the resting fast-wave oscillations in the beta2 and beta3

bands likely reflect increased cortical activations (Gamma et al., 2004;

Laufs et al., 2003; Oakes et al., 2004), these results indicate that both

cooperative types (unconditional cooperators and conditional cooper-

ators) were characterized by higher baseline activation in the right

TPJ compared to noncooperators, while only conditional cooperators

were also characterized by higher baseline activation in the left LPFC

compared to either unconditional cooperators or noncooperators.

4 | DISCUSSION

Human cooperative behavior is characterized by remarkable individual

differences (e.g., Fischbacher et al., 2001; Nowak & Highfield, 2011). In

the current study, cluster analysis identified three distinct behavioral

types strongly differing in their contribution behaviors and beliefs

about others' behavior in a PGG. Similar types have been reported in

behavioral studies, using different classification approaches (model-

driven or model free; e.g., Epstein et al., 2016; Fallucchi, Luccasen, &

Turocy, 2018; Fischbacher & Gächter, 2010; Fischbacher, Gächter, &

Quercia, 2012; Frey, 2017; Gächter, Kölle, & Quercia, 2017;

Kurzban & Houser, 2001, 2005). Furthermore, the frequencies of the

behavioral types observed in our study also correspond nicely with

the frequencies reported in the previous literature (see for example a

recent re-analysis of six large datasets by Fallucchi et al., 2018). By

using a neural trait approach, we were able to characterize these

three behavioral types by their neural signatures and shed light on

possible underlying psychological mechanisms. The results showed

that both cooperative types, unconditional cooperators, and condi-

tional cooperators, were characterized by higher neural baseline acti-

vation in the right TPJ compared to noncooperators. However, only

conditional cooperators were also characterized by higher neural

baseline activation in the left LPFC compared to either noncoopera-

tors or unconditional cooperators.

Previous studies have consistently associated task-dependent TPJ

activationwith aspects of social cognition, such as perspective-taking, cog-

nitive empathy, and self-other distinction (Decety & Lamm, 2007; Frith &

Frith, 2012; Jackson, Brunet, Meltzoff, & Decety, 2006; Lamm, Rütgen, &

Wagner, 2017; Steinbeis, 2016; Tusche et al., 2016). Furthermore, task-

dependent activation of the TPJ has been associated with altruistic and

generous choices (Hare et al., 2010; Hutcherson et al., 2015; Park et al.,

2017; Strombach et al., 2015; Zanon, Novembre, Zangrando, Chittaro, &

Silani, 2014). There has also been one previous structural MRI study

(Morishima et al., 2012) that demonstrated a link between the gray matter

volume of the TPJ and altruistic choices. Our finding that conditional and

unconditional cooperators are characterized by increased baseline activa-

tion in the TPJ (compared to noncooperators) nicely complements this pre-

vious research and provides evidence that task-independent baseline

activation is associated with cooperative behavior in the PGG. We specu-

late that higher task-independent baseline activation in the right TPJ is

indicative of an individual's propensity to cooperate, possibly due to an

increased capacity for social cognition processes that help to overcome

one's self-centered perspective.

Notably, the statistically indistinguishable baseline activation in the

right TPJ of conditional and unconditional cooperators suggests that

both behavioral types are characterized by a similar capacity for social

cognition and propensity to cooperate. However, unconditional coopera-

tors and conditional cooperators differed markedly in cooperative behav-

ior and beliefs about others' cooperation. While conditional cooperators

showed a restricted level of cooperation that was conditioned on their

belief about others' cooperative behavior, unconditional cooperators

contributed not only considerably more than conditional cooperators did,

but also more than they believed the others would. In other words, they

risked being exploited by less cooperative others. In contrast, conditional

cooperators contributed only to the extent they believed others would

contribute—thereby minimizing the risk of exploitation by noncoopera-

tors. Interestingly, these substantial differences in behavior and belief

between the two cooperative types were paralleled by a neural trait dif-

ference: conditional cooperators were characterized by higher baseline

activation in the left LPFC than unconditional cooperators. A large body
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of evidence has consistently linked the LPFC to behavioral control and

self-control processes (e.g., MacDonald, Cohen, Stenger, & Carter, 2000;

Miller & Cohen, 2001), both in social and nonsocial contexts. Evidence

from neuroimaging studies using task-independent measures indi-

cates that improved functioning of the LPFC is associated with

enhanced capacities for behavioral control and self-control processes

(Crone & Steinbeis, 2017; Knoch et al., 2010; Schiller et al., 2014;

Steinbeis et al., 2012; Yamagishi et al., 2016). Based on this research,

we speculate that higher task-independent baseline activation in the

LPFC in conditional cooperators is indicative of their increased capacity

for behavioral control and self-control. We speculate that this control

capacity might be critical in enabling conditional cooperators to adjust

their high propensity to cooperate to a “reasonable” level, in the sense

of a reduced risk of exploitation by others.

Taken together, our findings point to two capacities that seem to play a

decisive role in determining the type of cooperative behavior. On the one

hand, the capacity for social cognition seems to be fundamental to people's

propensity to cooperate. On the other hand, as an excessively cooperative

type is vulnerable to exploitation, additional capacity for behavioral control

and self-control might be essential to limit this propensity and thereby pro-

tect the individual from exploitation by noncooperators.

Although neural traits are stable, they are not unchangeable.

Recent studies have documented that social cognition and behavioral

control/self-control capacities can be improved by specific behavioral

trainings (e.g., meditation, repeated practices of working memory) or

neuro-modulation techniques (e.g., neurofeedback, tDCS) (Anguera

et al., 2013; Houben, Dassen, & Jansen, 2016; Jaušovec & Jaušovec,

2012; Kouijzer, de Moor, Gerrits, Congedo, & van Schie, 2009;

Santiesteban, Banissy, Catmur, & Bird, 2012; Valk et al., 2017). More-

over, training and neuro-modulation induced changes in brain struc-

ture and function have been observed in regions of the lateral

prefrontal cortex as well as the temporo-parietal junction. Thus, it is

conceivable that behavioral training and neuro-modulation techniques

that impact the brain regions involved in processes of social cognition

and behavioral control/self-control could help to promote cooperative

behavior in noncooperative individuals and increase the number of

individuals demonstrating a level of cooperation that is both reason-

able for the individual and beneficial to society.
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beta3 current density in the left LPFC (f) in the three behavioral types. For display purposes, the current density data (log-transformed) were
converted to a positive scale (adding one to each value). Error bars represent standard errors of the mean. The asterisks denote means that are
significantly different from each other (at p < .05). Note that Figure S2 depicts these neural findings as box plots. TPJ, temporo-parietal junction
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