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An azimuthally-modified linear 
phase grating: Generation of varied 
radial carpet beams over different 
diffraction orders with controlled 
intensity sharing among the 
generated beams
Saifollah Rasouli   1,2 & Ali Mohammad Khazaei1

Diffraction gratings are important optical components and are used in many areas of optics such as in 
spectroscopy. A diffraction grating is a periodic structure that splits and diffracts the impinging light 
beam into several beams travelling in different directions. The diffracted beams from a grating are 
commonly called diffraction orders. The directions of the diffraction orders depend on the grating period 
and the wavelength of the impinging light beam so that a grating can be used as a dispersive element. 
In the diffraction of a plane wave from a conventional grating, the intensities of diffracted beams 
decrease with increasing order of diffraction. Here, we introduce a new type of grating where in the 
diffraction of a plane wave, the intensity of a given higher order diffracted beam can be higher than the 
intensity of the lower orders. We construct these gratings by adding an azimuthal periodic dependency 
to the argument of the transmission function of a linear phase grating that has a sinusoidal profile 
and we call them azimuthally-modified linear phase gratings (AMLPGs). In this work, in addition to 
introducing AMLPGs, we present the generation of varied radial carpet beams over different diffraction 
orders of an AMLPG with controlled intensity sharing among the generated beams. A radial carpet 
beam is generated in the diffraction of a plane wave from a radial phase grating. We show that for a 
given value of the phase amplitude over the host linear phase grating, one of the diffraction orders is 
predominant and by increasing the value of the phase amplitude, the intensity sharing changes in favor 
of the higher orders. The theory of the work and experimental results are presented. In comparison with 
the diffraction of a plane wave from radial phase gratings, the use of AMLPGs provides high contrast 
diffraction patterns and presents varied radial carpet beams over the different diffraction orders of the 
host linear phase grating. The resulting patterns over different diffraction orders are specified and their 
differences are determined. The diffraction grating introduced with controlled intensity sharing among 
different diffraction orders might find wide applications in many areas of optics such as optical switches. 
We show that AMLPG-based radial carpet beams can be engineered in which they acquire sheet-like 
spokes. This feature nominates them for potential applications in light sheet microscopy. In addition, 
a detailed analysis of the multiplication of the diffraction pattern of an AMLPG by the 2D structure of a 
spatial light modulator is presented. The presented theory is confirmed by respective experiments.

A conventional optical diffraction grating, say linear grating, is a periodic structure in the Cartesian coordi-
nates. In the diffraction of a plane wave from a linear grating, the beam is split and diffracted into several beams 
travelling in different directions. These diffracted beams are known as diffraction orders. For the conventional 
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gratings, the intensities of diffraction orders decrease with increasing the number of order of diffraction. In the 
near-field regime, superposition of diffraction orders form self-images and sub-images of the grating’s structure 
at certain propagation distances. This effect is known as Talbot effect1. In addition, the intensity pattern over a 
plane includes the propagation axis and the grating vector (say the longitudinal plane) that is called the Talbot 
carpet2. In the far-field regime, the diffraction orders appear as the impulses of the Fourier transform of the grat-
ing’s transmission function.

The linear gratings have numerous applications in optics and other areas of sciences and technologies such 
as in astronomical spectroscopy, moiré fringe technique including moiré deflectometry and moiré topography3, 
interferometry4–6, lithography7,8, strain and stress analysis9, displacement measurement10, optical alignment 
technique, color printing11, and 3D displays12,13. In recent two to three decades amplitude and phase gratings 
with topological defects have found serious applications in generating vortex beams and/or characterizing such 
beams14–21. The use of phase hologram gratings instead of the conventional one has some advantages22–25. For 
instance, a computer generated hologram phase grating provides the implemention of a desired phase map on the 
incident wave in a controlled way26.

Another specific type of grating is radial grating. A radial grating has a periodic structure in the azimuthal 
direction in polar coordinates. Unlike conventional gratings, there is no diffraction order in diffraction from a 
radial grating. However, the diffraction of a plane or Gaussian wave from radial gratings shows other interest-
ing features. On illuminating an amplitude radial grating by a spatially coherent light beam the Talbot carpet is 
formed on transverse planes27. The conventional Talbot carpet is formed on the longitudinal plane when a grating 
is illuminated by a plane beam2,28,29. It has also been shown that the plane boundaries between the optical regimes 
including the geometric shadow and near-field and far-field diffraction regimes have acquired curvature27. The 
diffraction of a vortex beam from an amplitude radial grating presents a simple way for measuring the topological 
charge alteration30. That study also presents a Poisson-Arago spot-like effect on the optical axis when an ampli-
tude grating is illuminated by a vortex beam in which the number of grating spokes is equal to the topological 
charge of the incident beam. More precisely, a needle-like optical beam forms along the optical axis in far-field 
diffraction. The diffraction of a plane wave from a radial phase grating was also theoretically and experimentally 
investigated. It was shown that the diffraction of a plane wave from radial phase gratings is a simple way to gen-
erate radial carpet beams that are nondiffracting, accelerating, and shape preserving31. These beams have unprec-
edented patterns that are shape-invariant during propagation. The patterns can be easily turned into tunable 2D 
optical lattices. We also proposed a new solution for the paraxial Helmholtz equation and introduced combined 
half-integer Bessel-like beams32. It was shown that a huge family of beams can be produced in diffraction from 
designed radial structures and not necessarily from radial gratings. In that work spatially asymmetric, radial car-
pet, petallike, and twisted-intensity ringlike vortex beams were introduced through detailed theory and suitable 
practical approaches were proposed to generate each of them.

In this work, we integrate the features of linear and radial gratings to introduce a new grating that, in addition 
to the properties of linear and radial gratings, has additional properties. We construct this type of grating by 
adding an azimuthal periodic dependency to the argument of the transmission function of a linear phase grat-
ing that has a sinusoidal profile and we call them azimuthally-modified linear phase gratings (AMLPGs). In the 
diffraction of a plane wave from an AMLPG, we observe different diffraction orders in which the pattern of each 
order is very similar (but not exactly equal) to the diffraction pattern of a radial grating. Unlike the conventional 
gratings, here the intensity of a given higher order diffracted beam can be higher than the intensities of the lower 
orders. We show that the intensity sharing among different diffraction orders of an AMLPG can be adjusted by the 
value of the phase amplitude of the host linear grating. This kind of grating might find wide applications in many 
areas of optics such as optical switches. The diffraction of a plane wave from AMLPGs is formulated and using a 
spatial light modulator (SLM) the respective experimental works are presented. In comparing with the diffrac-
tion of a plane wave from radial phase gratings31 the use of AMLPGs provides a set of high contrast and varied 
radial carpet patterns over the different diffraction orders of the host linear phase grating. Since an SLM has a two 
dimensional periodic structure it multiples the diffraction pattern of the AMLPG. A detailed formulation is also 
presented and the theoretical predictions are verified by experiments.

It is worth noting that, as the transmittance of an AMLPG is not the product of the transmittances of the radial 
and linear gratings, the diffraction pattern from an AMLPG is not the convolution of the diffraction patterns of 
radial and linear gratings. However, the transmittance of an AMLPG imposed on an SLM is the product of an 
ideal AMLPG and the two-dimensional periodic structure of the SLM, therefore the resulting diffraction pattern 
is the convolution of the diffraction pattern of the ideal AMLPG and the two dimensional impulses of the SLM.

Results
Formulation of plane wave diffraction from an AMLPG.  Here, we formulate the diffraction of a plane 
wave from an AMLPG. When the phase structure of a linear phase grating with a sinusoidal profile hosting an 
additional radial phase grating, it can be considered as “azimuthally-modified linear phase grating (AMLPG)”. 
Some AMLPGs with almost sinusoidal phase profiles are shown in Fig. 1. Since a radial phase grating is periodic 
in the azimuthal direction and has a phase singularity at the origin, an AMLPG has also the same property.

We introduce an AMLPG with the following transmission function:

ρ θ γ π ρ θ θ=








 +










T i
d

l( , ) exp cos 2 cos cos ,
(1)

where γ, l, d, and ρ θ( , ) are the amplitude of the phase variation, the number of spokes of the radial part of the 
grating, the period of the linear part of the grating, and the polar coordinates in the input plane, respectively.
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As is apparent from Eq. 1, the transmission function of the AMLPG is not the product of the transmission 
functions of two distinct radial and linear gratings33. Therefore the diffraction pattern from an AMLPG is not the 
convolution of the diffraction patterns of the radial and linear gratings. Below we formulate the diffraction of a 
plane wave from an AMLPG.

Using the Jacobi-Anger identity34

∑ γ=γ θ θ

=−∞

=+∞
i Je ( ) ( )e ,

(2)
i

s

s
s

s
iscos

where Js is the s–th Bessel function of the first kind, the grating’s transmission function, Eq. 1, can be rewritten in 
the following form:
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By illuminating this phase structure with a plane wave, the complex amplitude of the light field after the struc-
ture is given by

∫ ∫ϕ ρ θ ρ ρ θ= α π αρ αρ θ ϕ∞ − −U r z h T d d( , , ) e ( , )e e , (4)
i r i i r

0
0 0

2 2 cos( )2 2

where =
λ

h e
i z0

ikz
 and α = π

λz
, in which λ is the wavelength of the light beam, = π

λ
k 2  is the wave-number, and ϕr( , ) 

are the polar coordinates on the output plane.
By substituting Eq. 3 in Eq. 4, we have
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Equation 5 can be solved respect to the azimuthal variable. First we use the following variable transformations 
in the output plane:

ϕ λ ϕ ϕ ϕ− = =r s z
d

r r rcos cos , sin sin , (6)s s s s

Figure 1.  Illustration of eight typical AMLPGs with =d 3 mm, γ π= /2, and different values of l.
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and rewrite Eq. 5 in the following form:
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Now using Eqs 2 and 9 reduces to the following form:
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and using the following identity:
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By substituting Eq. 13 in Eq. 8 we have
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Now using the following integral identity35:
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the resulting light field can be written in the following form:
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Here s shows the number of the diffraction order of the AMLPG, and the corresponding light field is
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This is the main result, showing the complex amplitude of the diffracted beam from an AMLPG and indicates 
that all the diffraction patterns forming over the individual diffraction orders are different.

It is worth noting that unlike the case of diffraction from the product of a given function and a linear grating in 
which the spectrum of the function is multiplied over different diffraction orders of the grating, here such behav-
ior does not occur. The reason is that the structure of an AMLPG is not separable into a linear grating structure 
and another definite function.

Equation 17 can be considered as a summation over individual diffraction orders

∑ϕ ϕ= .
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(18)s
s s s

Similar to the diffraction of a plane wave from a radial phase grating31, here again we see that each of individ-
ual diffraction patterns has a radial form with a considerable structural complexity. All of the patterns are shape 
invariant under propagation. Therefore we consider each of them a “radial carpet beam”. In one of the next sub-
sections we will show that for a specific value of the phase amplitude of an AMLPG having a given value of l, one 
of the individual diffraction patterns will get the same intensity distribution of the radial carpet beam produced 
directly in the diffraction of a plane wave from a radial phase grating with the same spokes number, l.

Relative rotation of the resulting patterns over ±s diffraction orders.  We show that the diffraction patterns gener-
ated over a pair of diffraction orders ±s are similar in form but have a relative rotation with respect to each other.

For a given positive value of s, substituting s with −s in Eq. 17 we have the following equation:
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and using Eq. 7 we have
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Now we use Eq. 20 in Eq. 19 and we have
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where we also used − = − −J x J x( ) ( 1) ( )n
n

n , ≥n 0 and ϕ ϕ π= − −q q qcos( ) ( 1) cos( )q , ∈q Z.
Now by comparing Eqs 17 and 21 we can show the following result:
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This means that the resulting patterns over a pair of diffraction orders ±s are similar except there is a relative 
rotation with a value of π

l
 between them.
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Controlled intensity sharing among different diffraction orders: Effect of γ on the resulting 
patterns.  Here we show that the intensity of an incident beam on an AMLPG can be divided among different 
diffraction orders with desired proportions. For an AMLPG, unlike the conventional gratings, the intensity share 
of the higher diffraction orders may be larger than the intensity on the lower diffraction orders, when given values 
are chosen for the phase amplitude of the grating, γ. Figure 2 shows the calculated diffracted intensity patterns for 
an AMLPG with =l 10 spokes and different values of γ at a distance =z 555 cm. By selecting the values of 
2.4048, 3.8317, and 5.1356 for the arguments of J0, J1, and J2 their first zeros appear, respectively, and 5.5201 leads 
to the second zero of J0. As is apparent, the visibility of the patterns and intensity sharing among different diffrac-
tion orders depend to the value of γ.

•	 For γ = π
2

 and γ = .2 4048 the diffraction orders of = ±s 1 are more visible and they have the maximum 
values of the intensities between the diffraction orders.

•	 For γ π=  the diffraction orders for = ±s 2 are the dominant patterns.
•	 For γ = .3 8317 and γ = π3

2
 the diffraction orders for = ±s 3 are the dominant patterns and have the maxi-

mum share of the intensity.
•	 For γ = .5 1356 and γ = .5 5201 the diffraction orders for = ±s 4 share the maximum intensities.
•	 For γ π= 2  the diffraction orders of = ±s 5 are more visible.

This means that by increasing the value of γ the energy of the incident light transfers to the higher diffraction 
orders. As is apparent, at larger radii, all individual diffraction patterns have the same number of spokes equal to 
the number of spokes of the AMLPG, but at smaller radii, the fine structure of the patterns strongly depends on 
the value of s. Also, it is seen that for larger values of s, the spoke patterns become needle-like and therefore the 
path of each needle-like pattern under propagation becomes a light sheet. These features might find some appli-
cation in light sheet microscopy.

Now, we estimate the diffraction coefficients of an AMLPG by calculating the percentage of the incident power 
flows among different diffraction orders. This is done by calculating the ratios of the mean values of the intensities 
over the diffracted patterns to the mean value of the incident beam intensity. The mean value of the intensity over 

Figure 2.  Controlled intensity sharing among the different diffraction orders of an AMLPG by adjusting the 
value of the phase amplitude, γ. Calculated intensity patterns of different diffracted beams in the diffraction of a 
plane wave from an AMLPG having =l 10 and different values of γ: π/2, 2.4048, π, 3.8317, 3π/2, 5.1356, 5.5201, 
and 2π at =z 555 cm. The intensity over the patterns is normalized to the intensity of the incident beam (for 
details see the color bars). The dashed white lines in the first row show the boundaries of the different diffraction 
orders.
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each of the individual patterns, separated by the dashed lines in the first row of Fig. 2, was calculated. Table 1 
shows the results of the intensity sharing between different orders for some selected values of γ.

Using Eq. 17, we can directly calculate the diffraction coefficients of an AMLPG as the ratio of the power of 
each order of diffraction Ps to the power of the incident beam Pi

∫

∫

∫ϕ ϕ ϕ
= = = =

⁎

P P
P

I r z dA

I x y z dA

u r z u r z dA

I x y z A
I
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( , , )

( , , )

( , , ) ( , , )

( , , )
,
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where Ii and Is are the intensity values over the incident beam and the diffracted beam of order s, respectively. 

Their mean values over the corresponding areas are given by =I Ii i and =
∫ ϕ ϕ⁎

Is

u r z u r z dA

A

( , , ) ( , , )
As s s s s s s

s
, respectively. 

The same results in Table 1 were derived using Eq. 23.
The following results in Table 1 are worth noting:

•	 For γ = π
2

 and γ = .2 4048, the diffraction orders with = ±s 1 have the maximum values of intensity sharing 
of 32% and 27%, respectively.

•	 For γ π=  the diffraction orders with = ±s 2, have the maximum values of intensity sharing of 23.5%.
•	 For γ = .3 8317 and γ = π3

2
, the diffraction orders with = ±s 3 have the maximum values of intensity sharing 

of 17.6% and 16.4%, respectively.
•	 For γ = .5 1356 and γ = .5 5201, the diffraction orders with = ±s 4 have the maximum values of intensity 

sharing of 15.7% and 15.6%, respectively.
•	 For γ π= 2 , the diffraction orders with = ±s 5 have the maximum values of intensity sharing of 13.8%.
•	 For the values of γ = .2 4048 and γ = .5 5201 the intensity sharing of the DC terms, with =s 0, are zero. These 

values of γ correspond to the first and second zeros of J0.
•	 For the values of γ = .3 8317 and γ = .5 1356, the intensity sharing of the = ±s 1 and = ±s 2 terms are zero. 

The value of γ = .3 8317 corresponds to the first zero of J1 and the value of γ = .5 1356 corresponds to the first 
zero of J2.

Comparison of the diffraction patterns of an AMLPG and a radial phase grating.  Here we com-
pare the diffraction pattern of a plane wave diffracted directly from a radial phase grating31 with the diffraction 
pattern of an AMLPG. The diffracted light field in the diffraction of a plane wave from a radial phase grating 
having a sinusoidal transmission function can be written as31
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Comparing Eqs 17 and 24, we see that if the following relations are established
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the two equations will be the same. It is apparent that this is the case for γ = s. This means that the diffraction 
pattern from a radial phase grating, known as the “radial carpet beam”31, and the s–th diffracted order of an 
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5 %γ=

π/2 0.00 0.02 0.47 6.21 32.07 22.28 32.19 6.25 0.48 0.02 0.00 99.99

2.4048 0.02 0.42 3.94 18.58 26.90 0.00 27.00 18.70 3.98 0.42 0.02 99.98

π 0.27 2.28 11.07 23.49 8.09 9.26 8.12 23.64 11.17 2.30 0.27 99.96

3.8317 1.27 6.51 17.60 16.17 0.00 16.22 0.00 16.27 17.75 6.55 1.29 99.63

3π/2 4.93 13.66 16.40 2.13 7.92 7.07 7.95 2.15 16.54 13.77 5.01 97.53

5.1356 7.68 15.68 11.48 0.00 11.52 1.75 11.56 0.00 11.59 15.80 7.82 94.88

5.5201 10.34 15.62 6.27 1.51 11.56 0.00 11.60 1.52 6.32 15.73 10.52 90.99

2π 13.77 9.92 0.08 8.26 4.50 4.85 4.52 8.31 0.09 10.00 14.01 78.31

Table 1.  Calculated ratios of the mean intensity of the diffraction order to the mean intensity of the incident 
beam for the diffraction patterns illustrated in Fig. 2. The red numbers show the maximum values of the 
intensity sharing in each row. By increasing the value of γ, the maximum values shift toward the higher orders.
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AMLPG are similar when the phase amplitude and spokes number of the AMLPG are equal to the spokes number 
of the radial phase grating.

In Fig. 3 the calculated diffraction pattern (or equally the whole spectrum) of an AMLPG (left column) and 
the diffraction pattern of a plane wave diffracted directly from a radial phase grating (right column) are illus-
trated. As it is seen for γ=s  we have ψψ=⁎ ⁎UUs s  and the s–th diffraction order has the maximum value of 
intensity between all the diffraction orders. From Figs 2 and 3, it is also seen that by increasing the value of γ, the 
higher diffraction orders get a larger fraction of the energy of the incident beam.

Since the value of intensity at different diffraction orders can be adjusted with the value of the grating phase 
amplitude, γ, this feature can be used in optical switching.

Replication of the spectrum of an AMLPG by an SLM structure.  Here we investigate the replication 
of the spectrum of an AMLPG by the SLM structure under diffraction. First we consider the diffraction of a plane 
wave from an SLM when a secondary structure is not embedded in it.

Assume that the structure of the SLM is a rectilinear 2D grating with the following transmission:

=f x y f x f y( , ) ( ) ( ), (26)x y

where fx and fy show two one dimensional (1D) linear gratings placed together at right angles. The Fourier trans-
form of f x y( , ), apart from a multiplicative factor, is given by36
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where δ is the delta function, Bm and Bn are the Fourier coefficients, νF ( )x  and ηF ( )y  are the 1D Fourier transforms 
of fx and fy, respectively, and  is the convolution symbol.

Now suppose that the structure of an AMLPG with a transmission function of ρ θT( , ) is imposed on the SLM 
and a plane wave is diffracted by it. In this case the light field immediately after the SLM is given by the multipli-
cation of f x y( , ) and ρ θT( , ), and the resulting diffraction pattern or equally the corresponding spatial spectrum 
is obtained as

ϕ ν η ϕ= .U r F U r( , ) ( , ) ( , ) (28)total

The diffracted light field distribution or equally the spectrum of the AMLPG is replicated by the impulses of 
the SLM. The replicated spectrum by the m n( , ) impulse of the SLM can be written as

ϕ ν η ϕ= .U r F U r( , ) ( , ) ( , ) (29)m n m n, ,

This means that the spectrum of an AMLPG is replicated by each of the diffraction impulses of the SLM. Using 
Eqs 18 and 27 in Eq. 29, the distribution of the diffracted light field corresponding to the m n( , ) impulse of the 
SLM after a propagation distance of z is given by

Figure 3.  Comparing the diffraction pattens of an AMLPG and a radial phase grating having the same number 
of spokes. Left column, calculated diffracted intensity patterns obtained in the diffraction of a plane wave from 
an AMLPG with =l 10 at =z 555 cm for γ equal to 1, 2, 3, 4, and 5. Right column, calculated diffracted 
intensity patterns obtained in the diffraction of a plane wave from a radial grating with =l 10 at =z 555 cm for 
γ equal to 1, 2, 3, 4, and 531. In each row, for γ=s , the s–th diffraction order of the AMLPG has the maximum 
value of intensity between all the diffraction orders and its diffraction pattern and the illustrated radial carpet 
pattern at the right column has the same form. The intensity over the patterns is normalized to the intensity of 
the incident beam.
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The patterns of various radial carpet beams over different diffraction orders of the AMLPG with controlled 
intensity sharing among the generated beams are replicated over the SLM diffraction orders. Each of the gener-
ated radial carpet beams is given by

ϕ ν η ϕ= ∈U r F U r s Z( , ) ( , ) ( , ); , (32)m n s m n s, , ,

where s shows the order of diffraction of the AMLPG imposed on the SLM.

Discussion
We show that by adding an azimuthally periodic term into the argument of a linear phase grating, say θlcos( ) in 
Eq. 1, and by adjusting the value of γ, one can control the intensity sharing between different diffracted beams (see 
Figs 2 and 3). The theoretical perditions show that, in order to have maximum share of energy on a higher order 
diffraction pattern, we need to use an SLM with a large value of phase variation. The proposed method for con-
trolling the intensity sharing between different diffraction orders can be implemented with the aid of other addi-
tional phase terms in Eq. 1. For example, by replacing θlcos( ) with the phase function of a zone plate πρ( )cos

s

2
, 

Figure 4.  Experimentally recorded diffraction pattern at a propagation distance of (a) =z 77 cm and (b) 
=z 350 cm, in the diffraction of a plane wave from an SLM when it experiences a uniform phase map. The real 

size of the recorded rectangular patterns is 11 mm × 15 mm. The pairs of numbers correspond to the diffraction 
orders of the SLM’s impulses. The dashed white lines are used to distinguish the areas of different diffraction 
orders.

Figure 5.  Diffraction pattern of a plane wave from an SLM at =z 350 cm when a 1D linear phase grating with 
a sinusoidal profile in the x direction and a period of 0.11 mm is imposed on the SLM. Here γ π= /2. This 
pattern corresponds to the (0,0) diffraction order of the SLM and was formed on a diffuser and imaged by 
camera.
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where s is the zone plate constant, at given propagation distances over the different diffraction patterns focused 
beams with different values of intensities will be produced. This feature can be used for optical switching. Another 
example is the phase function of a defected zone plate θ + πρ( )lcos

s

2
. The results of these studies will appear 

elsewhere.

Figure 6.  Central pattern: The diffraction pattern of a plane wave from an SLM with γ π= /2 when an AMLPG 
is imposed on the SLM. Here a diffuser is placed at =z 350 cm and the diffraction pattern is imaged by camera. 
For the radial phase structure =l 10 and for the linear phase grating = .d 0 11 mm. The diffraction patterns of 
four typical diffraction orders are enlarged in the first and third columns.

Figure 7.  (a, b) are experimental diffraction patterns of two AMLPGs with =l 10 and =l 15 at =z 350 cm, 
respectively. These patterns are generated over the (0,0) diffraction order of the SLM. Here γ π= /2. (c, d) are 
the corresponding theoretical patterns. The intensity over the simulated patterns is normalized to the intensity 
of the incident beam, and for this reason a color bar is used for (c, d).

Figure 8.  Experimentally generated diffraction patterns of four AMLPGs with =l 5, =l 10, =l 15, =l 20, and 
γ π= /2. Each of the individual patterns was formed directly on the active area of the camera at a distance of 

=z 555 cm. A set of low contrast crossed linear fringes appear over the central patterns (0,0,0). These fringes 
are the edge diffraction patterns of the SLM window.
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Methods
In this section we present experimental work that verifies the above theoretical results.

Experimental generation of the various radial carpet beams.  We used a conventional SLM extracted 
from a video projector (LCD projector KM3 MOD. NO. X50) to provide the desired AMLPGs. Maximum ampli-
tude of the phase modulation was limited to γ π= /2 rad shown in Fig. 1. In the experiments, the whole area of 
the SLM was illuminated with a plane wave which was the second harmonic of an Nd:YAG diode–pumped laser 
beam having a wavelength of λ = 532 nm. The active area of the SLM was 11 mm × 15 mm.

An AMLPG was imposed on the SLM and the collimated wavefront of the laser beam propagated through 
it. At different distances from the SLM, the diffracted patterns were recorded with a camera (Nikon D7200). We 
recorded the diffraction patterns by two methods. In some parts of the experiments, the diffraction patterns were 
directly formed over the active area of the camera by removing the imaging lens of the camera. Also in some of 
the experiments, the desired diffraction patterns were formed on a diffuser and then their patterns were imaged 
by the imaging lens of the camera on its active area. In the latter case, a magnification in the size of the images 
appeared. The active image area of the camera was 23.4 mm × 15.6 mm.

Figure 4(a) shows an experimentally recorded diffraction pattern of a plane wave from the SLM when a uni-
form phase map is imposed on it. A diffuser was placed at =z 77 cm and the pattern was imaged by the camera. 
Since the SLM has a two dimensional periodic structure, each of the observed rectangular patterns in Fig. 4(a) 
corresponds to one of the diffraction orders of the SLM’s main structure. Figure 4(b) shows the same pattern after 
a propagation distance of =z 350 cm. In Fig. 4(b), pairs of numbers show the numbers of diffraction orders in 
the horizontal (x) and vertical (y) directions corresponding to the SLM’s main structure.

Figure 5 shows the diffraction pattern of a plane wave from the SLM when a 1D linear phase grating with a 
sinusoidal profile in the x direction and a period of 0.11 mm is imposed on it. The transmittance of a linear phase 
grating with a sinusoidal profile is given by Eq. 1 when cos(lθ) = 0. The sets of numbers indicate the orders of the 
diffraction from the SLM structure and the linear phase grating, m n s( , , ).

In Fig. 6, second column, the central area of the diffraction pattern of a plane wave from an SLM with γ π= /2 
is shown when an AMLPG is imposed on it. In the experiment, a diffuser was placed at =z 350 cm and the cen-
tral area of the diffraction pattern imaged by the camera. The radial phase structure with =l 10 is imposed on the 
structure of a linear phase grating with a period of = .d 0 11 mm in the x direction (see Eq. 1). For better illustra-
tion of the results, four typical diffraction orders are enlarged in the first and third columns in Fig. 6. Each of the 
illustrated diffraction patterns is determined by the corresponding diffraction order m n s( , , ). As is apparent, the 
intensity profiles for two individual diffraction patterns are the same when their order numbers, s, are the same. 
For two given individual diffraction patterns with orders m n s( , , ) and −m n s( , , ), the patterns are rotated at an 
angle π

l
 with respect to each other.

Figure 7(a,b) show the experimental diffraction patterns corresponding to the (0, 0) diffraction order of the 
SLM when two AMLPGs with =l 10 and =l 15 were imposed on it, respectively. Here again, a diffuser was 
placed at =z 350 cm and the central diffraction order of the SLM with order number (0,0) was imaged by the 
camera. In Fig. 7(c,d) the corresponding theoretically produced patterns are illustrated. As it is seen, when the 
value of l is odd, the intensity patterns of I m n s( , , ) and −I m n s( , , ) are mirrors of each other relative to the plane of =s 0 
order.

In Fig. 8 experimentally recorded diffraction patterns are shown for four AMLPGs having spokes numbers of 
5, 10, 15, and 20, respectively. Here, each of the individual patterns was recorded directly over the active area of 
the camera by removing its imaging lens at distance =z 555 cm.

Conclusion
In this work, we introduced a new kind of phase grating with controlled intensity among different diffraction 
orders. We constructed an AMLPG by adding an azimuthal periodic dependency to the argument of the trans-
mission function of a linear phase grating having a sinusoidal profile. Generation of diverse radial carpet beams 
was investigated over different diffraction orders of an AMLPG with controlled predominant diffraction order. A 
detailed theoretical analysis was reported and its experimental verification was presented by generating diverse 
radial carpet beams with controlled shift of intensity in the illumination of an AMLPG with a spatially coherent 
light beam. We specified diverse radial carpet beams produced over different diffraction orders of the host linear 
phase grating. It was shown that all the diffraction patterns are different and only the pairs of positive and neg-
ative orders with the same order numbers are similar except that there is a relative rotation between them. The 
diffraction grating introduced with controlled intensity sharing among different diffraction orders might find 
wide applications in many areas of optics such as optical switches. Also, the radial carpet beams produced over 
different diffraction orders might find applications in light sheet microscopy.
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