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Sleep as a random walk: a super-statistical analysis
of EEG data across sleep stages
Claus Metzner 1✉, Achim Schilling1,2,3, Maximilian Traxdorf4, Holger Schulze1 & Patrick Krauss 1,3,5

In clinical practice, human sleep is classified into stages, each associated with different levels

of muscular activity and marked by characteristic patterns in the EEG signals. It is however

unclear whether this subdivision into discrete stages with sharply defined boundaries is truly

reflecting the dynamics of human sleep. To address this question, we consider one-channel

EEG signals as heterogeneous random walks: stochastic processes controlled by hyper-

parameters that are themselves time-dependent. We first demonstrate the heterogeneity of

the random process by showing that each sleep stage has a characteristic distribution and

temporal correlation function of the raw EEG signals. Next, we perform a super-statistical

analysis by computing hyper-parameters, such as the standard deviation, kurtosis, and

skewness of the raw signal distributions, within subsequent 30-second epochs. It turns out

that also the hyper-parameters have characteristic, sleep-stage-dependent distributions,

which can be exploited for a simple Bayesian sleep stage detection. Moreover, we find that

the hyper-parameters are not piece-wise constant, as the traditional hypnograms would

suggest, but show rising or falling trends within and across sleep stages, pointing to an

underlying continuous rather than sub-divided process that controls human sleep. Based on

the hyper-parameters, we finally perform a pairwise similarity analysis between the different

sleep stages, using a quantitative measure for the separability of data clusters in multi-

dimensional spaces.
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Many complex systems, such as the earth’s crust, the
weather, biological organisms, or the stock market,
show continuous fluctuations of their internal state

variables, even in the absence of external perturbations. The
underlying processes can often be quantified in the form of
multivariate time series and a mathematical analysis of the time
series can be used to predict future states of the system, or simply
to better understand its internal dynamics1–3.

Although in simple physical systems, state variables fluctuate
around a fixed mean value and with a fixed variance (as in the
case of local pressure variations in a gas at equilibrium), complex
systems often have multiple dynamical attractors4, i.e., a set of
qualitatively different modes of behavior, between which the
system will occasionally switch. Such transitions typically show
up in the time series by a sudden (or gradual) change of the
statistical properties of the fluctuating state variables.

A typical example of such mode-switching behavior is the sleep
cycle in humans and other mammals, where the brain is passing
through a sequence of seemingly distinct sleep stages5. In this
case, multi-channel electroencephalographic (EEG) recordings
offer a convenient way to quantify the ongoing changes in the
brain over long periods, but also with high temporal resolution6,7.
The momentary amplitudes of an N-channel EEG recording
represent a point in an N-dimensional state space and the
ongoing time series of vectorial amplitudes defines a random walk
within this high-dimensional space.

It is then a natural hypothesis that each sleep stage corresponds
to a different cluster within EEG state space, and that the tra-
jectory of the random walk moves to the corresponding cluster
whenever a new sleep stage is entered. Indeed, we have confirmed
this hypothesis in former work8, where we applied a previously
developed method for analyzing and comparing spatiotemporal
cortical activation patterns9. In this context, we have also ana-
lyzed the micro-structure of cortical activity during sleep and
found that it reflects respiratory events and the state of daytime
vigilance10. Moreover, we have developed a general method to
quantify the separability of point clusters in high-dimensional
state spaces11.

In principle, the existence of sleep-stage-related clusters within
the EEG state space could be exploited for an automatic detection
of these stages, based only on the momentary multi-channel
amplitudes, or on short-time averages of those. However, modern
methods of automatic sleep-stage detection are usually based on
sliding time windows of a larger width, so that the algorithm can
also make use of temporal features in the EEG data that are
characteristic for different sleep stages (such as sleep spindles or
K-complexes)12,13. In this case, it is not even necessary to record a
large number of EEG channels. Indeed, we have shown that
reliable sleep-stage detection is even possible based on a single
channel14, thanks to the remarkable ability of machine learning
systems to extract those features from the data that are most
relevant for the classification task.

In this work, we continue our investigation of single-channel
EEG data during human sleep. However, our present focus is not
on the further improvement of automatic sleep-stage detection,
but on a more fundamental description of the statistical proper-
ties of EEG data, seen as a temporally heterogeneous random
walk. In particular, we investigate how the random walks
momentary statistical properties, also called hyper-parameters,
are changing during and across sleep stages. Our approach is
based on the method of super-statistical analysis15–17, which we
have originally developed to analyze the random migration pat-
terns of individual cancer cells18, revealing that their average
migration speed, the directional persistence of the cell trajectories,
and other hyper-parameters are time-dependent, reflecting
internal mode changes such as the cell cycle. In subsequent work,

we have demonstrated that the method can also be used to extract
and model gradual or abrupt hyper-parameter changes in other
complex dynamical systems, such as the climate or the stock
market19.

In the present study, we apply a simplified version of super-
statistical analysis to a set of full-night EEG recordings. Each 30 s
epoch of these recordings has been visually scored by a sleep
specialist, according to the AASM (American Academy of Sleep
Medicine) rules, so that the data is categorized into four different
sleep stages (REM, N1, N2, and N3) and the wake state. For each
sleep-stage-labeled epoch, we compute from the single-channel
recordings certain statistical hyper-parameters, such as the stan-
dard deviation (STD), the kurtosis (KUR), and the skewness
(SKE) of the EEG amplitude distributions. We show that also
these hyper-parameters have characteristic, stage-dependent dis-
tributions, which can be used for a simple Bayesian sleep-stage
detection. Moreover, we find that the hyper-parameters are not
piece-wise constant, as the traditional hypnograms would suggest.
Interestingly, they show rising or falling trends also within each of
the sleep stages, pointing to an underlying continuous neural
process that controls human sleep.

Results
The results presented throughout this study are based on 68
independent EEG data sets from sleeping human subjects, each
recorded during a full night in the sleep lab of the University
Hospital Erlangen. The signals from the three EEG channels can
be analyzed, in principle, on at least three different time scales:

The shortest scale corresponds to the individual time steps t of
the raw signals, which in our case have been recorded with a rate
of 256 values per second and channel.

The medium scale is that of epochs n, each with a duration of
30 s, corresponding to 7680 successive EEG values per channel. A
sleep stage label Sn 2 Wake;REM;N1;N2;N3f g has been
assigned to each of these epochs by a specialist. It is noteworthy
that, for simplicity, we include Wake to the list of sleep stages.

Finally, the longest scale corresponds to sleep phases J, which
we define as the largest non-interrupted series of subsequent
epochs where the subject remains in the same sleep stage s. It is
noteworthy that, in contrast to time steps and epochs, sleep
phases are time periods with a variable duration.

Our first goal was to establish that single-channel EEG signals
yk(t) during sleep can be considered as heterogeneous random
walks, i.e., as random processes in which the statistical properties
change over time, and in particular differ between sleep stages.
We therefore analyze, for each sleep stage s, the probability dis-
tributions ps(y) of the raw EEG amplitudes (Fig. 1a, b).

The distributions are computed independently for each epoch
and each channel, and finally all distributions with the same sleep
stage label are pooled and averaged. We find that the amplitude
distributions ps(y) are non-Gaussian and clearly leptocurtic for all
sleep stages—an anomaly that is frequently found in complex
systems with super-statistical parameter changes18. In our case,
due to the rather extreme tails, the excess KUR of these dis-
tributions is unusually large (KURwake ≈ 55, KURREM ≈ 234,
KURN1 ≈ 154, KURN2 ≈ 141, and KURN3 ≈ 46). Although the
distributions for sleep stages REM, N1, and N2 are relatively
similar to each other, the wake and N3 stages are considerably
broader, which reflects the heterogeneity of the underlying ran-
dom process.

Furthermore, we compute the autocorrelation function (ACF)
An,k(Δt) and the cross-correlation function Cn,1,2(Δt) between
channels F4-M1 and C4-M1 (Fig. 1c, d). Here, too, the correlation
functions are first computed independently for each epoch and
later averaged. For all sleep stages, the EEG amplitudes show
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positive temporal auto-correlations up to lag times of 300 ms and
very similar results are found for the cross-correlation functions.
Interestingly, the N3 stage again differs from the other sleep
stages, in that it has significantly stronger correlations for lag
times shorter than about 200 ms.

Having thus established the heterogeneous character of the raw
EEG signals during sleep, we turn to a super-statistical analysis and
compute certain statistical hyper-parameters from each epoch of
these raw signals. In particular, we consider as hyper-parameters the
STD of the amplitude distribution ps(y), its excess KUR, its SKE, as
well as the value of the ACF at specific lag time Δt= 300ms, which
yields relatively large differences between the sleep stages.

As a preliminary step, we compute the distributions of the
STDs (STE), in the different sleep stages, for individual sleeping
subjects (results for the first 4 of our 68 data sets are shown in
Fig. 2). In contrast to a stationary, temporally homogeneous
random walk, where the parameter STE could be regarded as
fixed (apart from weak sampling fluctuations), we find in our case
rather wide distributions that clearly differ between the sleep
stages. The large fluctuation width of STE within the same sleep
stage is pointing to dynamical changes of brain activity that are
going on continuously, rather than happening only at the tran-
sition points to new sleep stages. Although there is a large degree
of variability among different individuals (heterogeneity of the
ensemble), the sleep-stage-specific characteristics of the dis-
tributions (temporal heterogeneity) are approximately conserved.
A similar behavior is found for all considered hyper-parameters

(STD, KUR, SKE, and ACF) and we therefore have pooled the
data over all individuals (Fig. 3). Here we find that for some of the
hyper-parameters (KUR, SKE, and ACF), the sleep-stage-specific
differences are mainly visible in the tails of the distributions,
correponding to the statistics of extreme values.

In the next step, we inspect the temporal evolution of the
hyper-parameters (Fig. 4). We repeatedly observe extreme bursts
that exceed the normal range of fluctuations (see shaded area (2)
of Fig. 4). Moreover, we frequently find that certain hyper-
parameters rise or fall consistently within and also across sleep
phases (see the evolution of the STD in the shaded areas (1) and
(3) of Fig. 4).

In order to substantiate these anecdotal observations, we divide
the 68 data sets into contiguous sleep phases, i.e., into the longest
possible sequences of epochs where a subject remains within the
same sleep stage. In Table 1, we further distinguish between sleep
stages in the falling and rising part of the sleep cycle. In each sleep
phase, the sequence of hyper-parameters is least-square-fitted by
a linear function and the slope of this function, quantifying the
overall trend of the hyper-parameter evolution, is extracted.
Finally, we compute the mean slope and its associated error, for
each of the eight sleep stages along the cycle. Although the error
often exceeds 50% of the mean, we find that some hyper-
parameters have clear positive or negative trends that are char-
acteristic for each sleep stage.

In the next step, we consider sleep as a random walk through
the discrete state space of the five sleep stages. In this context, we

Fig. 1 Statistical properties of raw EEG signals. Statistical properties of the raw EEG signals. a Linear plot of the probability density distribution. b Semi-
logarithmic plot of the probability density distribution. c Autocorrelation function. d Cross-correlation function between channels 1 and 2.
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(a)

(c)

(b)

(d)

Fig. 2 Variation of hyper-parameter distributions among subjects. Distribution of the STD (one of the hyper-parameters considered in Fig. 3 of the main
paper) in the different sleep stages, plotted individually for four subjects (a–d). The characteristic differences between the stages are visible for each
individual, demonstrating the temporal heterogeneity of the process. At the same time, there exist significant differences between the individuals.

Fig. 3 Sleep-stage-dependent distributions of selected hyper-parameters. Probability density distributions of hyper-parameters extracted from the raw
EEG data shown in Fig. 1. a Standard deviation STD. b Kurtosis KUR. c Skewness SKE. d Autocorrelation at lag time 300ms, denoted as CDT.
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have computed the transition probabilities between subsequent
sleep phases and between subsequent epochs, which are presented
in the form of 5 × 5 transition matrices in Fig. 5a, b.

The resulting elements of the phase-to-phase transition matrix (a)
show that every stage has a preferred successor stage (i.e., each row
in the matrix has a single, clearly dominating entry). This leads to
the emergence of a default sequence of stages: Wake→N1→N2.
After this, an ongoing oscillation N2↔N1 is most probable, fol-
lowed by a final descent to N3, and eventually the subject will again
rise up towards the next wake state. In the case of the epoch-to-
epoch transition matrix (b), all diagonal elements are close to one,
reflecting the strong temporal persistence of each sleep stage.

The epoch-to-epoch transition matrix can be directly used to
construct a first-order Markov model for the stochastic succession
of sleep stages, as has already been demonstrated before20. Using
such a model, an arbitrary number of simulated hypnograms can
be sampled and a typical example is shown in Fig. 5c.

By comparing certain higher-level features of simulated hyp-
nograms (such as the number of oscillations between the non-
REM sleep stages) with those of actual data, it may be possible to
test the validity of the first-order Markov process as a model for
sleep in future work. Moreover, it may be possible to define a

quantitative measure of sleep quality, based on the 25 entries of
an individuals epoch-to-epoch transition matrix, compared to the
corresponding values in a reference group of healthy sleepers.

The fact that each sleep stage has a specific distribution of
hyper-parameters (compare again Fig. 3) does not only confirm
the heterogeneous, non-stationary character of the full-night EEG
signals, but it can also be exploited for an automated sleep stage
detection. As a proof-of-concept, we have implemented a simple
Bayesian sleep stage detector, which uses the epoch-to-epoch
transition matrix as a prior and the three hyper-parameter dis-
tributions of STD, KUR, and SKE as likelihood factors.

The detector takes as input an arbitrary 30 s epoch of raw
single-channel EEG signal and then computes as an output the
posterior probabilities of the five sleep stages for this epoch.
Although it is readily possible to extract the most probable sleep
stage from these five continuous values, the distribution as a
whole provides important information about the trustworthiness
of the prediction, as sometimes several sleep stages can have
simultaneously large probabilities.

Although in the present implementation the selection of hyper-
parameters is arbitrary and the detector has not been optimized
in any way, the predictions of the detector are in some cases very
close to the ground truth of the human somnologist (Fig. 6a, b).

Moreover, we have computed the distribution of prediction
accuracies (defined as the fraction of correctly classified epochs),
including all our 68 independent data sets. The distributions
systematically shift to larger values, i.e., prediction performance
becomes better, when more hyper-parameters are included into
the Bayesian likelihood (Fig. 7).

In our super-statistical approach, each epoch of the original EEG
signals is mapped onto a small tuple of K hyper-parameters. This
corresponds to a strong dimensionality reduction (in our case from
7680 subsequent EEG values down to only K= 3 hyper-parameters)
and it is therefore interesting how much information can be pre-
served in this data compression process. Ideally, all epochs from the
same sleep-state should be mapped to the same cluster of points in
the K-dimensional embedding space and the achievable accuracy of
the Bayesian detector is fundamentally limited by the degree to
which these clusters overlap. We thus perform a quantitative analysis
of the separability of the five sleep-stage-specific clusters in the space
of the three hyper-parameters STD, KUR, and SKE. For this

Fig. 4 Temporal evolution of hyper-parameters and trend analysis. Typical features in the temporal behavior of hyper-parameters, such as consistent
trends (1) and extreme fluctuations (2) within an ongoing sleep stage, as well as trends that extend across sleep stages (3).

Table 1 Average slope of hyper-parameters in different
sleep stages.

Stage Slope STD Error Slope
Kurtosis

Error Slope
Skewness

Error

Wake −7.905 0.699 −0.765 0.226 +0.154 0.028
REM↓ +1.300 0.167 +0.265 0.049 −0.017 0.008
N1↓ −3.351 0.256 −0.901 0.176 +0.083 0.016
N2↓ +0.367 0.078 −0.351 0.149 −0.017 0.012
N3 +0.861 0.318 +0.074 0.066 −0.022 0.007
N2↑ +2.721 0.187 +0.676 0.063 −0.042 0.009
N1↑ +3.010 0.689 +0.110 0.323 −0.106 0.032
REM↑ +0.567 0.243 +0.153 0.156 +0.014 0.024

Average slope of hyper-parameters (computed from linear fits) in different sleep stages. The
stages REM, N1, and N2 have been separately evaluated for the falling (↓) and rising (↑) phases
of the sleep cycle. Some hyper-parameters have clear trends, with either a positive or negative
sign, depending on the sleep stage.
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purpose, we use two independent measures of cluster separability,
the well-established General Discrimination Value (GDV)11, as well
as a more sophisticated measure, called the Cluster Separation Index
(CSI) (cf. “Methods” section). These quantities are used to compute
the pairwise distances, i.e., dissimilarities, between the sleep stages
(Fig. 8). In both measures, the minimum distance is found between
REM and N1, which means that these sleep stages are most similar.
In contrast, the maximum distance was found between REM and
N3, indicating that these sleep stages are most dissimilar to each
other. These observations fit very well to the known physiology
underlying the respective sleep stages. Stage N3, also called δ-sleep or
slow-wave sleep, respectively, represents deep sleep and is physio-
logically characterized by highly synchronized, low-frequency, and
large-amplitude cortical activity21,22. In contrast, both stages REM
and N1 are dominated by asynchronous, low-amplitude, and high-
frequency cortical activity21,22. These sleep stages resemble wake-
fulness and thus represent the physiological opposite of N3.

Discussion
Traditionally, the analysis of EEG recordings has mainly focused on
the oscillatory features of the signals, such as α-, β-, δ-, and θ-
frequency bands, and in the context of sleep also on wavelet-like

features, i.e., grapho-elements, such as sleep spindles or
K-complexes. Just recently, it became clear that also the aperiodic
component of an EEG signal, in particular the ubiquitous back-
ground noise with a f−β-like power spectrum, contains valuable
information about the physiological state of the subject23,24. Indeed,
these aperiodic, scale-free fluctuations have been shown to system-
atically change with age and with the tasks to be performed25.
Moreover, they offer a novel way to asses the level of arousal26.

An alternative approach is to focus neither on oscillatory fea-
tures, nor on the global power spectrum, but to treat each single-
channel EEG signal simply as a random walk. As has been found
very early on27,28, the changes between two subsequent EEG
values (the steps of the walk) are not always normally distributed,
and later studies have revealed further anomalous properties of
EEG random walks29–31.

In this work, we treat the signal as a non-stationary, hetero-
geneous random walk, generated by a stochastic system with
parameters that change over time, depending on the physiological
state of the subject. In particular, this random walk has different
statistical properties in each of the five sleep (or, more precisely,
vigilance) stages and these differences can be exploited for a
simple automated Bayesian sleep stage detection.

(c)

Fig. 5 Transition probabilities between sleep stages and the simulation of hypnograms. Transition probabilities (color coded) from one non-interrupted
sleep stage to the next (a) and from one 30 s epoch to the next (b). The stage-to-stage probabilities describe a strong propensity for transitions fromWake to N1
and from there to N2. After this, the most likely behavior is an oscillation between N1 and N2, or between N2 and N3. c Example of a simulated hypnogram, where
the random walk between sleep stages is modeled as a Markov process, based on the epoch-to-epoch transition probabilities (top right).
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Although several methods of automatic sleep-stage detection are
already available32–34, we have implemented, as a proof-of-concept,
a first version of a Bayesian, hyper-parameter-based detector.

In contrast to sleep-stage detectors based on deep neural net-
works, which suffer from the black box problem35, our Bayesian
approach is completely transparent and explainable, as the fea-
tures used to distinguish between sleep stages (i.e., the distribu-
tions of hyper-parameters) are explicit. Once these hyper-
parameter distributions are extracted from the raw data and
included into the likelihood, the Bayesian detector can immedi-
ately be applied without any training or further optimization. In
contrast, most deep learning applications require extensive
training and are data hungry36. Furthermore, although the pos-
terior probabilities of the momentary sleep stages are mathema-
tically well-defined in the Bayesian approach, it is not clear if the
typical softmax outputs of a deep neural network can actually be
interpreted as probabilities, or if they are just a list of scores that

sum up to one. Finally, we have shown that the accuracy of the
Bayesian sleep stage detector can be systematically improved,
simply by including additional hyper-parameter distributions as
factors in the likelihood. In principle, the number of these factors
could be made arbitrarily large by using hyper-parameters such as
ðyt � yÞm� �

t2n, the m-th central moments of the fluctuating EEG

signal yt within each 30 s epoch n, or yte
iωkt

� �
t2n

�� ��2, the magni-
tude squared of momentary Fourier components for different
frequencies ωk.

Besides the probability distributions of the hyper-parameters,
we have also studied their gradual evolution over time. Some of
the hyper-parameters show consistent rising or falling trends
within and across the phases in which the subject is scored to be
in a constant sleep stage. For example, we have observed a case
where the STD of the EEG signal is continuously increasing for
about 30 min, whereas the subject is passing from the REM state

Fig. 6 Bayesian sleep-stage classification. a, b Two examples of automated Bayesian sleep stage classification. In each case, the upper hypnogram shows,
for each 30 s epoch, the posterior probabilities of the sleep stages, with larger color density corresponding to larger probability. The middle hypnogram
shows only the predicted sleep stage with maximum posterior probability. The lower hypnogram is the ground truth, provided by the specialist human
rater. The accuracies are defined as the ratio of correct sleep stage predictions.
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through N1, to N2, and finally to the N3 state (compare
Fig. 4(3)). Such a gradual buildup of EEG amplitude points to a
continuous mechanism in the brain that is regulating the sleep
cycle, a phenomenon similar to the change of hyper-parameters
that we have observed in migrating cells during the cell cycle18.

We speculate that, rather than sub-dividing sleep into discrete
stages, it might be useful to introduce a continuous master
variable ϕðtÞ 2 0; 2π½ �, roughly resembling the mathematical
phase of a sinusoidal oscillation, which tends to increase about
linearly with time and which reflects the momentary position of
the subject within the sleep cycle. In principle, it may then be
possible to design a simple stochastic first-level model, such as an
auto-regressive process of low order, with coefficients that are not
constant but which are top-down controlled (from a second
model level) by the master variable ϕ(t). As we have demon-
strated in other contexts18,19, such super-statistical two-level
models are often capable to reproduce the anomalous time-
dependent statistics of biological and other complex systems
(typically involving non-normally distributed, long-time-
correlated signals) in a particular simple way. In future work,
one could therefore attempt to reproduce the sleep-stage-
dependent properties of the EEG raw signals (Fig. 1) and of the
various hyper-parameters (Fig. 3) with such a two-level model.

Indeed, it may even be possible to relate the phase variable ϕ(t)
to existing models of sleep37–41. An obvious candidate would be
the famous two-process model42,43, in which sleep is controlled
by the nonlinear interplay between the circadian propensity for
sleep, governed by an intrinsic circadian oscillator, and a
homeostatic drive for sleep that continuously increases during the
waking state and dissipates during sleep. In this case, the circa-
dian and homeostatic signals may directly represent the second-
level control signals of a two-level super-statistical model.

Methods
Heterogeneous random walks and superstatistics. In this work, the term
superstatistics does not refer to the superposition of different statistical models, as
originally studied by Beck and Cohen15–17, but more specifically to a method for
the analysis of heterogeneous, time-discrete random walks, as first introduced in
refs. 18,19. We define random walks in the broadest sense as time series of
momentary values y(t= 0, 1, 2,…), which are assumed to be generated by a sto-
chastic process. In particular, the discrete steps Δy(t)= y(t)− y(t− 1) of such a
general random walk need not to be normally distributed and there may exist
linear correlations between subsequent momentary values (correlated random
walk) or even more complex dependencies between values many time points
appart. Moreover, the underlying stochastic process may also have some deter-
ministic components.

A random walk is called heterogeneous if its statistical properties (such as the
distribution of steps p(Δy) or the degree of temporal correlations) change over
time. As has been shown in refs. 18,19 and elsewhere, this can lead to anomaleous
statistical properties of the random walk as a whole (such as non-Gaussian, fat-
tailed step distributions p(Δy), or long-time correlations that can be approximated
by powerlaw autocorrelation functions), although each sufficiently small time
interval can be described by a regular random walk (often even with Gaussian step
distributions and approximately constant statistical parameters).

The method of super-statistical analysis, in its simplest implementation,
therefore sub-divides the random walk into small non-overlapping time intervals
(windows) and computes relevant statistical parameters (such as the nth-order
moments of the momentary distribution function p(y)) independently for each of
these time windows. In the case of a heterogeneous random walk, the resulting
statistical parameters will fluctuate around their mean values much more strongly
than expected from sampling statistics only. The fluctuations of the parameters can
be described by (super-statistical) distribution functions, which represent
characteristic properties of the heterogeneous random walk. We therefore refer to
such strongly fluctuating parameters as hyper-parameters.

Generation of data sets. This work is based on 68 independent data sets, each
containing 1 full-night 3-channel EEG recording (channels F4-M1, C4-M1, and
O2-M1) from a different human subject during sleep, recorded with a sampling
rate of 256 Hz. For most of the following analysis, each of the three channels was

(a)

(b)

(c)

Fig. 7 Dependence of classification accuracy on the used hyper-
parameter combination. Distributions of accuracies over all 68 data sets,
with different combinations of hyper-parameters used in the Bayesian
likelihood: a Single hyper-parameters. Here, the individual mean
accuracies are μSTD= 0.42, μKUR= 0.34, μSKE= 0.44, and the global
mean of these three values is μglo= 0.40. b Pairs of hyper-parameters.
Here, μSTD,KUR= 0.45, μKUR,SKE= 0.47, μSTF,SKE= 0.48, and the global
mean is μglo = 0.47. c All three hyper-parameters. Here the global mean
is μglo= 0.51. The global mean is systematically increasing with the
number of used hyper-parameters.
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treated as a different (sub-)data set and evaluated separately, except for the com-
putation of the cross-correlation functions (see below). The participants of the
study included 46 males and 22 females, with an age range between 21 and 80
years. Exclusion criteria were a positive history of misuse of sedatives, alcohol or
addictive drugs, as well as untreated sleep disorders. The study was conducted in
the Department of Otorhinolaryngology, Head Neck Surgery, of the Friedrich-
Alexander University Erlangen-Nürnberg, following approval by the local Ethics
Committee (323-16 Bc). Written informed consent was obtained from the parti-
cipants before the cardiorespiratory polysomnography. After recording, the raw
EEG data were analyzed by a sleep specialist accredited by the German Sleep
Society, who removed typical artifacts44 from the data and visually identified the
sleep stages in subsequent 30 s epochs, according to the AASM criteria (Version
2.1, 2014)45,46. The resulting, labeled raw data were then used for our standard
statistical and super-statistical analysis, and also as a ground truth to test the
performance of the Bayesian sleep-stage classification.

Sleep-stage-specific statistical properties of raw EEG data. In a first step, each
individual epoch n and channel k was statistically analyzed by computing the
probability density distribution pn,k(y) of the momentary EEG signal amplitudes
yn,k(t), their temporal ACF

An;kðΔtÞ ¼
yn;kðtÞ � yn;k

� �
� yn;kðt þ ΔtÞ � yn;k

� �D E
σ2n;k

; ð1Þ

as well as the cross-correlation function between channels 1 and 2

Cn;1;2ðΔtÞ ¼
yn;1ðtÞ � yn;1

� �
� yn;2ðt þ ΔtÞ � yn;2

� �D E
σn;1 � σn;2

; ð2Þ

where yn;k ¼ yn;kðtÞ
D E

t
is the temporal average of channel ks amplitude yn,k(t)

within epoch n and σn;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yn;kðtÞ � yn;k

� �2� 	
t

s
is the corresponding STD. It is

noteworthy that in this case, the STD is equivalent to the root-mean-squared
amplitude values that we used in previous studies8,9.

In a second step, we have pooled and averaged pn,k(y), An,k(Δt), and Cn,1,2(Δt)
over all epochs that belong to the same sleep stage s. The quantities pn,k(y) and
An,k(Δt) were additionally pooled and averaged over all channels k. As a result, we
obtain the statistical properties ps(y), As(Δt), and Cs,1,2(Δt) that are characteristic
for each sleep stage s and which are shown in Fig. 1.

Extraction and statistical analysis of hyper-parameters. Based on the raw data
yn,k(t), we have computed for each channel k and epoch n a set of hyper-para-
meters, namely the STD

STDn;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yn;kðtÞ � yn;k

� �2� 	
t

s
; ð3Þ

the excess curtosis

KURn;k ¼
yn;kðtÞ � yn;k

σn;k

 !4* +
t

� 3; ð4Þ

the SKE

SKEn;k ¼
yn;kðtÞ � yn;k

σn;k

 !3* +
t

ð5Þ

and the value of the ACF at the specific lag time of 300 ms, where ACF differences
between the sleep stages are relatively large:

ACFn;k ¼ An;kðΔt ¼ 300msÞ: ð6Þ
As these hyper-parameters are strongly fluctuating themselves, we have pooled

them over all epochs and channels and computed their sleep-stage specific
distribution functions ps(STD), ps(KUR), ps(SKE), and ps(ACF), which are shown
in Fig. 3.

Temporal trend analysis of hyper-parameters. For a temporal trend analysis of
the hyper-parameters, we no longer partition the EEG time series yn,k(t) into 30 s
epochs, but into longer, contiguous sleep phases: within a given full-night
recording, the sleep phases J are defined as the longest possible continuous time

periods TJ;beg;TJ;end

h i
, in which the subject was scored to be in the same constant

sleep stage s= s(J). Typically, each sleep phase J contains a large number of sub-
sequent epochs n. The hyper-parameters STDn,k, KURn,k,… perform a higher-
order random walk within each sleep phase J, and visual inspection reveals that
some of these random walks have rising and falling trends (Fig. 4).

To evaluate these trends, we approximate the time series of the hyper-
parameters within each contiguous sleep phase by a linear function,
fhyp,J(n) ≈ aJ × n+ bJ, using least-square fits. The slopes aJ of these linear fits are
then pooled and averaged over all sleep phases J with the same sleep stage s. The
results are shown in Table 1. It is noteworthy that here we have sub-divided the
sleep stages REM, N1, and N2 into the falling and the rising part of the oscillatory
motion between the two extreme stages of Wake and N3.

Evaluation of transition probabilities between sleep stages. The sequence of
human-scored sleep stage labels sn for each subsequent epoch n can be regarded as
a random walk in a discrete state space sn 2 Wake;REM;N1;N2;N3f g. As this
discrete random walk shows clear temporal correlations, we have evaluated the
(normalized) transition probabilities p(sJ+1∣sJ) between subsequent sleep phases, as
well as the transition probabilities p(sn+1∣sn) between subsequent epochs. The
resulting transition matrices are shown in Fig. 5a, b. It is worth noting that, by
definition, the diagonal elements of the phase-to-phase transition matrix are zero.
By contrast, the diagonal elements of the epoch-to-epoch transition matrix are
relatively close to one, as each sleep stage has a high degree of persistence.

The epoch-to-epoch transition matrix defines a Markov random process of first
order. After defining the starting stage sn=0, the transition matrix can be used to

Fig. 8 Mutual distance between sleep stages. Mutual distance between EGG data from different sleep stages, evaluated in the embedding space of the
three hyper-parameters STD, KUR, and SKE. The distance matrix (a) shows the magnitude of the General Discrimination Value (GDV) and the matrix
(b) shows the Cluster Separation Index (CSI). In both measures, the minimum distance is found between REM and N1, whereas the maximum distance is
between REM and N3.
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simulate an arbitrarily long sequence of sleep stages. An example is shown in the
hypnogram of Fig. 5c.

Bayesian sleep stage prediction. We have implemented a simple Bayesian model
that predicts the probabilities P(sn) of the sleep labels sn 2 Wake;REM;N1;N2;N3f g
from the raw EEG data Dn in each 30 s epoch n (note that Dn here stands for the
complete set of 30 × 256 successive EEG values corresponding to the given epoch n).
The prediction is based on the momentary values hkn of selected statistical hyper-
parameters (in our case, the STD h1n, the KUR h2n, and the SKE h3n), which are
calculated directly from the data Dn, and which have different likelihoods q(hkn∣sn) in
the various sleep stages sn. Furthermore, we take into account the prior probability
Π(sn) of the momentary sleep stage, which depends on the prediction P(sn−1) from
the last epoch and on the known transition probabilityM(sn∣sn−1). The prediction for
the current epoch is then given by

PðsnÞ ¼
QðDnjsnÞ � ΠðsnÞ

∑s0n
QðDnjs0nÞ � Πðs0nÞ

: ð7Þ

Here, the global likelihood Q(Dn∣sn) of the current data epoch Dn is given as the
product over the individual likelihoods of the different hyper-parameters hkn:

QðDnjsnÞ ¼
Y

k¼STD;¼

qðhknjsnÞ ¼ qðhSTD;njsnÞ � qðhKUR;njsnÞ � ¼ : ð8Þ

We have numerically implemented these likelihood distribution as continuous
spline-extrapolations that were pre-computed from empirical histograms with
discrete bins. In this way, also new data can be handled with extreme values of the
hyper-parameters that are outside of the empirical histograms. Another possible
implementation would be via kernel density distributions. The (normalized) prior
probability is computed as

ΠðsnÞ ¼
∑sn�1

Mðsnjsn�1Þ � Pðsn�1Þ
∑s0n

∑sn�1
Mðs0njsn�1Þ � Pðsn�1Þ

: ð9Þ

In the initial epoch n0, we assume for simplicity that the subject is in the wake
state. For occasional epochs in which the raw EEG data are not reliable due to obvious
measurement artifacts, Bayesian updating proceeds only on the basis of the prior Π.

Separability of sleep stages. The accuracy of automatic sleep-stage detection
depends on how well data clusters from different stages separate in the embedding
space, which in our case corresponds to the three-dimensional space of the hyper-
parameters STD, KUR, and SKE. In order to assess this mutual separability of sleep
stages in a quantitative way, we use two related measures: the GDV8,9,11 and the
CSI. Both measures take as an input a list of N labeled D-dimensional data vectors
(points), belonging to L distinct classes (clusters) and produce as an output a single
number that characterizes the degree of separability of these classes. Also, both
measures consider two classes as well, separable if the Euclidean distance of data
points between the two classes is typically much larger than the distance of points
within the same class.

Generalized discrimination value. We consider N points xn=1..N= (xn,1,⋯ , xn,D),
distributed within D-dimensional space. A label ln assigns each point to one of L
distinct classes Cl=1..L. In order to become invariant against scaling and translation,
each dimension is separately z-scored and, for later convenience, multiplied with 1

2:

sn;d ¼ 1
2
� xn;d � μd

σd
: ð10Þ

Here, μd ¼ 1
N ∑

N
n¼1xn;d denotes the mean and σd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N∑

N
n¼1ðxn;d � μdÞ2

q
the STD

of dimension d. Based on the re-scaled data points sn= (sn,1,⋯ , sn,D), we calculate
the mean intra-class distances for each class Cl

�dðClÞ ¼
2

NlðNl � 1Þ ∑
Nl�1

i¼1
∑
Nl

j¼iþ1
dðsðlÞi ; sðlÞj Þ; ð11Þ

and the mean inter-class distances for each pair of classes Cl and Cm

�dðCl ;CmÞ ¼
1

NlNm
∑
Nl

i¼1
∑
Nm

j¼1
dðsðlÞi ; sðmÞ

j Þ: ð12Þ

Here, Nk is the number of points in class k and sðkÞi is the ith point of class k. The
quantity d(a, b) is the euklidean distance between a and b. Finally, the GDV is
calculated from the mean intra-class and inter-class distances as follows:

GDV ¼ 1ffiffiffiffi
D

p 1
L
∑
L

l¼1

�dðClÞ � 2
LðL � 1Þ ∑

L�1

l¼1
∑
L

m¼lþ1

�dðCl ;CmÞ

 �

ð13Þ

whereas the factor 1ffiffiffi
D

p is introduced for dimensionality invariance of the GDV with

D as the number of dimensions. In the case of two Gaussian distributed point
clusters, the resulting discrimination value becomes −1.0 if the clusters are located
such that the mean inter cluster distance is two times the STD of the clusters.

Cluster separation index. The basic idea of the GDV is to compare the distance
between two clusters with the size of each individual cluster. However, as cluster
size is computed as an average over all point-to-point distances, this quantity can
become relatively large in highly non-spherical clusters, e.g., when the points are
distributed linearly along a straight or curved line. For this reason, the GDV may
consider two parallel, line-like clusters 1 and 2 as not well separated, even if each
point in 1 is much closer to some adjacent point of 1 than to any point in 2. To
resolve this problem, we have defined an alternative measure of class separability,
the CSI, which is based on nearest-neighbor distance relations and which resembles
a quantity used before for margin-based feature selection47.

In order to determine the CSI of a labeled set of N data points in D-dimensional
space, we compute for each data point n the Euclidean distance d ðmin;SÞ

n to its
nearest neighbor within the same class, as well as the distance d ðmin;OÞ

n to its nearest
neighbor among all the other classes. The CSI is then defined as the logarithm of
the ratio of these two distances, averaged over all data points in all classes:

CSI ¼ ln dðmin;OÞ
n =dðmin;SÞ

n

� � �
n

ð14Þ
Here, it is assumed that all point-to-point distances in the data are non-zero. As

the CSI is based on the ratio of Euclidean distances, it is invariant against
translation and scaling. According to the CSI, two parallel line-like clusters are
considered as well separated, provided that the density of points within each line is
sufficiently large.

It is noteworthy that both the GDV and the CSI produce values around zero
when clusters are not separable. However, as separability increases, the GDV
becomes more negative and the CSI more positive. To make both measures better
comparable, we are considering the magnitude ∣GDV∣ in Fig. 8, where the mutual
distances between hyper-parameter clusters from different sleep stages are
presented.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
In the online repository figshare (https://doi.org/10.6084/m9.figshare.17113664), we
provide all required data (with associated Python 3.9.5 scripts) to reproduce the 8 figures
of the paper (“Supplementary Data 1.zip”).

Code availability
In the online repository figshare (https://doi.org/10.6084/m9.figshare.17113700), we
provide a Python 3.9.5 program (including test data) to run the Bayesian sleep stage
detector (“Supplementary Software 1.zip”).
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