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BACKGROUND AND PURPOSE
To date, proposed in silico models for preclinical cardiac safety testing are limited in their predictability and usability. We
previously reported a multi-scale heart simulation that accurately predicts arrhythmogenic risk for benchmark drugs.

EXPERIMENTAL APPROACH
We created a comprehensive hazard map of drug-induced arrhythmia based on the electrocardiogram (ECG) waveforms simu-
lated under wide range of drug effects using the multi-scale heart simulator described here, implemented with cell models of
human cardiac electrophysiology.

KEY RESULTS
A total of 9075 electrocardiograms constitute the five-dimensional hazard map, with coordinates representing the extent of the
block of each of the five ionic currents (rapid delayed rectifier potassium current (IKr), fast (INa) and late (INa,L) components of the
sodium current, L-type calcium current (ICa,L) and slow delayed rectifier current (IKs)), involved in arrhythmogenesis. Results of the
evaluation of arrhythmogenic risk based on this hazard map agreed well with the risk assessments reported in the literature. ECG
databases also suggested that the interval between the J-point and the T-wave peak is a superior index of arrhythmogenicity when
compared to the QT interval due to its ability to characterize the multi-channel effects compared with QT interval.

CONCLUSION AND IMPLICATIONS
Because concentration-dependent effects on electrocardiograms of any drug can be traced on this map based on in vitro current
assay data, its arrhythmogenic risk can be evaluated without performing costly and potentially risky human electrophysiological
assays. Hence, the map serves as a novel tool for use in pharmaceutical research and development.

Abbreviations
AMED, Japan Agency for Medical Research and Development; APD, action potential duration; CiPA, Comprehensive
Proarrhythmia Assay; ETPCunbound, effective therapeutic plasma concentration; FEM, finite element method; HERG,
human ether-a-go-go related gene; MEXT, Ministry of Education, Culture, Sports, Science and Technology – Japan; TdP,
torsade de pointes; UT-Heart, the heart simulator developed by the University of Tokyo-based team
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Introduction
The growing cost and time required for drug research and de-
velopment (R&D) necessitates the introduction of a novel ap-
proach to cardiotoxicity testing (Hamburg, 2011; Chi,
2013b). In particular, the drug-induced arrhythmia, torsade
de pointes (TdP), is a rare but sometimes fatal adverse effect
of commonly used drugs and this had made screening for ar-
rhythmia propensity mandatory for all drug candidates. Be-
cause the approaches mandated by current regulations,
namely, a single potassium human ether-a-go-go related gene
(hERG) current assay and in vivo ECG testing, are costly and
sometimes lead to false-positive results; regulatory agencies
have announced the implementation of a new paradigm in-
corporating a computational integration of a multiple ionic
current assay into a cardiomyocyte model (Chi, 2013a; Chi,
2013b; Gintant et al., 2016).

Although the use of a cellular model is expected to greatly
facilitate the screening process, accurate predictions of ar-
rhythmia resulting from complex interactions among the dif-
ferent types of cells in heart tissue require organ-level
simulation, which remains a technical challenge. With
advancements in computational science bolstered by high-
performance computing technology, it is now possible to
reproduce the heartbeat in a realistic three-dimensional sim-
ulation model of the human heart implemented with mathe-
maticalmodels of functional molecules (Noble, 2002;Washio
et al., 2010; Okada et al., 2011; Sugiura et al., 2012; Washio
et al., 2013; Okada et al., 2013a). Applying such technologies,
researchers have attempted in silico cardiotoxicity screening
for human subjects, but to date, most have shown only
changes in ECG wave forms induced by drugs or current ac-
tivities, that is, surrogate markers. Thus, these screening tests
are unable to predict arrhythmogenicity (Zemzemi et al.,
2013; Sadrieh et al., 2014).

We have recently succeeded in accurately predicting the
arrhythmogenicity of 12 drugs with known TdP risk, through
the in vitromeasurement of blocking actions onmultiple ionic
currents by reproducing a realistic human 12-lead ECG in
silico (Okada et al., 2015). This method can be applied to any
drug candidate, but the requirement of a high-performance
computer is an obstacle to its widespread use. Alternatively,
if an open access ECG database covering the wide range of
drug effects were available, expensive computers would no
longer be needed for each user. However, the high computa-
tional burden has made this project impractical. In a previous
study, the computational time for a single beat with our heart
simulator (degrees of freedom = 285 294 896, number of cell
models = 22 750 008) was 3 h with 254 cores (Intel Xenon
E5-2670, 2.6 GHz), and five beats were required for numerical
convergence. Accordingly, the total computational cost re-
quired for 10 000 patterns of multi-current effects would be
over 70 million core hours.

In the present study, we overcame the problem of long
computational times by utilizing the RIKEN K-computer with
a performance of over 10 petaflops (SPARC64 VIIIfx, 705 024
cores, Fujitsu Ltd., Kawasaki, Japan) (Yonezawa et al., 2011).
We varied the extent of block of five ionic currents known
to affect arrhythmogenicity incrementally by 10%, including
the rapid delayed rectifier potassium current (IKr: 0 to 100%),
fast (INa: 0 to 40%) and late (INa,L: for this current, only 0, 25

and 50% blocks were tested) components of the sodium cur-
rent, L-type calcium current (ICa,L: 0 to 40%), and slow de-
layed rectifier current (IKs: 0 to 100%), to simulate a total of
9075 patterns of multiple ionic current blocks. For every com-
bination of current block, we simulated the electrophysiolog-
ical activity of the heart and the associated 12-lead ECG to
create a five-dimensional map of arrhythmia risk, in which
the co-ordinates of the map represent the extent of block of
each current. In addition to the occurrence of arrhythmia,
the following ECG indices used for arrhythmia risk assess-
ment were also evaluated: QT interval, Tpeak-Tend interval
and J-Tpeak interval (Figure 1).

Methods
The same finite element method (FEM) models of the hu-
man heart and torso and algorithms that were used in a
previous study (Washio et al., 2010; Okada et al., 2011)
were used for this study. The details of the model and algo-
rithms are described in Supporting Information Data S1.
These models were created from the multi-detector CT im-
ages of a healthy adult volunteer and subdivided into 244
187 136 and 40 038 400 voxels for the heart and torso re-
spectively (Washio et al., 2010; Okada et al., 2011; Okada
et al., 2015). Cell models of human ventricular myocytes
with different electrophysiological properties (endocardial,
M and epicardial) (O’Hara et al., 2011) were implemented
to the appropriate FEM node to reproduce the physiologi-
cal tissue structure of the ventricular wall (Okada et al.,
2011). To reproduce the physiological conduction velocity
in myocardial tissue, the equations describing the kinetics
of the m gate of the Na channel were replaced with those
of Ten Tusscher et al. (2004) (similar modification was made
in Sanchez-Alonso et al., 2016). For the rest of the myocyte
models, we used the equations and parameters of the original
model. The conduction system, including the Purkinje
network, was also modelled with specific electrophysiological
properties (Stewart et al., 2009). The sites of interaction
between the Purkinje network and myocardium (i.e. earliest
activation sites) were adjusted to reproduce the normal
morphology of QRS waves (Okada et al., 2011).

The following bidomain equations describing the propa-
gation of excitation were solved using the parallel multilevel
technique that we have developed (Washio et al., 2010).
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where ϕE and ϕI are the extracellular and intracellular
potentials, respectively; V= ϕI�ϕE is the transmembrane
voltage; β is the surface-to-volume ratio of the tissue; Cm is
the membrane capacitance; t is time;GE

ij andGI
ij are the intracel-

lular and extracellular anisotropic conductivity tensors originat-
ing from the myocardial fibre structure; xi and xj are the tensor
notations of the x, y and z coordinates; and Iion is the sum of
ionic transmembrane currents calculated by the human ventric-
ularmyocytemodel of electrophysiology. Verification of the nu-
merical method is shown in Supporting Information Data S1.
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To save computational time, simulations were performed
for a heart rate of 1 Hz using only the ventricles. As a prelim-
inary test, we used a longer period, which revealed that, dur-
ing regular beats with a constant R-R interval, the system is
stable even under the influence of drugs. Accordingly, we de-
termined that a shorter simulation (five beats) could test as
many cases as the longer simulation, taking into account
the limited computational resource available. ECG indices
including the QT interval, Tpeak-Tend and J-Tpeak were mea-
sured in limb lead II of the simulated ECG (Figure 1). The oc-
currence of arrhythmias was first screened algorithmically
by monitoring the deviations in the RR interval or changes
in the amplitude of R waves. These observations were then
confirmed visually using the ECG findings and the spiral
waves in the heart model (Figure 3). In addition to the
sustained reentry, we observed non-sustained ventricular
tachycardia in the marginal zone of arrhythmia risk. The ex-
tent of block by drugs for each ionic current at specific con-
centrations (x) was calculated using the following equation,
with the concentration at 50% block (IC50) and with a Hill
constant (h) taken from the literature (Crumb Jr et al.,
2016; Du et al., 2011; Okada et al., 2015).

Extent of block ¼ 10 logx-logIC50ð Þh

1þ 10 logx-logIC50ð Þh

All program codes were written in-house. They have been
registered as intellectual property at the University of Tokyo
and thus publicly unavailable.

Data availability
Numerical data are available at Figshare: https://figshare.
com/s/dd2bcd2294cdde871066 (doi: 10.6084/m9.figshare.
5946739). The data and statistical analysis comply with the
recommendations on experimental design and analysis in
pharmacology (Curtis et al., 2018).

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked to
corresponding entries in http://www.guidetopharmacology.
org, the common portal for data from the IUPHAR/BPS Guide
to PHARMACOLOGY (Harding et al., 2018), and are perma-
nently archived in the Concise Guide to PHARMACOLOGY
2017/18 (Alexander et al., 2017).

Results

Validation of the model
The O’Hara–Rudy model of the human ventricular myocyte
implemented in our heart model has already been validated
against human ventricular action potential data (O’Hara

Figure 1
Method. Multiple ionic current-blocking effects of drugs at each concentration (upper left) was mapped in a five-dimensional space (lower left).
For each point, multi-scale heart simulation was performed (upper right) to produce a 12-lead ECG, from which ECG indices or the occurrence of
arrhythmia were determined (lower right).

An ionic current-based hazard map for arrhythmia
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et al., 2011; O’Hara and Rudy, 2012). Here, we show the vali-
dation at the organ level by comparing the drug-induced
changes in the QT interval predicted by our heart model with
the ECG data of normal human subjects (Darpo et al., 2015).
In Figure 2, we plotted the simulated and clinically obtained
changes in the QT interval (ΔQT) as a function of the drug
concentrations for five test drugs. Raw data (ECG traces) of
these plots can be seen in Supporting Information Figure
S2.1. The IC50 and Hill coefficient used for the analyses are
shown in Supporting Information Table S2.1. Although we
found some discrepancy for quinine, the overall simulated
changes in the QT interval agreed well with the clinical data.
Because the clinical evaluation of ΔQT was made by
subtracting the time-matched ΔQT of the placebo group, the
solid lines representing the clinical results do not necessarily
cross the origin. Part of the discrepancy between the simula-
tion and clinical results could be attributable to this shift in
intercept. Furthermore, uncertainty about the IC50 and Hill
coefficient values could be another source of discrepancy be-
cause the data used to determine these parameters are highly
dependent on the experimental conditions including the
voltage protocol (Colatsky et al., 2016). To test this hypothe-
sis, we repeated simulations for quinine while varying the
values of these parameters. As shown in Supporting Informa-
tion Figure S2.2, relations between drug concentration and
the QT interval (ΔQTcF) are sensitive to small variations in
these two parameters. Good agreement was obtained by
changing the IC50 and Hill coefficient by only 10%. These

results suggest the importance of standardizing patch clamp
protocols for drug screening.

Hazard map
Parallel computing on a K-computer allowed us to perform
9075 patterns of electrophysiological simulations in
72 600 000 core hours. Because we could not find a method
to show a five-dimensional map in a single panel, we visual-
ized the results in a five-dimensional presentation composed
of three-dimensional subspaces, in which regions of arrhyth-
mia were superimposed with the QT interval distribution.
The selection of the three coordinates in each subspace dif-
fered depending on the evaluated drugs based on the follow-
ing criteria. (i) If three ion currents were affected by the drug,
we adopted these ion currents for coordinates. If there were
fewer than three, we arbitrarily selected another ion current
as the remaining coordinate. (ii) If more than three ion cur-
rents were affected, we selected the three most affected ion
currents in the concentration range studied. In either case,
the statuses of the remaining two currents are parametrically
presented by their inhibition rates at the final concentration
evaluated. To clearly demonstrate the rationale for selecting
the coordinates in each figure, we also showed the
concentration–inhibition relation of ion currents for each
drug and shaded the range of concentration studied. In each
subspace, we clearly observed the region of long QT sur-
rounding the region of arrhythmia, whose margins were
modulated by the relative contributions of the three ion

Figure 2
Organ-level validation of themodel. Electrophysiological response of the model was validated against the ECG data of normal human subjects. For
five of the test drugs, concentration-dependent changes in QT intervals (ΔQT) calculated using the model were compared with those from pub-
lished reports (Darpo et al., 2015). The IC50 and Hill coefficient values for each drug are listed in Supporting Information Table S2.1).
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currents. Because the concentration–block relationship of
each drug was traceable along a trajectory in these spaces,
we were able to evaluate ECG changes and
arrhythmogenicity (Figure 3) (see Supporting Information
Movie S1). Although we computed the 12-lead ECG for all
patterns, only the second limb lead is shown in Figure 3 be-
cause of space limitation. The 12-lead ECGs in Figure 3 are
shown in Supporting Information Figure S2.3. The 12-lead
ECGs computed for 9075 patterns will be presented on our
website.

We evaluated 26 drugs (Supporting Information Figures
2.4–2.29), for which the IC50 and Hill coefficient of
inhibition for five ion currents are available (see Supporting
Information Table S2.1 for parameters and references). We
attempted to match the results with the risk categories
proposed by the Comprehensive Proarrhythmia Assay (CiPA)
(Gintant et al., 2016), Redfern et al. (2003), and the QT drug
list of CredibleMeds (Woosley et al. [www.CredibleMeds.org])
(Table 1). Among the 13 drugs categorized according to the
CiPA, we observed arrhythmias in 4/4 for high-risk drugs,
4/5 for intermediate-risk drugs and 0/4 for low-risk drugs.
Among the 16 drugs categorized by Redfern et al., we observed
arrhythmias in 3/4 for category 1 (repolarization-prolonging

antiarrhythmic drugs), 4/4 for category 2 (drugs that have
been withdrawn or suspended from the market in at least one
major regulatory territory due to an unexpected risk of TdP
for the condition being treated), 2/2 for category 3 (drugs that
have a measurable incidence of TdP in humans or for which
numerous case reports exist in the published literature), 0/3
for category 4 (drugs for which there have been isolated reports
of TdP in humans) and 1/3 for category 5 (drugs for which
there have been no published reports of TdP in humans).
Among the 19 drugs categorized byCredibleMeds, we observed
arrhythmias in 11/13 for drugs of known risk of TdP, 0/3 for
drugs of conditional risk of TdP and 3/3 for drugs of possible
risk of TdP. For another seven drugs not in the CredibleMeds
list (presumably no-risk drugs), we observed arrhythmia
with only one. In general, the results of simulations agreedwell
with these risk assessments but were contradictory for some
drugs, on which we have some comments. First, in the
categorization by Redfern et al., amiodarone is in category
1, but its incidence of TdP in a clinical trial was quite low
(Darpo, 2001). Lawrence et al. (2006) excluded it from the
list of category 1 drugs. Second, cibenzoline was categorized
as 5 by Redfern et al. and not listed in CredibleMeds, but
cases of drug-induced arrhythmias have been reported with it

Figure 3
Five-dimensional hazard map of drug-induced arrhythmias. Top: Five-dimensional data are visualized as a cluster of three-dimensional subspace
distributed in a plane with axes of IKs block and INa,L block. The coordinate system of subspace consists of the extent of block of IKr, INa and ICa,L.
Bottom: In each subspace (in this case, IKs block = 0% and INa,L block = 0%), the dose-dependent effect of the drug (bepridil) can be traced as a
trajectory. The trajectories were generated by functions, and the numbers on them represent the drug concentrations expressed as multiples of
ETPCunbound. The region of arrhythmia is indicated as brown blocks. The inset shows the concentration–block relations of five ion currents. It dem-
onstrates that virtually no inhibitory effects were observed for IKs or INa,L in the concentration ranges studied (shaded area). ECG changes at var-
ious concentrations are shown to the right with the corresponding activation sequence in the heart.

An ionic current-based hazard map for arrhythmia
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(De Bruin et al., 2005). Chlorpromazine is reported to be a
drug of known risk of TdP in the CredibleMeds risk assessment,
but it was judged safe based on the current database. In
addition to blocking INa, INa,L, ICa,L and IKr, chlorpromazine is
known to inhibit the ACh-mediated potassium current (IKAch)
and the ATP-sensitive potassium current (IKATP) (Muller et al.,
1991; Okada et al., 2013b), neither of which is implemented in
the O’Hara model. The effect of chlorpromazine on these ion
currentsmay lead to arrhythmogenesis. Furthermore, considering
that chlorpromazine is classified as an intermediate-risk drug
by CiPA, the occurrence of arrhythmia induced by this drug
may require particular conditions.

Finally, we did not observe arrhythmias for three drugs
considered to be at conditional risk of TdP by CredibleMeds
- quinine, ritonavir, saquinavir (Woosley et al. [www.
CredibleMeds.org]). The precipitating condition for quinine
is reported to be hypokalemia. Accordingly, we performed
the simulation under a hypokalemic condition (extracellular

K+ = 2.5 mM) to observe for arrhythmias at 5 times the
effective therapeutic plasma concentration (ETPCunbound).
Hypokalemia lowered the arrhythmia threshold of high-risk
drug dofetilide (Supporting Information Figure S2.30).
Ritonavir and saquinavir are classified as drugs with
conditional risk of TdP because they reduce the elimination
of drugs known to affect QT and induce TdP. These anti-viral
drugs are known to inhibit major isoforms of cytochrome
P450 (e.g. CYP3A4, CYP2D6), which metabolize many
arrhythmogenic drugs, including quinidine and bepridil
(Eagling et al., 1997). Accordingly, the arrhythmogenic
risk of ritonavir and saquinavir can be better understood
by looking at the effect of quinidine or bepridil at high
concentrations rather than evaluating their direct inhibition
of the ion current.

Visualization of drug effects in multi-dimensional
spaces provides insight into how interactions among ionic
currents affect the arrhythmogenicity and suggests further

Table 1
Risk category of benchmark drugs

Drug name

CiPA risk
(Gintant
et al., 2016)

Redfern risk
(Redfern
et al., 2003)

CredibleMeds
(Woosley et al.
[www.CredibleMeds.org])

Prediction by
database

Threshold
concentration
relative
to ETPCunbound

Quinidine High 1 Known risk of TdP Arrhythmia 0.6

Dofetilide High 1 Known risk of TdP Arrhythmia 21.0

Bepridil High 3 Known risk of TdP Arrhythmia 7.9

dl-Sotalol High 1 Known risk of TdP Arrhythmia 71

Terfenadine Intermediate 2 Known risk of TdP Arrhythmia 865.7

Ondansetron Intermediate – Known risk of TdP Arrhythmia 23.6

Cisapride Intermediate 2 Known risk of TdP Arrhythmia 13

Chlorpromazine Intermediate – Known risk of TdP Safe –

Astemizole Intermediate 2 Known TdP risk Arrhythmia 182

Ranolazine Low – Conditional risk of TdP Safe –

Verapamil Low 5 – Safe –

Mexiletine Low – – Safe –

Diltiazem Low 5 – Safe –

Flecainide – 3 Known risk of TdP Arrhythmia 3.7

Nilotinib – – Possible TdP risk Arrhythmia 6.0

Cibenzoline – 5 – Arrhythmia 10.6

Sertindole – 2 Possible TdP risk Arrhythmia 27.2

Chloroquine – – Known risk of TdP Arrhythmia 172.4

Moxifloxacin – – Known risk of TdP Arrhythmia 73.3

Amiodarone – 1 Known risk of TdP Safe –

Amitriptyline – 4 – Safe –

Mibefradil – 4 – Safe –

Propafenone – 4 – Safe –

Quinine – – Conditional risk of TdP Safe –

Ritonavir – – Conditional risk of TdP Safe –

Saquinavir – – Possible TdP risk Safe –

A total of 26 benchmark drugs are listed with their risk categories reported by three independent sources. Predictions made by the current hazard map
are shown in columns 5 and 6 along with the threshold concentrations for arrhythmia occurrence. The IC50 and Hill coefficient for each drug are listed in
Supporting Information Table S2.1 with their sources.
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applications of this database. We compared the
concentration–block trajectories of two arrhythmogenic
drugs (terfenadine and quinidine) and a non-
arrhythmogenic drug (amiodarone) obtained from the
literature (Darpo, 2001; Redfern et al., 2003; Okada et al.,
2015). As shown in Figure 4A (extent of block; INa,L = 0,
IKs = 0, red square in Figure 3), Block of IKr strongly
attracted the trajectories of quinidine and terfenadine to
the region of arrhythmia, whereas concomitant potent
block of ICa,L appeared to oppose the IKr block and to cause
amiodarone to remain in the safe region, even at a high
concentration. We also observed that the trajectory of
quinidine entered the region of arrhythmia at an interme-
diate concentration (1.94 μM), but it reappeared in the safe
region at a higher concentration (4.86 μM). This finding
appeared to be consistent with the clinical observation that
arrhythmia events occur more frequently at lower concen-
trations of quinidine (Roden et al., 1986).

Ionic current blocks are also induced by genetic disorders.
Polymorphisms in the gene encoding the IKs channel
(KCNQ1; Kv7.1) are found in Asian populations and some-
times impair the intrinsic current (Kubota et al., 2001). We
simulated such a condition in Figure 4B (blue square in
Figure 3), in which a 50% reduction of IKs channels induced
changes in the threshold of arrhythmia for terfenadine
(0.252 to 0.167 μM) and in the arrhythmogenicity of

quinidine at higher concentrations. This type of information
may help doctors customize prescriptions.

The arrhythmogenic risk of a drug can be modified by
altering the pharmacological spectrum for currents or
co-administration of specific ionic current blockers. In
Figure 5A, we gradually added an inhibitory effect on ICa,L to
quinidine to ultimately make it a safe drug. The distance be-
tween these trajectories and the region of arrhythmia in the
multi-dimensional space can be considered as the safety mar-
gin, which varies depending on the condition of individuals.
Finally, the significance of INa,L in proarrhythmia has been
recognized recently, and ranolazine, despite its IKr blocking
effect, is used as an antiarrhythmic agent (Vicente et al.,
2015). To determine how the activities of INa,L and IKr inter-
act, we observed a subspace with INa,L, IKr and ICa,L

coordinates while setting the block of IKs and INa at 0%
(Figure 5B). In clear contrast to quinidine, the trajectory of
the ranolazine concentration–block relationship produced a
dramatic change with increasing INa,L block, thus avoiding ar-
rhythmias. We also found that the arrhythmogenicity of
quinidine was also influenced by INa,L block.

ECG indices for risk assessment
Even in the new paradigm for cardiotoxicity testing, the ex-
amination of human ECGs remains a major component.
Thus, several ECG indices have been evaluated to determine

Figure 4
Visualization of drug effects in a hazard map. In each panel, orthogonal projections are shown with a 3D hazard map. (A) Concentration–block
relationships of terfenadine, quinidine and amiodarone are shown as trajectories in a subspace at INa,L block = 0% and IKs block = 0%. (B)
Concentration–block relationships of terfenadine, quinidine and amiodarone are shown as trajectories in a subspace at INa,L block = 0% and IKs
block = 50%.

An ionic current-based hazard map for arrhythmia
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their utility (Johannesen et al., 2014a; Johannesen et al.,
2014b; Sugrue et al., 2015; Vicente et al., 2015; Gintant
et al., 2016). In Figure 6A, the occurrence of arrhythmia at
each combinatorial state of five ion currents was shown via
prolongations of the QT interval, J-Tpeak and Tpeak-Tend. Be-
cause these ECG indices could not be determined if arrhyth-
mia developed, the colour codes for these indices were made
blank for arrhythmia cases. When IKr was extensively
blocked, that is, 90–100%, the occurrence of arrhythmia
was inevitable, thus demonstrating the strong influence of
this ion current. We also found that the strong block of other
ionic currents did not induce arrhythmia without moderate
to severe IKr block. However, in the intermediate range of IKr
block, the occurrence of arrhythmia was influenced by the ac-
tivities of other ionic currents in a complexmanner. To exam-
ine how closely these ECG indices are linked to
arrhythmogenicity, we applied a logistic regression analysis
to the arrhythmogenicity data, with the extent of the block
of each current as a predictor variable, and compared the re-
sults with those of multiple linear regression analyses of the
QT interval, Tpeak-Tend and J-Tpeak (for details, see Supporting
Information Tables S2.2 and 2.3). As shown in Figure 6B, co-
efficients for regression representing the contribution of each
ionic current to arrhythmogenic risk or ECG indices varied
not only in their magnitude but also in their signs (plus:

facilitatory, minus: inhibitory). However, most notably, the
signs of all coefficients were consistent with those of
arrhythmogenicity only for J-Tpeak, thus suggesting that sim-
ilar ionic mechanisms underlie the prolongation of J-Tpeak

and arrhythmogenesis. The present results are consistent
with those from a recent clinical study demonstrating the su-
periority of this index in detecting the multi-channel effect
(Johannesen et al., 2014b). We compared the drug induced
changes in APD (ΔAPD), QT interval and J-Tpeak for thirteen
CiPA test drugs at their IC50 of IKr, except for mexiletine
and diltiazem, for which these indices were evaluated
at IC50 of INa,L and ICa,L, respectively, because the effect on
IKr is absent or present only at very high concentration
(Table 2). Drugs categorized as high or intermediate risk are
potent I IKr blockers and we could not discriminate their risks
using either QT interval or J-Tpeak interval. However, for
terfenadine with comparable IC50 values for INa, ICa,L and
IKr, QT interval was longer than any of the high risk drugs
but J-Tpeak was definitely shorter thus accurately reflecting
the arrhythmogenic risk. In addition to the ECG indices eval-
uated in this study, such as QT, Tpeak-Tend and J-Tpeak inter-
vals, the short-term variability of QT intervals correlated
with arrhythmogenicity (Thomsen et al., 2004; Lengyel
et al., 2007; Hinterseer et al., 2009; Hinterseer et al., 2010).
However, the limitation in the computational resource did

Figure 5
Visualizations of drug effects in hazard map. In each panel, orthogonal projections are shown with a 3D hazard map. (A) Concentration–block
relationships of quinidine in a subspace at INa,L block = 0% and IKs block = 0% are shown. From the original trajectory (thick line), the effect of
ICa,L block was added gradually to shift the trajectory (blue arrow). (B) The effect of INa,L block was visualized for quinidine and ranolazine in a sub-
space with ICa,L, IKr and INa,L coordinates (INa block = 0% and IKs block = 0%).
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not allow us to simulate the number of beats required for this
analysis. On the other hand, whereas hERG block showed a
predominant effect on QT interval prolongation, the risk of
arrhythmia was significantly decreased by ICa,L block. Such
differing roles of ionic currents may have been the cause of
the false positives observed in the QT study.

Discussion
To decrease the growing costs of drug discovery, which now
threaten world health care by limiting the development of
innovative new drugs, the utilization of in silico technologies
is encouraged in all stages of R&D. Given the complex nature
of arrhythmogenicity, multi-scale heart simulations associat-
ing events at molecular levels with organ-level electrophysi-
ology would undoubtedly add to the predictability of in
silico cardiotoxicity testing. Furthermore, for comparisons
with human ECG testing, a solution of bidomain equations
of excitation propagation with a realistic torso model is es-
sential. In our attempts to overcome the technical challenge
of the huge computational demand (Zemzemi et al., 2013;
Sadrieh et al., 2014), we have developed a reliable in silico
screening system for cardiotoxicity (Okada et al., 2015).

In the present study, the power of a super computer
extended our approach and allowed us to create an

exhaustive database of arrhythmogenic risk based on
multi-current activities. Large-scale, physics-based simula-
tions have been applied to the development of hazard
maps of natural disasters such as earthquakes and floods.
To our knowledge, however, this is the first application
of such a simulation in biomedicine. We recognize that
studies using a single-cell model of electrophysiology have
reported excellent risk prediction (Mirams et al., 2011;
Dutta et al., 2017), but comparisons with the clinical data
(Figure 2), evaluation of various ECG indices (Figure 6)
and examinations of heart morphology (Supporting Infor-
mation Figure S2.32) can be made only with the multi-
scale simulation. We are aware of those studies examining
the ECG changes using one-dimensional models in which
transmural distribution of different cell species – that is,
endocardial, mid-myocardial and epicardial cells – are
reproduced (Bottino et al., 2006; Suzuki et al., 2008). In
our previous study (Okada et al., 2011), however, we
found that not only transmural but also apicobasal, gradi-
ents of action potential duration (APD) contributed to
physiological T-wave morphology. This finding is in
accord with the clinical study reporting the apicobasal
distribution of potassium channels in the human
ventricle (Szentadrassy et al., 2005) and suggests the need
for a 3D ventricular model for the detailed analysis of
ECG indices.

Figure 6
Effects of multiple ionic current blocks on arrhythmogenicity and ECG indices. (A) In the five rows at the top, the extent of block of IKr, IKs, ICa,L, INa

and INa,L is shown in colour. For each combination of ionic current block, the occurrence of arrhythmia is indicated in black (6th row). Prolonga-
tions of the QT interval (ΔQT, 7th row), J-Tpeak (ΔJ-Tpeak, 8th row) and Tpeak-Tend (ΔTpeak-Tend, 9th row) are shown in colour. Colour codes are sum-
marized in the bottom legend. (B) Coefficients of linear regression applied to changes in QT interval, Tpeak-Tend and J-Tpeak. (C) Coefficients of
logistic regression applied to the relationship between the occurrence of arrhythmia and ionic current block.

An ionic current-based hazard map for arrhythmia

British Journal of Pharmacology (2018) 175 3435–3452 3443



Ta
b
le

2
C
h
an

g
es

in
el
ec
tr
op

hy
si
ol
og

ic
al
pa

ra
m
et
er
s.
Fo

r
13

C
iP
A
be

nc
hm

ar
k
d
ru
gs
,r
is
k
ca
te
g
or
ie
s
ar
e
sh
ow

n
w
ith

ch
an

ge
s
in

A
PD

9
0
(Δ
A
PD

9
0
),
J-
T p

e
ak
in
te
rv
al
an

d
Q
T
in
te
rv
al
ob

se
rv
ed

at
IC

5
0
of

I K
r.

M
ex

ile
ti
ne

an
d
di
lt
ia
ze
m

w
er
e
ev

al
ua

te
d
at

IC
5
0
of

I N
a,
L
an

d
I C

a
,L
re
sp
ec
ti
ve

ly
.F

ur
th
er

de
ta
ils

ca
n
be

fo
un

d
in

Su
pp

or
ti
n
g
In
fo
rm

at
io
n
Ta

b
le

S2
.1
.

D
ru

g
n
a
m
e

C
iP
A

ri
sk

(G
in
ta

n
t

et
a
l.
2
0
1
6
)

I N
a
IC

5
0

[μ
M
]

I C
a
,L
IC

5
0

[μ
M
]

I K
r
IC

5
0

[μ
M
]

I K
sI
C
5
0

[μ
M
]

I N
a
,L

IC
5
0
[μ
M
]

ET
P
C
u
n
b
o
u
n
d

[μ
M
]

ΔA
P
D

9
0

[m
s]

Q
T

[m
s]

JT
p
e
a
k

[m
s]

Q
ui
n
id
in
e

H
ig
h

24
.7
9

7.
73

1
0.
63

77
73

.3
3

-
3.
23

5
88

.5
80

47
1

35
6

D
o
fe
ti
ld
ie

H
ig
h

12
4.
5

18
4

0.
00

98
-

-
0.
00

16
92

.6
45

47
6

36
1

Be
pr
id
il

H
ig
h

0.
64

65
1.
45

5
0.
13

02
6.
03

12
-

0.
03

46
3

96
.8
15

47
8

35
9

dl
-S
ot
al
ol

H
ig
h

-
-

35
6.
4

-
-

14
.6
8

93
.4
60

47
7

35
9

Te
rf
en

ad
in
e

In
te
rm

ed
ia
te

0.
47

98
0.
86

15
0.
09

85
-

-
0.
00

02
9

11
8.
72

5
48

4
34

7

O
n
da

ns
et
ro
n

In
te
rm

ed
ia
te

-
22

.5
51

1.
49

2
-

19
.1
81

0.
35

85
88

.6
60

46
6

35
5

C
is
ap

ri
d
e

In
te
rm

ed
ia
te

2.
07

2
4.
27

8
0.
01

47
-

-
0.
00

25
79

92
.6
90

47
6

36
1

C
h
lo
rp
ro
m
az
in
e

In
te
rm

ed
ia
te

4.
53

6
8.
19

2
1.
11

8
-

4.
56

0.
03

45
91

.1
50

47
4

35
7

A
st
em

iz
o
l

In
te
rm

ed
ia
te

1.
86

2
0.
98

78
0.
02

81
-

-
0.
00

02
87

8
92

.8
45

47
6

36
1

Ra
n
ol
az
in
e

Lo
w

41
.0
8

11
8.
3

3.
92

7
-

26
.2
6

2.
31

93
.2
95

47
4

35
6

Ve
ra
p
am

il
Lo

w
4.
27

2
0.
33

31
0.
20

13
29

.8
8

-
0.
08

79
7

89
.1
25

45
2

34
4

M
ex

ile
ti
ne

Lo
w

-
-

-
-

8.
95

7
2.
50

32
-1
.7
10

34
2

23
1

D
ilt
ia
ze
m

Lo
w

-
0.
11

2
6.
56

9
-

-
0.
12

75
33

.3
75

33
0

23
0

J. Okada et al.

3444 British Journal of Pharmacology (2018) 175 3435–3452

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=572


Heart model
To simulate cardiac electrophysiology, not only fibre orienta-
tion but also the distribution of cells having different APDs
was reproduced in our heart model. The functional role of
M-cells in intact hearts remains a matter of debate (Nattel
et al., 2010), and we have tried to resolve the problem using
our simulation model. In our previous study (Okada et al.,
2011), we exhaustively researched the relation between
T-wave morphology and the distribution of APD and found
that only a combination of the transmural gradient (with
M-cells on the endocardial side) andmoderate apicobasal gra-
dients produced physiological T waves. Simulated transmural
distribution of the APD was similar to that measured in the
ventricular wedge preparation from non-failing human heart
(Glukhov et al., 2010), reflecting the transmural expression of
potassium channels already described (Soltysinska et al.,
2009). The apicobasal APD gradient was also consistent with
the heterogeneity of expression levels of potassium ion
channels in normal human ventricular myocardium
(Szentadrassy et al., 2005). With regard to arrhythmogenesis,
in our previous study, we showed that if the entire wall is
made up of endocardial, epicardial or M-cells, we did not ob-
serve arrhythmia at up to 10 times the ETPCunbound of quini-
dine, whereas we did see arrhythmia at 5 times the
ETPCunbound with the model that included three cell types
(Okada et al., 2015). In addition to these observations, we
tested cases where the region of M-cells was increased (from
20 to 70% of the wall volume from the endocardial side
(Supporting Information Figure S2.31A-b), decreased (from
20 to 58% of the wall volume from the endocardial side
(Supporting Information Figure S2.31A-c) or eliminated
(Supporting Information Figure S2.31A-d) from our standard
model (from 20 to 64% of the wall volume of the endocardial
side (Supporting Information Figure S2.31A-a). In the case
without M-cells, endocardial cells occupy 0–64% of the wall
volume from the endocardial side, and epicardial cells occupy
the rest, thus resembling the APD distribution of the classic
concept. We found that whereas the alteration of the thick-
ness of M-cell region only slightly changed the threshold
for arrhythmia compared to our standard distribution
(Supporting Information Figure S2.31A-a), the absence of
the M-cells prevented arrhythmias, in spite of the transmural
APD gradient. In addition to the role in initiation of arrhyth-
mia by producing early after-depolarization (EAD), M-cells
may contribute to the evolution of sustained arrhythmia.
To test this hypothesis, we applied extra-stimulus to the
right ventricular outflow in models with (Supporting Infor-
mation Figure S2.31 A-a) and without, M-cells (Supporting
Information Figure S2.3.1A-d) and found that sustained ar-
rhythmia was observed only in the model with M-cells
(Supporting Information Figure S2.31B). Altogether, our sim-
ulation results suggested that M-cells located near the endo-
cardium play an essential role in drug-induced arrhythmia.

This study was intended to assess drug effects in healthy
subjects, but the sizes of the heart and body (torso) vary even
among healthy subjects, thus potentially influencing the sim-
ulation results. Because the torso is a passive conductor, its
size and shape do not affect the electrophysiology of the
heart. However, detailed analyses of the QT interval and
T-wave morphology, such as T-peak/T-end, are possible only
with the torso. Regarding heart geometry, we expect that a

pathologically dilated or hypertrophied heart with its histo-
logical alterations (e.g. fibrosis) and changes in the expression
level of ion channels may affect the geometry (Aiba et al.,
2010), but analyses of diseased hearts are beyond the scope
of this study. We tested the effect of variations in heart size
on the effectiveness of three test drugs categorized as high-risk
(bepridil), intermediate-risk (cisapride) and low-risk (ve-
rapamil) agents by scaling the model heart to either 80 or
120% of normal while using the same torso model. Although
the amplitudes of the ECG waves changed depending on the
heart size, changes in heart morphology did not affect the risk
assessment, at least within the range tested (Supporting Infor-
mation Figure S2.32). We also noted that the larger heart
caused slight prolongation of the QT interval, but it was
mainly due to widening of the QRS complex. The athlete’s
heart is larger than other normal hearts but has normal func-
tion and is thus considered a model for pure morphological
changes. According to a recent review on the athlete’s heart,
although some athletes have abnormal ECG findings, includ-
ing high voltage, inverted T-waves, axis deviation, first degree
atrioventricular block and QRS prolongation, most arrhyth-
mias on the athletic field are due to undetected structural de-
fects or channelopathies (Walker et al., 2010). These findings
are concordant with the current simulation results.

Risk prediction
Theoretically, threshold concentrations obtained for 26
benchmark drugs should reflect the risk level of each drug,
but they varied over a wide range. For example, the threshold
for terfenadine was 865.7 times ETPCunbound, a value rarely
encountered in the clinical setting. We must note, however,
that the electrophysiology of cardiac myocytes is influenced
by the tissue concentration of the drug, which is often
different from its concentration in circulating plasma. In an
experimental study using guinea pigs, Katagi et al. reported
that the heart/plasma concentration ratio of terfenadine is
about 50 (Katagi et al., 2016). If we assume that the threshold
concentration obtained from the current database reflects the
tissue concentration, the corresponding plasma concentra-
tion would be about 17 times ETPCunbound. Similarly,
heart/plasma concentration ratios in that report estimated
the threshold plasma concentration at 28 and 24 times
ETPCunbound for dl-sotalol and moxifloxacin respectively.
However, we admit that such increases in tissue concentra-
tion may only reflect the effect of non-specific binding and
not necessarily indicate the greater availability of molecules
to the HERG channel. In addition to such pharmacological
and physiological issues, other potential reasons may explain
the mismatch between the currently obtained threshold con-
centration and risk level. First, as discussed in the Results sec-
tion, the ionic current measurements used to determine the
IC50 and Hill coefficient vary depending on the experimental
conditions and the standardization of the protocol, which is
currently a subject of ongoing discussion (Colatsky et al.,
2016). In fact, in the case of terfenadine, IC50 values reported
in the literature vary over two orders of magnitude
(Supporting Information Table S2.4). For instance, if we use
the lower value with the concomitant Hill coefficient re-
ported by Friemel’s group (2010) instead of those currently
used by Okada et al. (2015), the terfenadine concentration
at 90% current inhibition goes down to 0.19 μM from the

An ionic current-based hazard map for arrhythmia
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current value of 0.62 μM. To avoid variations in experimental
protocol in this study, we adopted the values from papers in
which five ionic channels were assayed for many drugs. Sec-
ond, the problem with the risk categorization also must be
taken into consideration. Three lists of risk categories to
which we referred in this study assessed the arrhythmogenic
risk based on the number or presence of incidence reports –
we did not quantitatively analyse the probability of arrhyth-
mogenic events. In a study of a cohort of 197 425 persons
using non-sedating antihistamine drugs, de Abajo et al. found
three cases of ventricular arrhythmia among those taking
terfenadine. Because of the huge number of prescriptions of
this drug, however, the relative risk of terfenadine did not dif-
fer from that of other drugs (de Abajo and Rodriguez, 1999).
We understand the difficulty associated with intensively
assessing every case of arrhythmia that occurs in the real
world, but quantitative information on the arrhythmogenic
risk of these drugs is critical.

To date, a variety of indices have been proposed for
predicting arrhythmogenic risk. Kramer et al. (2013) showed
that the use of log(IKr IC50/ ICa,L IC50) values significantly re-
duced the number of false-positive and false-negative results
compared with the hERG assay of 55 test drugs (MICE
model). Mirams et al. (2011) reported an accurate classifica-
tion of torsade-genic risk by assessing the changes in APD at
90% repolarization (ΔAPD90) obtained in a single-cell model
of electrophysiology developed by Grandi et al. (2010). We
compared the performance of our database with these
methods using 13 CiPA test drugs (Table 1). We defined CiPA
classifications high and intermediate as TdP(+) and low as
TdP(�). For the MICE model, dl-sotalol and mexiletine were
eliminated from the analysis because no significant blocking
effect on ICa,L was reported. For the Mirams et al. method, we
used the Grandi model for 1000 beats under ETPCunbound of
test drugs. The calculated values of these indices are shown
in Supporting Information Table S2.5A. We performed ROC
analyses for these three methods, including the current data-
base, and calculated the sensitivity, specificity and accuracy
for each (Supporting Information Table 2.5B, C, and D). As
summarized in Supporting Information Table S2.5, the cur-
rent database yielded comparable or better results at least for
the 13 CiPA test drugs.

Study limitations
Even with more than 9000 patterns of multi-scale heart
simulations achieved by the available computational re-
sources, we could not cover the entire space of the five-
dimensional hazard map. Accordingly, we selected the
range of the block for each ion current based on the follow-
ing reasons. First, the two potassium currents, IKr and IKs,
were studied over the entire range because of their impor-
tance in pro-arrhythmic risk assessment and potent effects
on the APD. Second, INa block was studied up to 40% be-
cause the propagation of excitation in the myocardial tissue
was inhibited above this range. Third, in addition to
proarrhythmic propensity, the significant negative inotro-
pic effect introduced by the higher degree of ICa,L current
block is in itself a serious side effect (Ezzaher et al., 1991)
and could be a cause of compound attrition – which is
why we limited the range of ICa,L inhibition to 40%. (iv) Fi-
nally, we tested the effect of INa,L block at only three levels,

because, to date, neither specific inhibitors of INa,L nor de-
tailed examinations of its effect on cardiac electrophysiol-
ogy have been reported. We are planning to fill the
remaining vacant spaces, which may contain useful infor-
mation, during a future simulation study.

Our heart model can reproduce and evaluate the drug ef-
fect on gating kinetics of ion channels because the
O’Hara–Rudy model of the human ventricular myocyte that
we have used, has been validated with ionic current data.
However, only the ion current block represented by the
change in conductance was taken into account in this study
because experimental collection of kinetic data is costly and
time-consuming. Hence, it is rarely used to screen new com-
pounds. Similarly, inclusion of additional ionic currents into
the database would augment the reliability of risk assessment.
We could evaluate only the five ionic currents in this study
even with the computational power of the K-computer, but
the effects of a compound may extend beyond these ionic
currents. Further studies dealing with additional ion chan-
nels and detailed gating kinetics would surely augment the
reliability of our database.

Because of limited computational resources, we simulated
only five beats for each case. Studies using a single-cell model
repeated the simulation for 1000 cycles to reach steady state
(Dutta et al., 2017). Also, using a ventricular model, Sadriegh
et al. showed that the convergence of T-wave morphology re-
quires more than 100 beats (Sadrieh et al., 2014). In light of
these studies, five beats of simulation for each case is not
enough to reach steady state, and therefore, the current re-
sults may remain at a proof-of-concept stage. To have an idea
of the number of beats appropriate for assessing
arrhythmogenicity, we ran the O’Hara Rudy model for 1000
beats under ETPCunbound for 13 test drugs. As shown in
Supporting Information Figure S2.33, the APDs converged
quite rapidly, except for quinidine and diltiazem. Even for
these two drugs, however, the APDs reached within 1% of
steady-state values at around 300 beats. We also noted that,
at five beats, the APDs were within 2% of steady-state values
for all the test drugs (Supporting Information Figure S2.33B,
inset). Although evaluations were made only at ETPCunbound,
these results suggest that the evaluation of
arrhythmogenicity is acceptable before reaching steady state
(quasi-steady state). In fact, in recent studies using single-cell
models (Dutta et al., 2017; Kurata et al., 2017), the authors ex-
amined the occurrence of EAD at fewer than 1000 beats
(quasi-steady state). Duttas et al. found a strong correlation
between their metrics of arrhythmogenicity (net charge con-
stituting the net current during the stimulated beat) analysed
at 1000 beats, and the IKr reduction threshold for the induc-
tion of EAD checked at 100 beats (Dutta et al., 2017). Simi-
larly, Kurata et al. evaluated the occurrence of EAD with
0.5–1.0 min of calculation, whereas they required 5–30 min
to achieve steady state. Those numbers are in accordance
with the observation by Sadrieh et al. (2014). Taking all these
data together, we believe that 100–200 beats are necessary to
evaluate arrhythmogenic risk in pharmaceutical research.We
hope that the next generation of super-computers will enable
us to create a database based on the simulations of more than
100 beats for each case.

In conclusion, although it required more than 4 days to
complete the database by fully using a K-computer
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(72 600 000 core hours), the post-K-computer project is al-
ready underway, and a machine that is 100 times faster will
be available in 2020. Therefore, in the near future, the same
scale of database may be created in an hour of operation.

This database will be freely available at http://ut-heart.
com/. Thus, it can be used not only to assess the risk of drug
candidates at any stage of R&D but also to serve as a tool to de-
sign a safe drug without resorting to animal or clinical studies.
Therefore, this database may constitute a high-throughput
and cost-saving approach in toxicology (Hamburg, 2011).
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Movie S1 Evaluation of drug effects in a three-dimensional
subspace. Activation sequences in the heart, body surface po-
tential maps, and corresponding electrocardiograms (ECG)
are shown at various points along the trajectory representing
the concentration-block relations of bepridil. Concentrations
are indicated as multiples of the effective therapeutic plasma
concentration (ETPCunbound).
Figure S1.1 Heart and torso models. A: Morphology of the
ventricular model. B: Fiber orientation. Color indicates angles
relative to the equatorial plane. C: Transmural distribution of
endocardial cells (green), M-cells (red), and epicardial cells
(blue). D: Conduction system. E: Earliest activation sites,
where the Purkinje system is coupled to the myocardium
(white dots), and activation sequences are seen from the ante-
rior wall (top panel) and posterior wall (bottom panel). Color in-
dicates the local activation time. F: Torso model: body surface
with electrocardiographic electrodes (top panel) and major or-
gans (bottom panel).

Figure S1.2 Domains in the model. H: heart domain; B:
blood domain; T: tissue domain. ∂H: boundary of heart do-
main; ∂B: boundary of blood domain; ∂T: boundary of tissue
domain.
Figure S1.3 Algorithm for calculating the propagation of ex-
citation and ECG.
Figure S1.4 Tissue models used for verification. A: Top:
Model used for the B-3D problem, Ω: tissue domain. Bottom:
Model used for the BB-3D* problem, Ω: tissue domain; Ωb:

bath domain. Numbers next to the double-headed arrow in-
dicate size (in mm). B: Tissue model used for the N-version
strategy. S: subdomain for application of stimulation. Num-
bers next to the double-headed arrow indicate size (in mm).
Figure S1.5 Verification using the B 3D problem. A: Distri-
bution of the membrane potential (V: left) and extracellular
potential (∅e : right) at the end time (T=1) were compared be-
tween simulation results (FE analysis) and exact solutions. B:
Errors in membrane potential (V: left) and extracellular po-
tential (∅e : right) evaluated by the L2 spatial norm (red line)
and the Soblev H1 spatial norm (black line) are plotted as
functions of the spatial resolution.
Figure S1.6 Verification using the BB 3D* problem. A: Distri-
bution of the membrane potential (V: left) and extracellular
potential (∅e : right) at the end time (T=1) were compared be-
tween simulation results (FE analysis) and exact solutions. B:
Errors in the membrane potential (V: left) and extracellular
potential (∅e : right) evaluated by the L2 spatial norm (red
line) and Soblev H1 spatial norm (black line) are plotted as
functions of the spatial resolution.
Figure S1.7 Verification using the N-version strategy. A: Lo-
cal activation times simulated with three spatial resolutions
(Δx = 0.5 mm, blue line; 0.2 mm, green line; 0.1 mm, red line)
are plotted as a function of the distance from the stimulation
point. B: Activation time at the end point was simulated
using different time steps and spatial resolutions.
Table S1.1 Tissue conductivity.
Table S1.2 Model parameters.
Table S1.3 Definition of the model.
Table S1.4 Definition of the model used for the N-version
benchmark test.
Table S1.5 Model parameters for the N-version benchmark
test.
Table S1.6 Initial state variables of the cell model for the N-
version benchmark test.
Figure S2.1 Effects of drugs on the electrocardiogram at low
concentrations. Dose-dependent changes in QT intervals are
shown for five drugs (also plotted in Fig. 2).
Figure S2.2 Influences of IC50 and Hill coefficient on the
concentration-dependent changes in QT intervals (ΔQT)
with quinine for IKr. Regression lines were obtained by repeat-
ing simulations when either increasing or decreasing the IC50

and Hill coefficient (h) by 10%.
Figure S2.3 Effects of bepridil on the 12-lead electrocardio-
gram (ECG). The12-lead ECGs are shown for baseline condi-
tions (left column), at 4× effective therapeutic plasma
concentration (ETPC) (middle column), and at 7× ETPC
(right column).
Figure S2.4 Arrhythmogenic risk of quinidine. A: The
concentration-block relationship of quinidine is shown
as a trajectory in the three-dimensional subspace of the
risk map superimposed with the distribution of the QT
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interval. The red dot indicates the intersection of the tra-
jectory with the region of arrhythmia. B: Electrocardio-
gram (ECG) changes at various concentrations are
indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of
five ion channels are plotted in different colors, indicated
above. Shaded area indicates the concentration range eval-
uated in this sub-space. Green dots on the abscissa repre-
sent ETPCunbound.
Figure S2.5 Arrhythmogenic risk of dofetilide. A: The con-
centration-block relationship of dofetilide is shown as a tra-
jectory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. The
red dot indicates the intersection of the trajectory with the re-
gion of arrhythmia. B: Electrocardiogram (ECG) changes at
various concentrations are indicated as multiples of the effec-
tive therapeutic plasma concentration. C: Concentration-in-
hibition relations of five ion channels are plotted in
different colors, indicated above. Shaded area indicates the
concentration range evaluated in this sub-space. Green dots
on the abscissa represent ETPCunbound.
Figure S2.6 Arrhythmogenic risk of bepridil. A: The concen-
tration-block relationship of bepridil is shown as a trajectory
in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. The
red dot indicates the intersection of the trajectory with the re-
gion of arrhythmia. B: Electrocardiogram (ECG) changes at
various concentrations are indicated as multiples of the effec-
tive therapeutic plasma concentration. C: Concentration-in-
hibition relations of five ion channels are plotted in
different colors, indicated above. Shaded area indicates the
concentration range evaluated in this sub-space. Green dots
on the abscissa represent ETPCunbound.
Figure S2.7 Arrhythmogenic risk of dl-sotalol. A: The con-
centration-block relationship of dl-sotalol is shown as a tra-
jectory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. The
red dot indicates the intersection of the trajectory with the re-
gion of arrhythmia. B: Electrocardiogram (ECG) changes at
various concentrations are indicated as multiples of the effec-
tive therapeutic plasma concentration. C: Concentration-in-
hibition relations of five ion channels are plotted in
different colors, indicated above. Shaded area indicates the
concentration range evaluated in this sub-space. Green dots
on the abscissa represent ETPCunbound.
Figure S2.8 Arrhythmogenic risk of terfenadine. A: The con-
centration-block relationship of terfenadine is shown as a tra-
jectory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. The
red dot indicates the intersection of the trajectory with the re-
gion of arrhythmia. B: Electrocardiogram (ECG) changes at
various concentrations are indicated as multiples of the effec-
tive therapeutic plasma concentration. C: Concentration-in-
hibition relations of five ion channels are plotted in
different colors, indicated above. Shaded area indicates the
concentration range evaluated in this sub-space. Green dots
on the abscissa represent ETPCunbound.
Figure S2.9 Arrhythmogenic risk of ondansetron. A: The
concentration-block relationship of ondansetron is shown
as a trajectory in the three-dimensional subspace of the risk
map superimposed with the distribution of the QT interval.

The red dot indicates the intersection of the trajectory with
the region of arrhythmia. B: Electrocardiogram (ECG)
changes at various concentrations are indicated as multiples
of the effective therapeutic plasma concentration. C: Con-
centration-inhibition relations of five ion channels are plot-
ted in different colors, indicated above. Shaded area
indicates the concentration range evaluated in this sub-
space. Green dots on the abscissa represent ETPCunbound.
Figure S2.10 Arrhythmogenic risk of cisapride. A: The con-
centration-block relationship of cisapride is shown as a trajec-
tory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. The
red dot indicates the intersection of the trajectory with the re-
gion of arrhythmia. B: Electrocardiogram (ECG) changes at
various concentrations are indicated as multiples of the effec-
tive therapeutic plasma concentration. C: Concentration-in-
hibition relations of five ion channels are plotted in
different colors, indicated above. Shaded area indicates the
concentration range evaluated in this sub-space. Green dots
on the abscissa represent ETPCunbound.
Figure S2.11 Arrhythmogenic risk of chlorpromazine. A:
The concentration-block relationship of chlorpromazine is
shown as a trajectory in the three-dimensional subspace of
the risk map superimposed with the distribution of the QT in-
terval. B: Electrocardiogram (ECG) changes at various con-
centrations are indicated as multiples of the effective
therapeutic plasma concentration. C: Concentration-inhibi-
tion relations of five ion channels are plotted in different
colors, indicated above. Shaded area indicates the concentra-
tion range evaluated in this sub-space. Green dots on the ab-
scissa represent ETPCunbound.
Figure S2.12 Arrhythmogenic risk of astemizole. Left panel:
The concentration-block relationship of astemizole is shown
as a trajectory in the three-dimensional subspace of the risk
map superimposed with the distribution of the QT interval.
Right panel: Electrocardiogram (ECG) changes at various con-
centrations are indicated as multiples of the effective thera-
peutic plasma concentration. C: Concentration-inhibition
relations of five ion channels are plotted in different colors,
indicated above. Shaded area indicates the concentration
range evaluated in this sub-space. Green dots on the abscissa
represent ETPCunbound.
Figure S2.13 Arrhythmogenic risk of ranolazine. A: The
concentration-block relationship of ranolazine is shown as a
trajectory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
Shaded area indicates the concentration range evaluated in
this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.14 Arrhythmogenic risk of verapamil. A: The con-
centration-block relationship of verapamil is shown as a tra-
jectory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
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Shaded area indicates the concentration range evaluated in
this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.15 Arrhythmogenic risk of mexiletine. A: The
concentration-block relationship of mexiletine is shown as
a trajectory in the three-dimensional subspace of the risk
map superimposed with the distribution of the QT interval.
B: Electrocardiogram (ECG) changes at various concentra-
tions are indicated as multiples of the effective therapeutic
plasma concentration. C: Concentration-inhibition relations
of five ion channels are plotted in different colors, indicated
above. Shaded area indicates the concentration range evalu-
ated in this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.16 Arrhythmogenic risk of diltiazem. A: The con-
centration-block relationship of diltiazem is shown as a tra-
jectory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
Shaded area indicates the concentration range evaluated in
this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.17 Arrhythmogenic risk of flecainide. A: The con-
centration-block relationship of flecainide is shown as a tra-
jectory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
Shaded area indicates the concentration range evaluated in
this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.18 Arrhythmogenic risk of nilotinib. A: The con-
centration-block relationship of nilotinib is shown as a trajec-
tory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
Shaded area indicates the concentration range evaluated in
this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.19 Arrhythmogenic risk of cibenzoline. A: The
concentration-block relationship of cibenzoline is shown as
a trajectory in the three-dimensional subspace of the risk
map superimposed with the distribution of the QT interval.
B: Electrocardiogram (ECG) changes at various concentra-
tions are indicated as multiples of the effective therapeutic
plasma concentration. C: Concentration-inhibition relations
of five ion channels are plotted in different colors, indicated
above. Shaded area indicates the concentration range evalu-
ated in this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.20 Arrhythmogenic risk of sertindole. A: The con-
centration-block relationship of sertindole is shown as a tra-
jectory in the three-dimensional subspace of the risk map

superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
Shaded area indicates the concentration range evaluated in
this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.21 Arrhythmogenic risk of chloroquine. A: The
concentration-block relationship of chloroquine is shown as
a trajectory in the three-dimensional subspace of the risk
map superimposed with the distribution of the QT interval.
B: Electrocardiogram (ECG) changes at various concentra-
tions are indicated as multiples of the effective therapeutic
plasma concentration. C: Concentration-inhibition relations
of five ion channels are plotted in different colors, indicated
above. Shaded area indicates the concentration range evalu-
ated in this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.22 Arrhythmogenic risk of moxifloxacin. A: The
concentration-block relationship of moxifloxacin is shown
as a trajectory in the three-dimensional subspace of the risk
map superimposed with the distribution of the QT interval.
B: Electrocardiogram (ECG) changes at various concentra-
tions are indicated as multiples of the effective therapeutic
plasma concentration. C: Concentration-inhibition relations
of five ion channels are plotted in different colors, indicated
above. Shaded area indicates the concentration range evalu-
ated in this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.23 Arrhythmogenic risk of amiodarone. A: The
concentration-block relationship of amiodarone is shown as
a trajectory in the three-dimensional subspace of the risk
map superimposed with the distribution of the QT interval.
B: Electrocardiogram (ECG) changes at various concentra-
tions are indicated as multiples of the effective therapeutic
plasma concentration. C: Concentration-inhibition relations
of five ion channels are plotted in different colors, indicated
above. Shaded area indicates the concentration range evalu-
ated in this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.24 Arrhythmogenic risk of amitriptyline. A: The
concentration-block relationship of amytryptiline is shown
as a trajectory in the three-dimensional subspace of the risk
map superimposed with the distribution of the QT interval.
B: Electrocardiogram (ECG) changes at various concentra-
tions are indicated as multiples of the effective therapeutic
plasma concentration. C: Concentration-inhibition relations
of five ion channels are plotted in different colors, indicated
above. Shaded area indicates the concentration range evalu-
ated in this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.25 Arrhythmogenic risk of mibefradil. A: The con-
centration-block relationship of mibefradil is shown as a tra-
jectory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
Shaded area indicates the concentration range evaluated in
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this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.26 Arrhythmogenic risk of propafenone. A: The
concentration-block relationship of propafenone is shown
as a trajectory in the three-dimensional subspace of the risk
map superimposed with the distribution of the QT interval.
B: Electrocardiogram (ECG) changes at various concentra-
tions are indicated as multiples of the effective therapeutic
plasma concentration. C: Concentration-inhibition relations
of five ion channels are plotted in different colors, indicated
above. Shaded area indicates the concentration range evalu-
ated in this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.27 Arrhythmogenic risk of quinine A: The con-
centration-block relationship of quinine is shown as a trajec-
tory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
Shaded area indicates the concentration range evaluated in
this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.28 Arrhythmogenic risk of ritonavir. A: The con-
centration-block relationship of ritonavir is shown as a trajec-
tory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
Shaded area indicates the concentration range evaluated in
this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.29 Arrhythmogenic risk of saquinavir, A: The con-
centration-block relationship of saquinavir is shown as a tra-
jectory in the three-dimensional subspace of the risk map
superimposed with the distribution of the QT interval. B:
Electrocardiogram (ECG) changes at various concentrations
are indicated as multiples of the effective therapeutic plasma
concentration. C: Concentration-inhibition relations of five
ion channels are plotted in different colors, indicated above.
Shaded area indicates the concentration range evaluated in
this sub-space. Green dots on the abscissa represent
ETPCunbound.
Figure S2.30 Influence of hypokalemia on arrhythmogenic
risk. Arrhythmogenic risk of quinine (A) and dofetilide (B)
was evaluated under normal and hypokalemic conditions.

Electrocardiographic changes at various concentrations of
drugs are indicated as multiples of the effective therapeutic
plasma concentration under hypokalemic conditions (left
panel: extracellular concentration of K+ ([K+]o) = 2.5 mM)
and normal conditions (right panel: extracellular concentra-
tion of K+ ([K+]o) = 5.4 mM).
Figure S2.31 Role of M-cells in arrhythmogenesis. A: Effects
of M-cell distribution. The effects of bepridil were evaluated
in models with different M-cell distributions. (a) M-cells were
distributed 20–64% of the wall volume from the endocardial
side. (b) M-cells were distributed 20–70% of the wall volume
from the endocardial side. (c) M-cells were distributed
20–58% of the wall volume from the endocardial side. (d)
Without M-cells or endocardial cells (0–64% of the wall vol-
ume from the endocardial side) or epicardial cells (64–100%
of the wall volume from the endocardial side). Top panels
show transmural distributions of endocardial cells (green),
M-cells (red), and epicardial cells (blue). Lower panels show
ECG lead II at various drug concentrations of bepridil in mul-
tiples of ETPCunboud. B: Role of M-cells in sustained arrhyth-
mia. Extra-stimulus was applied to the right ventricular
outflow in models with M cells (top panel: model "a" of SFig.2.
31A) and without M-cells (bottom panel: model "d" of SFig.2.
31A) at 570 ms from the onset of the QRS complex (red ar-
rows) under the addition of bepridil (7.5 times ETPCunbound).
Figure S2.32 Effect of heart size on arrhythmogenic risk.
The effect of heart size was tested for a (A) high-risk drug
(bepridil), (B) intermediate-risk drug (cisapride), and (C)
low-risk drug (verapamil). Each drug was tested in a small
heart (left column), normal heart (middle column), and large
heart (right column). The heart was scaled by 80% or 120% of
normal, resulting in a left ventricular end-diastolic volume
(LVEDV) of 57 ml (=114×0.83) or 199 ml (=114×1.23).
Changes in the ECG (limb lead II) at various drug concentra-
tions are shown. Drug concentrations are indicated as multi-
ples of the effective therapeutic plasma concentration.
Figure S2.33 Convergence of action potential durations A.
Changes in the action potential durations (APD) during the
1000 cycles of simulations using the O’Hara Rudy model in a
control and 13 test drugs at ETPCunbound. B. Relative deviation
from the steady-state value [(APD90 � APD90steady � state)/
APD90steady � state × 100]. Inset: Magnified view of the first 10
cycles.
Table S2.1 Parameters of test drugs.
Table S2.2 Multiple linear regression analysis.
Table S2.3 Logistic regression analysis.
Table S2.4 Ranges of IC50 and the Hill coefficient for
terfenadine.
Table S2.5 Predictive performance of various methods.
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