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Simple Summary: In recent years, next-generation sequencing has become a major tool in the man-
agement of cancer, advancing the diagnosis and treatment of hematological malignancies. However,
the gold standard for cancer diagnosis and monitoring still involves invasive and painful procedures,
such as tissue and bone marrow biopsies. These procedures involve physical risks, and a single
biopsy cannot account for the spatial heterogeneity of tumors. The validity of circulating tumor
DNA-mediated liquid biopsies has been receiving increasing attention. This review provides a
brief overview of research on liquid biopsy in hematological malignancies, with special emphasis
on circulating tumor DNA technologies, which may, in the near future, guide real-world decision
making by hematologists.

Abstract: With the recent advances in noninvasive approaches for cancer diagnosis and surveillance,
the term “liquid biopsy” has become more familiar to clinicians, including hematologists. Liquid
biopsy provides a variety of clinically useful genetic data. In this era of personalized medicine,
genetic information is critical to early diagnosis, aiding risk stratification, directing therapeutic
options, and monitoring disease relapse. The validity of circulating tumor DNA (ctDNA)-mediated
liquid biopsies has received increasing attention. This review summarizes the current knowledge
of liquid biopsy ctDNA in hematological malignancies, focusing on the feasibility, limitations, and
key areas of clinical application. We also highlight recent advances in the minimal residual disease
monitoring of leukemia using ctDNA. This article will be useful to those involved in the clinical
practice of hematopoietic oncology.

Keywords: liquid biopsy; circulating tumor DNA; ctDNA; MRD monitoring; malignancy

1. Introduction

With the aging population on the increase, the global cancer incidence rate has been
on the rise. Hematopoietic tumors are no exception, with one person diagnosed with
blood cancer every three minutes and one person dying of it every nine minutes in the
United States. Interest in the Precision Medicine Initiative announced in President Obama’s
State of the Union address in January 2015 has spread worldwide. Precision medicine
encompasses the prevention and treatment of diseases based on a detailed analysis of
the genomic information and lifestyle of a patient and environmental factors. In cancer
genome medicine, the practice of establishing a foundation for individual treatment based
on a diagnosis guided by a comprehensive genetic analysis is being developed. However,
invasive diagnostic methods are still widely used and remain an issue. This review
summarizes the literature on circulating tumor DNA (ctDNA)-mediated liquid biopsy,
a noninvasive and useful personal diagnostic approach based on genetic information.
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The clinical applications of ctDNA, which will be useful to those involved in the clinical
management of hematopoietic tumors, are specifically emphasized.

2. What Is a Liquid Biopsy?

The term “biopsy” was coined by Besnier (France) in the late 1870s when conducting
dermatological-related experiments. The word is derived from bio (life) and opsis (to
see) [1]. Currently, biopsy is defined as “the removal of cells or tissues for examination by
a pathologist” (https://www.cancer.gov/publications/dictionaries/cancer-terms/def/
biopsy, accessed on 1 April 2021). There are various problems associated with traditional
tissue biopsies. First, complications like pain and bleeding at the puncture site after
biopsy are frequent [2–4]. Second, the detection of an early-stage tumor or residual lesions
is unsatisfactory in tissue biopsy, and its application in determining treatment efficacy
and prognosis is limited [5]. Further, it is difficult to capture the inherent molecular
heterogeneity of metastatic tumors and the ability of cancer genomes to evolve dynamically
based on a single local biopsy [6,7].

The term “liquid biopsy” was first used by Pantel et al. in their 2010 review of
circulating tumor cells (CTCs) to refer to the clinical utility of peripheral blood sample
analysis [8]. Now, in a broad sense, liquid biopsy indicates the isolation and analysis of
tumor-derived materials (e.g., DNA, RNA, or even intact cells) from blood or other bodily
fluids [9,10]. Samples for liquid biopsy include plasma/serum, urine [11], saliva [12],
stool [13], and cerebrospinal fluid [14]. Some argue that cerebrospinal fluid does not qualify
as a fluid for liquid biopsy because of the invasive nature of its collection.

3. Contents of a Liquid Biopsy

In a conventional biopsy, tissue from the lesion is collected for the morphological
evaluation and quantification of nucleic acids (DNA, RNA), proteins, and metabolites
contained in the cells. On the other hand, in liquid biopsy, CTCs, cell-free DNA/RNA,
extracellular vesicles, and microRNAs (miRNAs) in the collected liquid are used to evalu-
ate the characteristics of the origin cell. CTCs are thought to be part of cancer stem cells
released into the bloodstream via the epithelial–mesenchymal transition and undergo
hematogenous metastasis [15]. Therefore, analysis of the CTCs detected in the periph-
eral blood (PB) of cancer patients is useful for early cancer screening, elucidation of the
metastatic process, prediction of prognosis, determination of therapeutic efficacy, and
analysis of the mechanisms of therapeutic resistance [16–21]. There is a paucity of literature
on CTCs in hematopoietic tumors, probably because, unlike solid tumors, the concept of
metastasis is rarely used and because the detection of CTCs requires complex enrichment
methods [22,23]. In addition, in multiple myeloma (MM), CTCs have been associated with
the spread of extramedullary lesions [24–27] and have been applied in the genetic profiling
of tumors [28].

In 1983, Johnstone and Harding discovered vesicles secreted by reticulocytes, and the
vesicles were named exosomes in 1987 [29–31]. Since then, vesicles of different sizes and
origins have, among others, been referred to as ectosomes, microvesicles, and shedding
vesicles. These are now collectively referred to as extracellular vesicles (EVs). Their contents
include proteins, nucleic acids (miRNAs and messenger RNAs [mRNAs]), lipids, and
metabolites, and they have been shown to be a tool for intercellular communication [32–34].
In particular, miRNAs encoded by EVs are one of the bioactive molecules involved in tumor
growth and drug resistance and have attracted attention in malignant lymphoma [35] and
MM studies [36,37].

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/biopsy
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/biopsy
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4. Cell-Free DNA and Circulating Tumor DNA

Cell-free DNA (cfDNA) refers to all non-encapsulated DNA in the bloodstream. In
1948, Mandel and Metais were the first to report the presence of cfDNA in the plasma of
patients with systemic lupus erythematosus [38]. In healthy individuals, the concentration
of cfDNA ranges from 0 to 100 ng/mL of blood (average ~ 30 ng/mL) [39]; the main
sources are apoptotic or necrotic cells [40,41]. Normally, the DNA of apoptotic cells
is rapidly degraded by DNase [42]. However, when the uptake of apoptotic bodies is
impaired or when a large number of apoptotic cells are generated, such as following acute
trauma [43], stroke [44], exercise [45], transplantation [46], infection [47], and cancer [48,49],
the cfDNA concentration in plasma increases. In oncology, the tumor-derived fraction of
cfDNA is known as ctDNA [50]. ctDNA can be used to analyze not only mutations but also
methylation status, size fragment patterns, transcriptomics, and viral load [10,51]. Studies
by Dennis Lo et al. regarding clearance time revealed that the circulating fetal DNA, after
delivery, has a mean half-life of 16.3 min. The study suggested that tumor-derived DNA
may be removed rapidly [52].

Diehl et al. sampled the plasma of colorectal cancer patients who underwent tumor
resection and showed that the ctDNA levels determined before surgery varied widely and
that the postoperative ctDNA half-life was 114 min. In the study, ctDNA levels reflected
the total systemic tumor burden, in that, the levels decreased upon complete surgery and
generally increased as new lesions became apparent upon radiological examination [49].
Bettegowda et al. evaluated the use of ctDNA to detect tumors in 640 patients with various
cancer types. They found that detectable levels of ctDNA correlated with the stage of
cancer; ctDNA was detected in 47% of patients with stage I cancer, 55% with stage II, 69%
with stage III, and 82% with stage IV [53]. In a study using 3D volume reconstruction of
computed tomography (CT) images, Parkinson et al. clearly demonstrated that the amount
of ctDNA in the plasma of high-grade serous ovarian cancer patients reflects the degree of
the tumor [54]. From these studies, ctDNA analysis is considered a real-time snapshot of
disease burden.

Fan et al. measured the size of fetal cfDNA and found a dominant peak at ~162 bp and
a minor peak at ~340 bp [55]. The size of cfDNA in cancer patients has also been reported
to peak at ~180 bp, which is considered to be the result of protection from enzymatic
degradation by histone binding to nuclear DNA during apoptosis. In contrast, DNA
fragments larger than ~10,000 bp could originate from cells dying via necrosis [40].

For cfDNA sampling, plasma centrifuged from whole blood or commercially available
blood collection tubes for cell-free DNA sampling is used [56]. In addition, the phenol–
chloroform method, sodium iodide method, magnetic bead method, and commercial DNA
isolation kits, are commonly used for extraction [57]. Depending on the experimental
design, there may be concerns about sampling bias because of the use of samples that have
been stored for a long time and the differences in collection methods among facilities.

The detection of ctDNA, which is present in peripheral blood at very low allele
frequencies, requires high technology, and with the evolution of PCR methods (ASO-PCR,
ddPCR) and the improvement of the data output of sequencers, highly sensitive detection
methods have become feasible (Table 1). However, there is still no method that meets all
the requirements, such as the cost and the number of facilities where it can be performed,
for progress in clinical applicability [56,58].
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Table 1. Methods of circulating tumor DNA (ctDNA) detection in peripheral blood.

Method Sensitivity Advantages Limitations

qPCR (ASO-PCR) [59] 0.01% High reproducibility of data, many facilities
available for implementation Time-consuming, laborious

Digital PCR (ddPCR) [60] 0.001% Easy to perform, standard curve not needed Lack of standardization in
data analysis, expensive

Targeted Sequence (Panel) [61] 0.01% Available on a commercial basis Low sensitivity
Targeted Sequence

(CAPP-seq) [62] <0.001% High sensitivity, comprehensive
genetic analysis Fewer facilities available

Whole Genome Sequence [63] 1% Detect rare mutations Suitable for tumor-rich
samples

Clinical trials are being conducted to use ctDNA to select treatments in solid tumors,
and screen for cancer in healthy individuals [64–69]. In the case of hematopoietic tumors,
there is a need to research cfDNA independently because the tissue collection method
(hematopoietic tumor cells are contained in various tissues such as bone marrow, peripheral
blood, and lymph nodes) and the genetic abnormalities observed in these tumors are
different from those in solid tumors. Currently, ctDNA is being studied in hematopoietic
tumors for the detection of tumor-specific mutations, evaluation of therapeutic efficacy,
detection of minimal residual disease (MRD), prognosis prediction, and assessment of
genomic heterogeneity. The application of cfDNA in hematopoietic tumors is described in
this review.

5. Utility of ctDNA Characterization in Hematopoietic Tumors
5.1. Acute Myeloid Leukemia (AML)/Myelodysplastic Syndrome (MDS)

The study of cfDNA started again in 1994 [70] in AML/MDS, about half a century
after the discovery of cfDNA in plasma by Mandel et al. In 2004, Rogers et al. used capillary
electrophoresis to detect loss of heterozygosity in ctDNA from the plasma of patients with
cytogenetically identified chromosomal abnormalities. They found that the plasma may
be a potential substitute for bone marrow (BM) as a material for chromosome testing [71].
Although similar studies have not been conducted since then, the detection of chromosomal
aberrations by ctDNA is expected to be re-examined using whole-genome sequences.

cfDNA extraction using off-the-shelf kits has become widespread since the 2000s
(Table 2). In 2010, Gao et al. focused on the quality of cfDNA extracted using a QIAamp
DNA Blood Kit (Qiagen, Hilden, Germany) and examined the plasma ctDNA integrity
index of 60 acute leukemia patients using quantitative real-time PCR (qPCR) amplification
of the β-actin gene. They concluded that plasma DNA integrity is incremental in acute
leukemia and may serve as a biomarker for monitoring MRD [72]. This study became
the basis for validating the usefulness of ctDNA in monitoring MRD in leukemia, which
was later published in numerous publications. The ultimate goal of many researchers
has shifted from conventional diagnostic approaches to using cfDNA-detected genetic
mutations for diagnosis, treatment decisions, and prognosis. Iriyama et al. performed a
global methylation analysis using bisulfite pyrosequencing based on the specific CpG sites
of the LINE-1 promoter and quantified a TET2 mutation in DNA from plasma. The results
showed that the methylation rate decreased rapidly in plasma ctDNA after azacitidine
administration. Furthermore, in the quantification of the TET2 mutant gene in ctDNA,
they observed that the ratio of the mutant gene was almost at the same level as that in
the BM CD34+/38− stem cell population. They compared their results with those of BM
cells and PBMCs analyzed simultaneously and showed that ctDNA could be used for
genetic/epigenetic analysis with higher sensitivity [73]. In 2015, Quan et al. quantified the
copies of circulating nucleophosmin (NPM) mutations in plasma DNA of AML patients
using qPCR and analyzed the association between ctDNA copies and clinical characteri-
zation. They showed that patients with high PB white blood cell and platelet counts and
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high BM blast rates had significantly high copy numbers of the circulating NPM mutant
gene [74].

Hiseq2000 (Illumina) was introduced in 2010. With the development of next-generation
sequencers, the target area for analyzing cfDNA mutations has also expanded rapidly. In
2016, Albitar et al. subjected the cfDNA of MDS patients to a panel genetic analysis target-
ing 14 genes. All samples were found to have at least one mutated gene, confirming the
presence of an abnormal clone consistent with MDS. The authors noted that the diagnosis
of MDS requires morphological and cytogenetic diagnoses but that neither of these can
sometimes provide clear evidence and that molecular tests to detect abnormal clones have
been relied upon in recent years [75]. NGS of cfDNA is expected to be a highly sensitive
method to detect abnormal clones in MDS, where cytopenia may prevent the collection
of sufficient peripheral blood nucleated cells. Suzuki et al., from the same research group
as Iriyama et al., who performed ctDNA methylation analysis, evaluated the validity of
targeted sequencing of cfDNA by comparing somatic mutations detected in MDS, BM
DNA, and cfDNA. The Sanger method was used for most cases in this study; only two cases
underwent NGS on BM DNA/cfDNA pairs; therefore, additional validation is needed [76].
cfDNA mutation analysis is now being validated using a panel targeting more genes; Zhao
et al. performed cfDNA genetic analysis of MDS on a panel of 127 genes (Roche NimbleGen
liquid phase hybrid capture chip). They concluded that ctDNA reflected genetic variation
in BM DNA [77]. With the rise of digital PCR in the late 2010s, MRD monitoring studies
targeting mutated genes became mainstream. Yeh et al. performed targeted sequencing
using the BM of MDS patients treated with azacitidine and eltrombopag; here, detected
driver mutations and karyotypic abnormalities were tracked in cfDNA using digital PCR
during treatment. They demonstrated that serial monitoring of ctDNA allowed the concur-
rent tracking of both mutations and karyotypic abnormalities throughout therapy, and they
were able to anticipate treatment failure. In addition, they revealed that ctDNA exhibited a
differential response in the malignant subclones during therapy [78].

At the time of diagnosis of acute leukemia, 1012 leukemic cells were present in the
patient’s body. Even after successful induction therapy and complete morphological remis-
sion with less than 5% leukemic cells in the BM on speculum, 109 leukemic cells remained
in the body. The number of leukemic cells below 109 undetectable by light microscopy are
termed as MRD and are considered important because they can proliferate and cause re-
lapse after remission [79–81]. The MRD evaluation method used in clinical practice, qPCR,
which detects genetic mutations in bone marrow DNA, has a high sensitivity of 0.1%. How-
ever, only patients with gene mutations detectable by commercial-based tests, such as APL
(PML-RALα) and CML (BCR-ABL), can benefit from it. Currently, allogeneic hematopoietic
stem cell transplantation (alloSCT) [82] is the only curative option for patients with high-
risk or refractory AML and MDS. However, many post-alloSCT AML patients experience
relapse and suffer another severe disease course [83,84]. In addition, AML patients with
positive MRD pre- or post-transplantation have a higher risk of post-transplant recurrence
and a lower survival rate [85]. In 2018 and 2019, we developed a ctDNA-based nonin-
vasive MRD monitoring and prognosis system for patients with AML/MDS undergoing
alloSCT [86,87]. We retrospectively performed whole-exome sequencing of tumor samples
from AML/MDS patients (using the patient oral mucosa cells as a control) to identify driver
mutations in the tumors, construct patient-specific ddPCR assays, and monitor MRD with
ctDNA obtained from serum at 1 month and 3 months after transplantation (Figure 1). We
found that patients who were MRD-positive at 1 month and 3 months after transplantation
had an increased relapse rate 3 years after transplantation. We are currently conducting a
prospective study of patients with AML/MDS undergoing alloSCT to verify the usefulness
and feasibility of MRD monitoring using ctDNA. We will be able to report on this in the
near future. In 2020, Nicholas et al. performed targeted NGS of ctDNA and BM DNA
in patients with AML and suggested that they may be complementary to the assessment
and monitoring of patients [88]. Zhong et al. detected monoclonal immunoglobulin gene
rearrangement in AML ctDNA, which is expected to be applied in MRD monitoring [89].
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The detection of IgH and TCR rearrangement is common in lymphoid malignancy but
rare in AML. As we have shown, MRD monitoring by ddPCR has been used in many
studies, but Christenson et al. did not consider it substantial. If the expression of SNPs
in the wild-type gene sequence is not taken into account when creating a ddPCR assay,
the correct allele frequency may not be detected [90]. In addition, the presence of clonal
hematopoiesis with indeterminate potential (CHIP) should be noted in the evaluation of
MRD by ctDNA. Clonal hematopoiesis is a condition in which a single or a very small
number of clones maintain hematopoiesis. Mutations in epigenomic regulatory genes such
as DNMT3A, TET2, and ASXL1 are the most common causes of CHIP [91,92]. It has been
reported that the majority of mutations detected in cfDNA of healthy individuals are CHIP,
and if these are detected as mutations in ctDNA and subjected to MRD evaluation, the
reliability of the test will be reduced [93]. There is an opinion that it is possible to exclude
CHIP mutations by paired sequencing of leukocyte DNA and plasma cfDNA [94], but
further validation is needed in terms of cost and time. It is hoped that MRD monitoring by
ctDNA will be implemented in the clinical environment after repeated trial and error and
sufficient validation.
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Figure 1. Whole-exome sequencing of bone marrow fluid before treatment to identify driver muta-
tions and monitoring of minimal residual disease (MRD) by creating a droplet digital PCR assay for
each patient.

The monitoring of ctDNA by continuous specimen collection is promising not only as
a clinical test as described above but also as an evaluation tool in clinical trials to develop
new therapeutic agents. Zeidan et al. performed ctDNA monitoring in a Phase Ib study
of PLK1 inhibitor, onvansertib, for AML. They monitored VAFs with ctDNA before and
after treatment with a gene mutation that was previously detected in the target sequence of
tumor DNA. They concluded that clinical response to onvansertib could be predicted from
changes in VAF after treatment [95]. This study did not have a large enough sample size to
create a receiver operating characteristic curve, but as more such trials are conducted, the
use of ctDNA as a test endpoint will be optimized.
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Table 2. Description of the studies examining cell-free DNA (cfDNA) for acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS).

Reference Diseases N cfDNA
Material

cfDNA
Isolation

cfDNA
Analysis Genes Studied Target Clinically Relevant

Findings
New Research
Perspectives

Vasioukhin, V.
1994 [70] AML and MDS 10 Plasma in

20–30 mL PB

Phenol–
chloroform

method

Dot-blot
screening
procedure

NRAS SNV

N-ras mutant genes
that were not found

in peripheral blood or
bone marrow were
detected in plasma

DNA

Further studies are
needed to correlate
plasma DNA with
peripheral blood
and bone marrow

DNA

Rogers, A.
2004 [71] AML and MDS 45 Plasma N/A

PCR and
capillary

electrophoresis

5q-, 7q-, +8, 17p-, 20q-,
and X chromosome

LOH,
X-chromosome

clonality

Detection of LOH in
the PB plasma of all

45 patients with
cytogenetically

documented
chromosomal
abnormalities

To test the
possibility that PB

can be an
alternative tool to
BM in assessing

genetic abnormality

Gao, Y.J. 2010
[72] AML and ALL 60 2 mL of plasma

QIAamp DNA
Blood Kit

(Qiagen, Hilden,
Germany)

qPCR ACTB Concentrations,
integrity, CNVs

The cfDNA integrity
index fluctuated in
correlation with the
dynamics of acute

leukemia

The cfDNA
integrity index may
be useful for MRD

monitoring in acute
leukemia

Iriyama, C.
2012 [73] MDS 5 450 µL of serum

M inElute Virus
Vacuum Kit

(Qiagen, Hilden,
Germany)

Pyrosequencing
methylation analysis
(LINE-2), mutation

detection (TET2)

Methylation
analysis, SNV

Methylation rate
decreases after

azacytidine treatment
in plasma DNA and

the TET2 mutant gene
is detectable in BM

Testing the
possibility that

circulating DNA
from plasma better
reflects DNA from
MDS clones in the

BM than DNA from
intact cells
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Table 2. Cont.

Reference Diseases N cfDNA
Material

cfDNA
Isolation

cfDNA
Analysis Genes Studied Target Clinically Relevant

Findings
New Research
Perspectives

Quan, J. 2015
[74] AML 100 2 mL of plasma

QIAamp DNA
Blood Kit

(Qiagen, Hilden,
Germany)

qPCR NPM Indel, CNVs

Copy number
quantification of

mutant genes
established; copy
number variation

reflects clinical
characteristics

Large-scale
prospective studies
to investigate the

relationship
between copy

number of
circulating NPM

mutant genes and
clinical outcomes

are warranted

Albitar, F. 2016
[75] MDS 16 Plasma

Nucli-SENS
Easy MAG
Automated

Platform
(BioMerieux,

Marcy- l’E’ toile,
France)

NGS (target
sequence)

14 target genes
(ASXL1, ETV6, EZH2,
IDH1, IDH2, NRAS,

CBL, RUNX1, SF3B1,
SRSF2, TET2, TP53,

U2AF1, ZRSR2)

SNV/Indel

Confirmed the
presence of a

neoplastic abnormal
MDS clone using

cfDNA NGS

Further validation
in advanced MDS

patients

Suzuki, Y.
2016 [76]

MDS related
disease 33 Plasma and

serum

QIAamp
MinElute Virus
Vacuum Kit or

QIAamp
Circulating

Nucleic Acid Kit
(Qiagen, Hilden,

Germany)

Sanger
sequence, SNP
array analysis,
and q-PCR or
NGS (target
sequence)

Sanger, SNP array,
and q-PCR (IDH2,
SETBP1, U2AF1,

SRSF2, NRAS, TET2,
and FLT3), NGS (39

targeted genes)

SNV/Indel

Detection of cfDNA
that varies in

correlation with
disease state

Verification of the
possibility that

cfDNA reflects the
disease status of

MDS

Christenson,
E.S. 2017 [90] AML, MDS 7 Plasma in 10 mL

PB

QIAamp
Circulating

Nucleic Acid Kit
(Qiagen, Hilden,

Germany)

ddPCR SF3B1 SNV

Reported that SNPs in
wild-type alleles

affect allele
frequencies detected

by ddPCR

Validation of a
companion

diagnostic method
using ctDNA

ddPCR
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Table 2. Cont.

Reference Diseases N cfDNA
Material

cfDNA
Isolation

cfDNA
Analysis Genes Studied Target Clinically Relevant

Findings
New Research
Perspectives

Yeh, P. 2017
[96] MDS 12 Plasma

QIAamp
Circulating

Nucleic Acid Kit
(Qiagen, Hilden,

Germany)

NGS (target
sequence)

and/or ddPCR
55 target genes SNV/Indel

Prediction of
treatment failure by

tracking driver
mutations and

karyotype
abnormalities using

ctDNA and evidence
that ctDNA dynamics
reflects tumor burden

in MDS

Application of
ctDNA analysis as a

non-invasive
biomarker to
complement

existing monitoring
strategies for MDS

Nakamura, S.
2018 [86]

AML, MDSMM,
NHL 17 Serum

QIAamp
Circulating

Nucleic Acid Kit
(Qiagen, Hilden,

Germany)

ddPCR

Genes whose
mutations were

detected by WES
(STAG2, JAK3, NRAS,

KRAS, TP53,
DNMT3A, NPM1,

GATA2, MYD88, B2M,
SF3B1, U2AF1)

SNV/Indel

ctDNA monitoring
facilitated the

identification of
patients with

hematological cancers
at risk of recurrence
prior to established
clinical parameters

Need to implement
ctDNA monitoring
of hematopoietic
tumor patients on

an even larger scale

Zhong, L. 2018
[89] AML 235 Plasma

QIAamp DNA
Mini Kit

(Qiagen GmbH,
Hilden,

Germany)

PCR and gel
electrophoresis,

qPCR
IGH and TCR

Ig-gene and
TCRγ

rearrangement

Detection of
monoclonal IGH and
TCR rearrangements

in AML ctDNA

Application of
monoclonal IGH

and TCR
rearrangements for
MRD assessment in

AML

Zhao, P. 2019
[77] MDS 26 Plasma N/A NGS (target

sequence) 127 target genes SNV/Indel

ctDNA reflects
genetic variation in

BM DNA and is
useful for monitoring

the pathogenesis
of MDS

Application of
ctDNA for
prognosis

prediction of MDS
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Table 2. Cont.

Reference Diseases N cfDNA
Material

cfDNA
Isolation

cfDNA
Analysis Genes Studied Target Clinically Relevant

Findings
New Research
Perspectives

Nakamura, S.
2019 [87] AML/MDS 53 Serum

QIAamp
Circulating

Nucleic Acid Kit
(Qiagen, Hilden,

Germany)

ddPCR

Genes whose
mutations were

detected by WES
(DNMT3A, STAG2,
SRSF2, SF3B1, WT1,

GATA2, NPM1,
CEBPA, IDH1, IDH2,

TP53, U2AF1,
BCORL1, ATRX,
ASXL1, RUNX1,

CEBPA, SH2B3, KIT,
PTPN11, ETV6,

RAD21, CSF3R, CTCF,
ETNK1, KMT2D,

BCOR, XPO7)

SNV/Indel

Prediction of relapse
by MRD monitoring

using ddPCR
combined with NGS
after hematopoietic

stem cell
transplantation

Conducting
prospective tests

Short, N.J.
2020 [88] AML 22 Plasma in 10 mL

PB

QIAamp
Circulating

Nucleic Acid Kit
(Qiagen, Hilden,

Germany)

NGS (target
sequence) 275 target genes SNV/Indel

Detection of residual
lesions in cfDNA

specimens in
remission by targeted

sequencing

Evaluation the
prognostic impact

of MRD as detected
by ctDNA

sequencing

Zeidan, A.M.
2020 [95] AML 20 Plasma

QIAamp
Circulating

Nucleic Acid Kit
(Qiagen, Hilden,

Germany)

ddPCR

Genes whose
mutations were

detected by target
sequence

SNV/Indel

Monitoring of ctDNA
in a Phase Ib study of

the PLK1 inhibitor,
onvansertib, showed

tumor burden
during therapy

Evaluating the
utility of serial

ctDNA
measurements as a
predictor of clinical

response

BM, bone marrow; CNV, copy number variation; ddPCR, droplet digital PCR; LOH, loss of heterozygosity; MM, multiple myeloma; NGS, next-generation sequence; NHL, non-Hodgkin lymphoma; PB,
peripheral blood; qPCR, quantitative PCR; SNP, single-nucleotide polymorphism; SNV, single-nucleotide variants; WES, whole-exome sequence.
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5.2. Lymphoid Malignancy

The most frequently reported studies on ctDNA in hematopoietic tumors are in the
field of lymphoid malignancy. In April 2021, we searched PubMed for “circulating tumor
DNA, Leukemia, NOT review,” “circulating tumor DNA, Lymphoma, NOT review,” and
“circulating tumor DNA, Multiple Myeloma, NOT review,” and found 159, 224, and 38 hits,
respectively. This may be because lymphoma incidence is the highest among hematopoietic
tumors (Cancer Facts & Figures, 2020; American Cancer Society, 2020).

In the case of myeloid malignancy, most studies have used ctDNA SNVs/Indels as
detection targets. On the other hand, in lymphoid malignancy, immunoglobulin-heavy
chain (IgH) rearrangement was initially emphasized. In 1997, using PCR, Frickhofen et al.
detected clonal DNA from a rearranged IgH locus in the plasma samples of patients with
non-Hodgkin lymphoma and acute B-precursor lymphoblastic leukemia [97]. Further,
Zhong et al. detected IgH and T cell receptor γ gene rearrangements in plasma cfDNA
from patients with non-Hodgkin lymphoma [98]. In 2011, He et al. detected specifically
rearranged DNA fragments in patient plasma using IgCap, which captures and sequences
the IgH genomic region [99]. Subsequently, the data output of NGS techniques increased,
and high-throughput deep sequencing of immunoglobulins (IgHTS), a technique for the
comprehensive analysis of CDR3 sequences of BCR genes by multiplex PCR, became
available commercially. Armand et al. analyzed plasma ctDNA from 16 DLBCL and
MLBCL cases using Sequenta Lympho SIGHT (Sequenta Inc., South San Francisco, CA,
USA) and successfully detected IgH and IgK reconstitution [100]; Kurtz et al. compared
ctDNA analysis with IgHTS and imaging diagnosis using PET-CT in 75 cases of DLBCL.
They compared ctDNA analysis using IgHTS and imaging diagnosis with PET-CT [101].
In addition, Roschewski et al. argued the usefulness of ctDNA surveillance by IgHTS
based on a 5-year post-treatment follow-up of 126 DLBCL cases [102]. Sarkozy et al. used
IgHTS of follicular lymphoma (FL) cases to compare the chronotype of tumor DNA and
plasma ctDNA and showed that the subclonal distribution between tumor and plasma was
different in more than half the cases [103]. IgHTS of ctDNA for other diseases including
HIV-related B cell lymphoma was performed by Wagner-Johnston et al. [104] and MCL
by Kumar et al. [105]. For B cell malignancy, there are many reports, as mentioned above.
Regarding T cell lymphoma, Zhang et al. performed T cell receptor HTS in 2021 and
detected TCR rearrangement in 78% of the cases; hence, only a few reports exist [106].

Regarding the methods for detecting SNV/Indel, Hosny et al., in 2009, detected the
TP53 mutation in ctDNA of NHL patients using direct sequencing, but this method was
limited to the target genes [107]. With the advent of CAPP-seq (cancer personalized pro-
filing by deep sequencing), panel sequence, and low-pass WGS, the target gene region
has been greatly expanded, and continuous monitoring by ddPCR as in myeloid malig-
nancy has been reported [108–112]. CAPP-seq is an economical and ultrasensitive hybrid
capture-based target sequence method developed by Newman et al. in 2014 [62]. WGS and
WES have the advantage of measuring a wide range of genetic regions, but they have the
disadvantage of high costs to achieve high detection sensitivity. However, CAPP-seq can
detect four types of mutations (single-nucleotide polymorphism, insertion/deletion, copy
number polymorphism, and fusion region) in cell-free tumor DNA with high efficiency
by simultaneously sequencing cancer-specific mutated gene regions. Newman et al. at
Stanford University performed CAPP-seq on ctDNA of NHL and showed better sensitivity
than IgHTS in genotyping ctDNA [113,114]. This technique was applied to DLBCL by Rossi
et al. [115] and classical Hodgkin lymphoma (cHL) by Spina et al. [116]. While CAPP-seq
has the advantage of obtaining genotypic information with high sensitivity, the number of
facilities that can perform CAPP-seq for hematological malignancy is limited.

A target sequence, which can analyze genetic variation in a specific genomic region,
is widely used. Bohers et al. first published the detection of SNV/Indels in lymphoid
malignancy [117]. This was followed by reports showing the evaluation of the validity of
SNV/Indel detection in ctDNA [118–120], the association of genotyping-derived profiling
with treatment response and prognosis [121–128], and the study of its applicability as
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a MRD monitoring material [129,130]. In DLBCL, Rushton et al. performed a 63-gene
target sequence for ctDNA in 135 cases [125]. Camus et al. performed the first prospective
ctDNA genotyping after cHL chemotherapy and showed that MRD detection by ctDNA
was superior to that by PET-CT [129]. The target sequence is highly versatile because it is
available commercially, but it is less sensitive in identifying mutations in cfDNA. Technical
considerations, such as the expansion of the target gene region, are necessary. For CNS lym-
phoma, there are scattered reports on ctDNA in cerebrospinal fluid (CSF) [131–134], and
some argue that ctDNA in plasma is not sensitive enough for detection [135,136]. The appli-
cability of ctDNA in plasma should be carefully evaluated considering the characteristics
of the disease.

Low-pass WGS can also detect fusion and CNV in addition to SNV/Indels. It has the
advantage of providing richer information in samples with high tumor volume; Agarwal
et al. used it to elucidate treatment strategies with ibrutinib and venetoclax [137].

Cytosine methylation in the CpG islands of gene promoter regions is another factor
that has a significant impact on gene expression. In cancer cells, the expression of tumor
suppressor genes is repressed by the aberrant methylation of CpG islands [138]. In the field
of leukemia–lymphoma, methylation analysis of tumor suppressor genes has been actively
pursued [139,140]. In 2003, Deligezer et al. suggested the presence of methylated tumor
suppressor gene 16 in the cfDNA of patients with lymphoproliferative diseases [141]. In
2007, Shi et al. established CpG island DNA microarray methylation profiling in cancer;
they detected methylation of the tumor suppressor candidate gene DLC-1 in plasma DNA
from non-Hodgkin lymphoma patients. They further reported that DLC-1 methylation
disappeared after response to chemotherapy as determined by quantitative methylation-
specific PCR analysis [142]. Thus, DNA methylation analysis has been applied to the
genetic characterization and monitoring of lymphoid malignancy.

Validation of ctDNA levels and integrity has also been active in lymphoma [143–146].
Delfau-Larue et al. quantified ctDNA using ddPCR and compared it to tumor volume
measured by PET-CT, and showed that in FL, pre-treatment ctDNA levels correlated with
total metabolic tumor volume measured by PET-CT and total tumor volume [147]. Kurtz
et al. also developed the continuous individualized risk index (CIRI), a risk assessment
scale that incorporates pre-treatment ctDNA levels for DLBCL divided into high and
low [148]. A challenge for social implementation is to clarify the interpretation of ctDNA
analysis results in combination with existing laboratory findings such as imaging, especially
in lymphoma.

5.3. Multiple Myeloma

MM is characterized by monoclonal proliferation of plasma cells, the final differen-
tiation stage of B cells. Most cases start as monoclonal gammopathy of undetermined
significance (MGUS) and develop into smoldering multiple myeloma (SMM) with no
clinical symptoms. Eventually, one of the four symptoms (CRAB) of hypercalcemia, renal
failure, anemia, and bone lesions become associated with the diagnosis of MM [149]. At
diagnosis, there is clonal diversity with the coexistence of dominant and minor subclones
that have evolved from a common ancestral tumor-initiating cell or stem cell. At recur-
rence, clones are also heterogeneous and may be dominated by the same or different
subclones from those at first appearance [150]. Tumors are multifocal in BM and secrete
monoclonal immunoglobulins (M-proteins) in blood and urine. They are morphologically
heterogeneous and have varying responses to therapy and tumor progression. Therefore,
BM puncture at a single site alone is subject to sampling bias and yields only a limited
molecular profile, which cannot reflect the diverse pathogenesis of various subclones. The
measurement of cfDNA, which comprehensively reflects the entire tumor, is ideal for
clarifying the pathogenesis. In particular, MRD monitoring, which has gained clinical
significance with the development of new drugs [151], is expected to be applied to ctDNA
as well. In this context, Sata et al. [152] and Oberle et al. [153] reported the detection
of immunoglobulin rearrangements in ctDNA. Mazzotti et al. analyzed 47 cases of MM
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using the NGS MRD assay (IgHTS) from Adaptive Biotechnologies, claiming that MRD
monitoring is not possible with NGS alone, which targets Ig gene rearrangement [154].
On the other hand, some argue that quantification of IgH rearrangements can be used for
prognostic stratification [59,155].

For SNV/Indel, the analysis focuses on targeting KRAS, NRAS, and BRAF [156–158].
Mithraprabhu et al. analyzed cfDNA of MM patients for target gene mutations, including
KRAS, NRAS, and BRAF, using ddPCR and continuously quantified and monitored ctDNA.
They analyzed paired BM cell DNA and ctDNA from 33 relapsed or refractory MM patients
and 15 newly diagnosed patients using targeted deep sequencing. ctDNA mutations were
detected at a higher frequency in relapsed or refractory patients than in newly diagnosed
patients (27.2% vs. 6.6%, respectively), authenticating the existence of spatial and genetic
heterogeneity in advanced disease [159,160]. The authors also monitored tumor burden
and therapeutic response through ctDNA analysis and reported that a decrease in ctDNA
levels at day 5 of treatment cycle 1 correlated with superior PFS (P = 0.017). It was also
concluded that ctDNA is useful for predicting disease outcomes in MM patients [161].
As mentioned earlier, MM has a precancerous state, but ctDNA detection in SMM and
MGUS is still difficult [162]. In addition, as with other hematopoietic tumors, targeted
gene regions have been expanded [163]. Deshpande et al. assessed whether ctDNA levels
varied according to risk status defined by the 70-gene expression profile. Patients with
high ctDNA levels were associated with worse PFS (hazard ratio 6.4; 95% CI 1.9–22) and
overall survival rates (hazard ratio 4.4; 95% CI 1.2–15.7); ctDNA level was also elevated
in the high-risk group. These findings showed that cfDNA is a dynamic tool to capture
genetic events in MM [56].

Fusion and CNV of MM have been developed using WES and low-pass WGS (Guo,
Manier) [164,165]. For ctDNA analysis of MM, many issues need to be resolved in the
future, such as improving detection sensitivity by improving sequencing technology and
prospective validation together with existing MRD measurement methods.

6. Future Directions and Conclusions

In 2019, Lenaerts et al. made a grand attempt to predict malignancy from copy num-
ber abnormalities by applying WGS (Genomewide Imbalance Profiling sequence) to the
cfDNA of 1002 individuals with no history of malignancy. As a result, four malignant
lymphoma cases and one MDS case with excess blasts were detected [166]. This announce-
ment signifies the development from the era of cfDNA testing to the era of cfDNA-based
testing. It is also true that cfDNA has its limitations. With the progress of NGS and other
comprehensive genetic analysis technologies, many insights into diagnosis and treatment
are moving toward clinical application. However, to expand the application of cfDNA,
many issues remain to be addressed, such as the establishment of specimen processing
procedures, dissemination of analytical methods that take into account cost and sensitivity,
and interpretation of results in conjunction with existing testing methods. If clinicians are
unaware of the benefits and limitations of cfDNA, they will not make the right decisions
regarding its application to individual patients.
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