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Mathematical model analysis 
and numerical simulation 
for codynamics of meningitis 
and pneumonia infection 
with intervention
Belela Samuel kotola* & Temesgen Tibebu Mekonnen

In this paper, we have considered a deterministic mathematical model to analyze effective 
interventions for meningitis and pneumonia coinfection as well as to make a rational recommendation 
to public healthy, policy or decision makers and programs implementers. We have introduced the 
epidemiology of infectious diseases, the epidemiology of meningitis, the epidemiology of pneumonia, 
and the epidemiology of infection of meningitis and pneumonia. The positivity and boundedness of 
the sated model was shown. Our model elucidate that, the disease free equilibrium points of each 
model are locally asymptotically stable if the corresponding reproduction numbers are less than one 
and globally asymptotically stable if the corresponding reproduction numbers are greater than one. 
Additionally, we have analyzed the existence and uniqueness of the endemic equilibrium point of 
each sub models, local stability and global stability of the endemic equilibrium points for each model. 
By using standard values of parameters we have obtained from different studies, we found that the 
effective reproduction numbers of meningitis Reff (m) = 9 and effective reproduction numbers of 
pneumonia Reff (p) = 11 that lead us to the effective reproduction number of the meningitis and 
pneumonia co-infected model is max

{

Reff (m),Reff (p)

}

= 9 . Applying sensitivity analysis, we identified 
the most influential parameters that can change the behavior of the solution of the meningitis 
pneumonia coinfection dynamical system are α1,α2 and π . Biologically, decrease in α1 and increasing in 
π is a possible intervention strategy to reduce the infectious from communities. Finally, our numerical 
simulation has shown that vaccination against those diseases, reducing contact with infectious persons 
and treatment have the great effect on reduction of these silent killer diseases from the communities.

An infectious disease is illness which is clinically evident resulting from the presence of a pathogenic microbial 
agent, such as virus, bacterium, protozoa, or toxin, that can be passed from one host to another through modes 
of transmission such as direct physical contact, airborne droplets, water or food, disease vectors, or mother to 
newborn1–4. One of most common infectious microbial agent is Streptococcus pneumoniae bacterium, which is 
responsible for pneumococcal disease such as pneumonia, meningitis, and sepsis5.

Specifically, Cerebrospinal meningitis (CSM) is a dangerous disease caused by Neisseria meningitis (menin-
gococcal), which colonizes the nasopharynx (the area of the upper throat that lies behind the nose) and spreads 
when an individual encounters infected respiratory secretions6. From our body part, the lung is exposed to 
approximately 10,000 L of air per day, which may contain infectious or toxic agents’ leads to pneumonia disease3.

Pneumonia is one of the forgotten killer but, treatable respiratory lung infectious diseases caused by bacteria, 
fungi, virus or parasites7–9. The most common cause of bacterial pneumonia and remains a substantial source of 
morbidity and mortality in both developing and developed countries is Streptococcus pneumonia10,11. Streptococ‑
cus pneumonia also known as pneumococcus pneumonia, which is characterized primarily by inflammation in 
the air sacs (alveoli) in the lungs that are filled with fluid or pus, making it difficult to breathe and is a form of 
acute respiratory tract infection (ARTI) that affects the lungs10–14.

Co-infected is the process of infection of a single host with two or more pathogen variants (strains) or with 
two or more distinct pathogen species. Coinfection with multiple pathogen strains is common in pneumonia; 
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nevertheless, it occurs in many other diseases. Super infection is defined as infection with a second strain after 
the initial infection, and the immune response to it has been established15,16.

Mathematical models for transmission dynamics of any diseases are mandatory in providing better insights 
into the behavior of the disease, allowing us to optimize use of limited resources, and recommending the control 
measures on the infectious disease17. The decision made regarding to intervention strategies for preventing and 
controlling the insurgence of pneumonia and meningitis are successful where, it can be influenced by developed 
model on these diseases18. The emerging and reemerging of the diseases makes mathematical modeling very use-
ful and attractive area for making estimation on the impact of a control measure and of underlying parameters 
of a real-world phenomenon, which are difficult or expensive to obtain through experiment18.

We had reviewed some selected literatures of mathematical models done on either Meningitis infection, 
Pneumonia infection, as well as Meningitis and Pneumonia Co-infection. Moreover, we had used them as basis 
for our developed model on Meningitis and Pneumonia Co-infection.

Different authors have studied the coinfection of various diseases, such as19, who stated the coinfection of 
HIV and pneumonia and20 provided the coinfection of pneumonia and malaria. There is also the research on 
HIV/AIDS-pneumonia coinfection model with treatment at each infection stage with corresponding numerical 
simulations using mat lab software studded by9. Moreover21, discussed the mathematical modelling of influenza-
meningitis under the quarantine and22, invested their effort on a mathematical model for co-dynamics of listeriosis 
and bacterial meningitis diseases. However, very few researchers have investigated coinfection of pneumonia and 
meningitis. Moreover, no one consider the mathematical model for pneumonia and meningitis infection with a 
single vaccination class for both disease simultaneously. There are immunization called PCV13, that can protects 
against 13 types of pneumococcal bacteria, which cause the most common pneumococcal infections in kids and 
immunization called PPSV23, which can protects against 23 types5. One of the primary reasons of our work is to fill 
this gap and making sound recommendation to public healthy, policy decision makers or programs implementers.

Mathematical model
Basic assumptions and description of parameters.  In this section, we presented the mathematical 
model of meningitis-pneumonia coinfection by considering a homogenous population (i.e. in which every per-
son has the same chance of coming in contact with an infected person), and factors such as sex, social status, 
and race do not affect the probability of being infected. The model subdivides the human total population N(t), 
into seven mutually exclusive compartments, namely, susceptible population S(t), pneumonia only infectious 
Ip(t), meningitis only infectious Im(t) , meningitis and pneumonia co infectious Imp(t), meningitis, pneumonia 
co-infected treated class Tmp(t ), vaccinated (PCV Pneumococcal conjugate vaccine) group Vmp(t ) and recovered 
(R) . The vaccinated class ( Vmp(t) ) is the group of people those who took the vaccination called pneumococcal 
conjugate vaccine (PCV13) against invasive pneumococcal disease such as pneumonia and meningitis.

In this study, recovery from natural immunity is significant for pneumonia only infected individuals and 
meningitis-only infected individuals and then joins the recovered compartment, we denote such a natural recov-
ery rate as τ1 and τ2 for meningitis and pneumonia, respectively. The effects of vertical transmission to pneumonia 
and meningitis were assumed insignificant in this study. From an epidemiological perspective, individuals in the 
removed/recovered compartment R(t), do not attained permanent immunity. The mass action incidence rate 
of new infections was used in this study and the modification parameters  ω and  � are the factors by which the 
infectiousness of pneumonia increases the susceptibility of meningitis and vice versa, respectively. Pneumonia 
and meningitis are assumed to be transmitted after effective contact between susceptible and infectious classes 
with effective contact rates α1 and α2 , respectively. Individuals can develop meningitis by contact rate of α2 from 
meningitis only infected or co-infected person with force of infection of meningitis f1 = α2

(

Im + Imp

)

 and 
join the Im compartment. An individual can develop pneumonia with a contact rate of α1 from pneumonia-
only infected or co-infected person with a force of infection of pneumonia f2 = α1(Ip + Imp) and then join Ip 
compartment. Pneumonia-only infected individuals can also develop an additional meningitis infection with 
force of infection and modification parameters ωf 1 and join the co-infected compartment Imp . The co-infected 
compartment increases because of individuals who come from meningitis-only infected compartments when 
they are infected by pneumonia with force of infection and modification parameters �f 2.

The parameters used in the model are described in the table below.
Using the above basic model assumption and parameters described in Table 1, we have the following 

flow-chart.
Using the parameters in Table 1 and the flow chart in Fig. 1, we have the following dynamical system

(1)

dS
dt = (1− π)�+ ρR + φVmp −

�

f1 + f2 + µ
�

S

dIP
dt = f2S −

�

ωf1 + τ3 + δ2 + µ
�

Ip

dIm
dt = f1S −

�

�f
2
+ τ1 + δ1 + µ

�

Im

dImp

dt = ωf
1
Ip +�f

2
Im − (τ2 + µ+ δ3)Imp

dTmp

dt = τ2Imp − (β + µ)Tmp

dVmp

dt = π�− (µ+ φ)Vmp

dR
dt = βTmp + τ1Im + τ3IP − (ρ + µ)R
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Qualitative analysis of the model
In this section, we have presented the qualitative behavior of the model. For simplification of mathematical 
manipulations, we split the full meningitis-pneumonia confection model into sub-models as meningitis only 
model and pneumonia only model. The qualitative behavior of the sub-models is studied first, and the qualitative 
behavior of the full model then follows.

Meningitis only model.  To gate meningitis only model from the full model (1), we set, Ip = Imp = Tmp = 0 
and we do have the following dynamical system,

Positivity of solutions of the meningitis only model.  To be assure that the developed dynamical system (2) is 
epidemiologically meaningful and posed, we need to prove that all the state variables of dynamical systems are 
nonnegative.

Theorem 1  All the populations of the system with positive initial conditions are nonnegative.

Proof  Assume S(0) > 0, Im(0) > 0,Vm(0) > 0 and R(0) > 0 are positive for time t > 0 and for all nonnegative 
parameters. Let T = sup{t > 0 such that S

(

t ′
)

> 0, Im
(

t ′
)

> 0,Vm

(

t ′
)

> 0 and R
(

t ′
)

> 0, t ′ ∈ [0, t]}
From the initial condition, all the state variables are nonnegative at the initial time; then, T > 0

From fist equation of system (2) dSdt = (1− π)�+ ρR + φVm −
(

f1 + µ
)

S

(2)

dS
dt = (1− π)�+ ρR + φVm −

�

f1 + µ
�

S

dIm
dt = f1S − (τ1 + δ1 + µ)Im

dVm
dt = π�− (µ+ φ)Vm

dR
dt = τ1Im − (ρ + µ)R
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Table 1.   Descriptions of parameters.

Number Parameter Description

1 τ1 The rate at which meningitis infected individual are recovered naturally

2 τ2 The rate at which meningitis and pneumonia co infected individual treated and inter to treated class

3 β The rate at which meningitis and pneumonia co infected individual are recovered from both diseases

4 µ Natural death rate

5 δ1 ,  δ2 Meningitis only caused death rate and Pneumonia only caused death rate, respectively

6 δ3 Meningitis and pneumonia co-infected caused death rate

7 ω,� Modification parameter, where ω ≥ 1 and � ≥ 1

8 ρ Rate of loss of immunity

9 π The portion of vaccinated new born

10 � Recruitment rate

11 α2 , α1 Meningitis and Pneumonia contract rate, respectively

12 φ vaccine wanes rate

13 τ3 The rate at which pneumonia infected individual are recovered naturally

Figure 1.    Flow chart of meningitis and pneumonia coinfection.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2639  | https://doi.org/10.1038/s41598-022-06253-0

www.nature.com/scientificreports/

where k1 = e−
∫ T
0 (f1+µ)dt′ , which is non-negative because it is an exponential function.

Following the same procedure, we have Im(t) > 0  , Vm(t) > 0 and R(t) > 0.
Therefore, from the above proof, we can conclude that whenever the initial values of the systems are all non-

negative, then all the solutions of our dynamical system are positive.

Invariant region of the meningitis only model.  Theorem 2  The dynamical system (2) is positively invariant in the 
closed invariant set

�1 = {
(

S, Im,Vm,R
)

ǫR4
+ : N1 ≤

�

µ
} , where N1 is the total human population of meningitis only model.

Proof  To obtain an invariant region that shows that the solution is bounded, we have

Thus 0 ≤ N1 ≤
�

µ

There for the dynamical system is bounded.

Existence of the disease‑free equilibrium point of the meningitis only model.  The disease-free equilibrium point 
of the system is obtained by making all the equations equal to zero, providing that {Im = 0} . There for the disease 
free equilibrium point is

Effective reproduction number of meningitis only model.  The reproduction number is the expected number of 
secondary cases produced by one typical infectious inter in a completely susceptible population during its infec-
tious period. We manipulated the effective reproduction number by using the next generation matrix method on 
the system and obtained Reff (m) = α2

�

µ

(

(1−π)(µ+φ)+πφ
(µ+φ)(τ1+δ1+µ)

)

 . The basic reproduction number, which manipulated 

in the absence of an intervention, is given by Rom = �α2
µ(τ1+δ1+µ)

.

Local stability of the disease‑free equilibrium point of the meningitis only model.  Theorem 3  The disease-free 
equilibrium point EOm =

(

�

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

, π�
(µ+φ)

, 0, 0
)

 of the model in system (2) is locally asymptotically 
stable if the effective reproduction number Reff (m) < 1 and unstable if Reff (m) > 1.

Proof  The Jacobean matrix J
(

EOm

)

 of the model (2) with respect to 
(

S,Vm,Im,R
)

 at the disease-free equilibrium 

point EOm =

(

�

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

, π�
(µ+φ)

, 0, 0
)

 is follows.

For simplicity let h1 = �

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

and h2 = (τ1 + δ1 + µ)

Then, the corresponding characteristic equation is

dS

dt
+

(

f1 + µ
)

S = (1− π)�+ ρR + φVm

d

dt

[

e
∫ T
0 (f1+µ)dt′S

]

= e
∫ T
0 (f1+µ)dt′ [(1− π)�+ ρR + φVm]

⇒ S(t) = k1S(0)+ k1

[
∫ T

0
e
∫ T
0 (f1+µ)dt′ [(1− π)�+ ρR + φVm]dt

]

> 0

⇒ S(t) > 0

N1 = S + Im + Vm + R

dN1

dt
= �− µN − δ1Im ⇒

dN1

dt
≤ �− µN1

EOm =
(

SO ,Vm
O , Im

O ,RO
)

=

(

�

µ

[

(1− π)(µ+ φ)+ πφ

(µ+ φ)

]

,
π�

(µ+ φ)
, 0, 0

)

J
�

EOm

�

=











−µ φ −α2
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

ρ

0 −(µ+ φ) 0 0

0 0 α2
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

− (τ1 + δ1 + µ) 0

0 0 τ1 −(ρ + µ)











⇒

(

−µ−
∧

1

)(

−(µ+ φ)−
∧

2

)(

(α2h1 − h2)−
∧

3

)(

−(ρ + µ)−
∧

4

)

= 0.
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⇒
∧

1 = −µ or 
∧

2 = −(µ+ φ) or 
∧

3 = −(α2h1 − h2) or 
∧

4 = −(ρ + µ)

Hence, all the roots are negative, and 
∧

3 can be written as follow after rearranging the term using the above 
assumption. 

∧

3 = (τ1 + δ1 + µ)
(

Reff (m) − 1
)

.
The disease-free equilibrium point is locally asymptotically stable if and only if Reff (m) < 1 ; otherwise, it is 

unstable if Reff (m) > 1.
Biologically, these results indicate that meningitis disease can be dies out from the communities when 

Reff (m) < 1 , providing that the initial size of the subpulation of the submodel are in the region of attraction of 
EOm.

Global stability of the disease‑free equilibrium point of the meningitis only model.  Theorem 4  The disease-free 
equilibrium is globally asymptotically stable if Reff (m) < 1.

Proof  To prove the global asymptotic stability (G A S) of the disease-free equilibrium point, we used the Lya-
punov function method. We defined a Lyapunov function L1 such that;

L1 = aIm where a = 1
τ1+δ1+µ

 ⇒  dL1dt =
f1S

τ1+δ1+µ
− Im . However, we do have f1 = α2Im and N1 = S + Vm = �

µ
 

⇒  dL1dt ≤
[

Reff (m) − 1
]

Im    so dL1dt < 0 if Reff (m) < 1 and furthermore, dLdt = 0 if Im = 0 or Reff (m) = 1 , holding 

these we can see that; 
(

�

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

, π�
(µ+φ)

, 0, 0
)

 is the only singleton set in {(S,Vm, Im,R) ∈ �1 :
dL1
dt = 0} . 

Therefore, by the principle of (LaSalle, 1976), DFE is globally asymptotically stable if Reff (m) < 1.

Existence of the endemic equilibrium point of the meningitis‑only model.  The endemic equilibrium point of the 
model is denoted by E∗m =

(

S∗, Im
∗,Vm,

∗,R∗
)

 , which occurs when the disease persists among the community 
and obtained by making the system equal to zero.

The endemic equilibrium point of the system is E∗m = (S∗, Im
∗,Vm

∗,R∗)

⇒ f1 =
(

(µ3+µ2ρ+µ2δ1+µρδ1+µ2τ1+µρτ1)
(µ2+µρ+µδ1+ρδ1+µτ1)

)

[

Reff (m) − 1
]

 . Thus, f1 > 0 if and only if Reff (m) > 1 and the system 
has unique endemic equilibrium point.

Local stability of the endemic equilibrium point of the meningitis‑only model.  Theorem 5  The endemic equi‑
librium point of system (2), E∗m = (S∗, Im

∗,Vm
∗,R∗) is locally asymptotically stable for the reproduction number 

Reff (m) > 1.

Proof  To show the local stability of the endemic equilibrium point, we use the Jacobian matrix and Routh 
Hurwitz stability criteria.

The Jacobian matrix of the dynamical system at the endemic equilibrium point is

Then, the characteristic equation is given by

where B1 = −(α2S
∗ + µ),B2 = α2S

∗,B3 = −(µ+ φ),B4 = −(ρ + µ) and B5 = [B2 − (τ1 + δ1 + µ)]

where a0 = 1, a1 = −(B1 + B3 + B4 + B5), a2 =
[

B1B3 + B2
2 + B4B5 + B1B4 + B3B4 + B1B5 + B3B5

]

, a3 =

−
(

B1B3B4 + B4B2
2 + τ1ρB2 + B2

2B3 + B1B3B5 + B1B4B5 + B3B4B5
)

and a4 = B1B3B4B5 +B2
2
B3B4 + τ1ρB2B3

S∗ =
(1− π)�(ρ + µ)(τ1 + δ1 + µ)(µ+ φ)+ φ��(ρ + µ)(τ1 + δ1 + µ)

(ρ + µ)(τ1 + δ1 + µ)(µ+ φ)
(

f1 + µ
)

− (µ+ φ)ρτ1f1

Im
∗ =

(

f1

(τ1 + δ1 + µ)

)

(1− π)�y + φ��(ρ + µ)(τ1 + δ1 + µ)

y
(

f1 + µ
)

− (µ+ φ)ρτ1f1

Vmp
∗ =

��

(µ+ φ)

R∗ =

(

τ1f1

(ρ + µ)(τ1 + δ1 + µ)

)

(1− π)�y + φ��(ρ + µ)(τ1 + δ1 + µ)

y
(

f1 + µ
)

− (µ+ φ)ρτ1f1
where y = (ρ + µ)(τ1 + δ1 + µ)(µ+ φ)

J(E∗m) =







−(α2Im
∗ + µ) −α2S

∗ φ ρ

α2Im
∗ α2S

∗ − (τ1 + δ1 + µ) 0 0
0 0 −(µ+ φ) 0
0 τ1 0 −(ρ + µ)







(B1 − �)

∣

∣

∣

∣

∣

B5 − � 0 0
0 B3 − � 0
τ1 0 B4 − �

∣

∣

∣

∣

∣

+B2

∣

∣

∣

∣

∣

B2 0 0
0 B3 − � 0
0 0 B4 − �

∣

∣

∣

∣

∣

+φ

∣

∣

∣

∣

∣

B2 B5 − � 0
0 0 0
0 τ1 B4 − �

∣

∣

∣

∣

∣

−ρ

∣

∣

∣

∣

∣

B2 B5 − � 0
0 0 B3 − �

0 τ1 0

∣

∣

∣

∣

∣

= 0

⇒ a0�
4 + a1�

3 + a2�
2 + a3�+ a4 = 0
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Here, we have to check the necessary condition of the Routh-Hurwitz stability criteria. Since a0 = 1 is posi-
tive in sign, all a1 , a2, a3  and a4 should be positives and hence a1 = −(B1 + B3 + B4 + B5) , but B1 < 0 , B2 > 0 , 
B3 < 0, B4 < 0 and B5 < 0.

We know that the sum of negative numbers is always negative, −(B1 + B3 + B4 + B5) is positive. Therefore, 
a1 is positive in sign.

Following the same procedures a2 > 0 , a3 > 0 and a4 > 0 . From our algebraic manipulation done above, 
all the coefficients of the characteristic’s polynomial are positive whenever Reff (m) > 1 . Then, we can apply the 
Routh-Hurwitz criteria to determine the sign of the roots of the characteristic equation without calculating the 
values of the roots of the characteristics equation a0�4 + a1�

3 + a2�
2 + a3�+ a4 = 0

 where b1 = −1
a1

∣

∣

∣

∣

a0 a2
a1 a3

∣

∣

∣

∣

= −1
a1
(a0a3 − a1a2) and b1 =

−1
a1
(a3 − a1a2)

⇒ b1 > 0 for Reff (m) > 1 . In the same procedure, b2 > 0 , c1 > 0 , d1 > 0.
Hence, the first column of the Routh Hurwitz array has no sign change, and then the root of the characteristic 

equation of the dynamical system is negative. Therefore, the endemic equilibrium point of the dynamical system 
is locally asymptotically stable.

Global stability of the endemic equilibrium point of the meningitis only model.  Theorem 6  If Reff (m) > 1 , the 
endemic equilibrium of the model (2) is globally asymptotically stable.

Proof  Systematically, we define an appropriate Lyapunov function L2 such that;

Then, after differentiating L2 with respect to time, t   we have the following.

Then, substituting dSdt ,
dIm
dt ,

dVm
dt , dRdt

⇒ dL2
dt = Q1 − Q2  ,  w here  Q1 = �+ Im

∗τ1 + Im
∗δ1 + Im

∗µ+ Vm
∗µ+ Vm

∗φ + R∗ρ + R∗µ+ S∗f
1
+

S∗µ and Q2 = Sµ+ Imδ1 + Imµ+ Vmµ+ Rµ+

(

S∗[(1−π)�+ρR+φVm]

S

)

+

(

Im
∗
[f1S]
Im

)

+

(

Vm
∗
[π�]

Vm

)

+

(

R∗[τ1Im]
R

)

 . 

Thus, if Q1 < Q2, then dL2dt ≤ 0 , and dL2dt = 0 if and only if S = S∗, Im = Im
∗,Vm = Vm

∗ and R = R∗.

From this, we see that E∗m = (S∗, Im
∗,Vm

∗,R∗) is the largest compact invariant singleton set in 
{

(S∗, Im
∗,Vm

∗,R∗)ǫ�1 :
dL2
dt = 0

}

.
Therefore, by the principle of (LaSalle, 1976), the endemic equilibrium (E∗m) is globally asymptotically stable 

in the invariant region if Q1 < Q2.

Pneumonia only model.  Pneumonia only model is obtained from the full meningitis and pneumonia co 
infectious model (1) by setting Im = Imp = Tmp = 0 . After such algebraic operations, we do have the following 
of dynamical system.

Positivity of solutions of the pneumonia only model.  To be the above dynamical systems (3) is epidemiologically 
meaningful and posed; we need to prove that all the state variables of dynamical systems are non-negative.

Theorem 7  All the populations of the system with positive initial conditions are nonnegative.

L2 =

(

S − S∗ + S∗ln
S∗

S

)

+

(

Im − Im
∗ + Im

∗ln
Im

∗

Im

)

+

(

Vm − Vm
∗ + Vm

∗ln
Vm

∗

Vm

)

+

(

R − R∗ + R∗ln
R∗

R

)

dL2

dt
=

(

S − S∗

S

)

dS

dt
+

(

Im − Im
∗

Im

)

dIm

dt
+

(

Vm − Vm
∗

Vm

)

dVm

dt
+

(

R − R∗

R

)

dR

dt

(3)

dS
dt = (1− π)�+ ρR + φVp −

�

f2 + µ
�

S

dIP
dt = f2S − (τ3 + δ2 + µ)Ip

dVp

dt = π�− (µ+ φ)Vp

dR
dt = τ3IP − (ρ + µ)R






























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Proof  Assume S(0) > 0 , Ip(0) > 0 , Vp(0) > 0 and R(0) > 0 are positive for time t > 0 and for all nonnegative 
parameters. Let us take T = sup{t > 0 such that S

(

t ′
)

> 0, Ip
(

t ′
)

> 0,Vp

(

t ′
)

> 0 and R
(

t ′
)

> 0, t ′ ∈ [0, t]}.
From the initial condition, all the state variables are non-negative at the initial time and T > 0.
Moreover, the first equation of the given system  dSdt = (1− π)�+ ρR + φVp −

(

f2 + µ
)

S can be integrated 
using integrating factor IF = e

∫ T
0 (f2+µ)dt′

where k5 = e−
∫ T
0 (f2+µ)dt′ which is nonnegative and exponential function.

Which implies that S(t) > 0 . Following the same procedures, we have Ip(t) > 0 , Vp(t) > 0 and R(t) > 0 . 
Therefore, from above proof, we can conclude that whenever the initial values of the systems are all nonnegative, 
then all the solutions of our dynamical system are positive.

Invariant region of the pneumonia only model.  Theorem 8  The dynamical system (3) is positively invariant in 
the closed invariant set �2 = {

(

S, Ip,Vp,R
)

ǫR4
+ : N2 ≤

�

µ
} where the total human population of the system is 

assumed to be N2.

Proof  To determine an invariant region that elucidate the boundedness of solution, we have
N2 = S + Ip + Vp + R ⇒ dN2

dt = �− µN2 − δ2Ip

⇒ dN2
dt ≤ �− µN2 ⇒ dN2

dt + µN2 ≤ � , then using an integrating factor of IF = e
∫

µdt = eµt

⇒ lim
t→∞

N2(t) ≤
�

µ
 Thus 0 ≤ N2(t) ≤

�

µ

Therefore, the dynamical system is bounded.

Existence of the disease‑free equilibrium point of the pneumonia‑only model.  The disease-free equilibrium point 
is obtained by making all the equations of the system equal to zero, providing that {Ip = 0} . Thus, the disease-free 
equilibrium point of the system is given by

Effective reproduction number of pneumonia only model.  The reproduction number is the expected number 
of secondary cases produced by one typical infectious inter in a completely susceptible population during its 
infectious period.

Therefore, the effective reproduction number of pneumonia-infected only model is 
Reff (p) =

�

µ

(

(1−π)(µ+φ)+πφ
(µ+φ)(τ 3+δ2+µ)

)

 and the basic reproduction number determined in the absence of an intervention 

is given by Rop = �α1
(τ3+δ2+µ)µ

.

Local stability of the disease‑free equilibrium point of the pneumonia‑only model.  Theorem 9  The disease-free 
equilibrium point EOp =

(

�

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

, π�
(µ+φ)

, 0, 0
)

 of the model in system (3) is locally asymptotically 
stable if the effective reproduction number Reff (p) < 1 and is unstable if Reff (p) > 1.

Proof  The Jacobean matrix J
(

EOp

)

 of system (3) with respect to 
(

S,Vp,Ip,R
)

 at the disease-free equilibrium 
point is,

For simplicity let h1 = �

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

and h3 = (τ3 + δ2 + µ)

Then, the corresponding characteristic equation is

S(t) = k5S(0)+ k5

[
∫ T

0
e
∫ T
0 (f2+µ)dt′ [(1− π)�+ ρR + φVp]dt

]

> 0

EOp =
(

SO ,Vp,
OIp

O ,RO
)

=

(

�

µ

[

(1− π)(µ+ φ)+ πφ

(µ+ φ)

]

,
π�

(µ+ φ)
, 0, 0

)

J
�

EOp

�

=











−µ φ −α1
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

ρ

0 −(µ+ φ) 0 0

0 0 α1
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

− (τ3 + δ2 + µ) 0

0 0 τ3 −(ρ + µ)











(

−µ−
∧

1

)(

−(µ+ φ)−
∧

2

)(

(α1h1 − h3)−
∧

3

)(

−(ρ + µ)−
∧

4

)

= 0

⇒
∧

1
= −µ or

∧

2
= −(µ+ φ) or

∧

3
= −(α1h1 − h3) or

∧

4
= −(ρ + µ)



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2639  | https://doi.org/10.1038/s41598-022-06253-0

www.nature.com/scientificreports/

Hence, all the roots are negative and 
∧

3 can be written as follow after rearranging the term using the above 
assumption 

∧

3 = (τ3 + δ2 + µ)
(

Reff (p) − 1
)

.
Therefore, the disease-free equilibrium point is locally asymptotically stable if and only if Reff (p) < 1 ; other-

wise, it is unstable, if Reff (p) > 1.
Biologically, these results indicate that pneumonia disease can be dies out from the communities when 

Reff (p) < 1 , providing that the initial size of the subpulation of the submodel are in the region of attraction of EOp.

Global stability of the disease‑free equilibrium point of the pneumonia‑only model.  Theorem 10  The disease-free 
equilibrium is globally asymptotically stable if Reff (P) < 1.

Proof  To prove the global asymptotic stability (G A S) of the disease-free equilibrium point, we use the method 
of Lyapunov functions.

We defined a Lyapunov function L2 such that L2 = bIp where b = 1
τ3+δ2+µ

Then, differentiating L2 with respect to t    dL2dt =
f2S

(τ3+δ2+µ)
− IP

 ⇒  dL2dt ≤
[

Reff (p) − 1
]

Ip   so, dL2dt ≤ 0 if Reff (p) ≤ 1 and furthermore, dL2dt = 0 if p = 0 or Reff (p) = 1 . Holding 

these, we can see that 
(

�

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

, π�
(µ+φ)

, 0, 0
)

 is the only singleton in {
(

S,Vp, Ip,R
)

∈ �2 :
dL2
dt = 0} . 

Therefore, by the principle of (LaSalle, 1976), DFE is globally asymptotically stable if Reff (p) < 1.

Existence of the endemic equilibrium point of the pneumonia‑only model.  To determine conditions for the exist-
ence of an arbitrary equilibrium point(s) for pneumonia infection in the population, the equations of the model 
of pneumonia infected only model are needed to be solved in terms of the force of infection  f2 = α1IP

∗  at the 
equilibrium point.

The endemic equilibrium point of the model is denoted by E∗p =
(

S∗, Ip
∗,Vp,

∗,R∗
)

 , which occurs when the 
disease persists among the community and is manipulated by making the equations in corresponding dynamical 
system equal to zero. Thus, we get

Now substituting S∗ in to Ip
∗ we do have f2 = (ρ+µ)(τ3+δ2+µ)µ

((ρ+µ)(τ3+δ2+µ)−ρτ 3)

(

Reff (p) − 1
)

Thus,  f2 =
(ρ+µ)(τ3+δ2+µ)µ

((ρ+µ)(τ3+δ2+µ)−ρτ 3)

(

Reff (p) − 1
)

> 0 i f  and only  i f  Reff (p) > 1 and obviously 
(ρ + µ)(τ3 + δ2 + µ)− ρτ 3 > 0 Therefore, the system has unique endemic equilibrium point if Reff (p) > 1

Local stability of the endemic equilibrium point of the pneumonia‑only model.  Theorem 11  The endemic equilib‑
rium point E∗p =

(

S∗, Ip
∗,Vp,

∗,R∗
)

 is locally asymptotically stable if the reproduction number Reff (p) > 1.

Proof  To show the local stability of the endemic equilibrium point, we use the Jacobian matrix and Routh Hur-
witz stability criteria. Then, the Jacobian matrix of the dynamical system at the endemic equilibrium point is

Thus, the characteristic equation of the above Jacobian matrix is given by
∣

∣

∣

∣

∣

∣

∣

D1 − � D2 φ ρ

D3 D5 − � 0 0
0 0 D6 − � 0
0 τ3 0 D7 − �

∣

∣

∣

∣

∣

∣

∣

= 0 , Where D1 = −
(

α1Ip
∗ + µ

)

= −

(

α1
f2S

∗

(τ3+δ2+µ)
+ µ

)

S∗ =
(ρ + µ)(τ3 + δ2 + µ)(1− π)�(µ+ φ)+ φ��(ρ + µ)(τ3 + δ2 + µ)(µ+ φ)

(

f2 + µ
)

(ρ + µ)(τ3 + δ2 + µ)(µ+ φ)− (µ+ φ)ρτ 3f2

Ip
∗ =

f2S
∗

(τ3 + δ2 + µ)

Vp
∗ =

��

(µ+ φ)

R∗ =
τ3f2S

∗

(ρ + µ)(τ3 + δ2 + µ)

J
�

Ep
∗
�

=







−
�

α1Ip
∗ + µ

�

−α1S
∗ φ ρ

α1Ip
∗ α1S

∗ − (τ3 + δ2 + µ) 0 0
0 0 −(µ+ φ) 0
0 τ3 0 −(ρ + µ)







D2 =
−α1(ρ + µ)(τ3 + δ2 + µ)(1− π)�(µ+ φ)− α1φ��(ρ + µ)(τ3 + δ2 + µ)(µ+ φ)

(

f2 + µ
)

(ρ + µ)(τ3 + δ2 + µ)(µ+ φ)− (µ+ φ)ρτ 3f2
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a0�
4 + a1�

3 + a2�
2 + a3�+ a4 = 0 where a1 = −(D1 + D5 + D6 + D7), a2 = (D1D5 + D2D3 + D1D6+

D5D6 + D1D7 + D5D7 + D6D7), a3 = −(D1D5D6 + (τ3D3)ρ + D2D3D6 + D1D5D7 + D2D7D3 + D1D6D7

−D5D6D7), a4 = D1D5D6D7 + (τ3D3)ρD6 + D2D7D3D6, a0 = 1.

Here, we have to check the necessary condition of the Routh-Hurwitz stability criteria since a0 = 1 is posi-
tive in sign.

After some manipulation a1 = −(D1 + D5 + D6 + D7) > 0 for Reff (p) > 1.
a2 = (D1D5 + D2D3 + D1D6 + D5D6 + D1D7 + D5D7 + D6D7) > 0 for Reff (p) > 1.
In the same way for a3 > 0  and a4 > 0.
From the above algebraic manipulations, all the coefficients of the characteristic’s polynomial are positives 

whenever Reff (p) > 1.
Then, we can apply the Routh-Hurwitz criteria to determine the sign of the roots of the characteristic equation 

without calculating the values of the root of the characteristics equation a0�4 + a1�
3 + a2�

2 + a3�+ a4 = 0

 where b1 = −1
a1

∣

∣

∣

∣

a0 a2
a1 a3

∣

∣

∣

∣

= −1
a1
(a0a3 − a1a2)

b1 =
−1
a1
(a0a3 − a1a2) ⇒ b1 = −1

a1
(a3 − a1a2) ⇒ b1 > 0

In the same procedure

b2 =
−1
a1

∣

∣

∣

∣

a0 a4
a1 0

∣

∣

∣

∣

⇒ b2 =
−1
a1
(−a4a1) =

a4a1
a1

= a4 > 0⇒b2 > 0

Again c1 = −1
b1

∣

∣

∣

∣

a1 a3
b1 b1

∣

∣

∣

∣

= −1
b1
(b1a1 − a3b1) = (a3 − a1) ⇒ c1 > 0

Finally, d1 = −1
c1

∣

∣

∣

∣

b1 b2
c1 0

∣

∣

∣

∣

= −1
c1
(−c1b2) = b2 > 0 ⇒ d1 > 0

Hence, the first column of the Routh Hurwitz array has no sign change, and then the root of the characteristic 
equation of the dynamical system is negative. Hence, the endemic equilibrium point of the dynamical system is 
locally asymptotically stable.

Global stability of the endemic equilibrium point of the pneumonia‑only model.  Theorem 12  If Reff (P) > 1 , the 
endemic equilibrium of the model (3) is globally asymptotically stable.

Proof  Systematically, we define an appropriate Lyapunov function L4 such that;

Then, after differentiating L3 with respect to time t  , we have the following.

Then, by substituting dSdt ,
dIp
dt ,

dVp

dt ,
dR
dt   and simplifying

⇒ dL4
dt = P1 − P2 where P1 = �+ S∗f 2 + S∗µ+ Ip

∗δ2 + Ip
∗µ+ Ip

∗τ3 + Vp
∗µ+ Vp

∗φ + R∗ρ + R∗µ and  

P2 =
(

Sµ+ Ipδ2 + Ipµ+ Vpµ+ Rµ+

(

S∗[(1−π)�+ρR+φVp]
S

)

+

(

Ip
∗[f2S]
Ip

)

+

(

R∗[τ2Ip]
R

)

+

(

Vp
∗[π�]

Vp

))

 Thus, 

if P1 < P2, then dL4dt ≤ 0 , and dL3dt = 0 if and only if S = S∗, Ip = Ip
∗,Vp = Vp

∗ and R = R∗. from this, we see 

that E∗p =
(

S∗, Ip
∗,Vp

∗,R∗
)

 is the largest compact invariant singleton set in 
{

(

S∗, Ip
∗,Vp

∗,R∗
)

ǫ�2 :
dL4
dt = 0

}

Therefore, by the principle of (LaSalle, 1976), the endemic equilibrium (E∗p) is globally asymptotically stable 
in the invariant region if P1 < P2.

Meningitis and pneumonia coinfection model.  In this part, we have considered the dynamical system 
of meningitis and pneumonia coinfection model stated in Eq. (1).

D3 = α1Ip
∗, D4 = (τ3 + δ2 + µ), D5 = −D2 − D4, D6 = −(µ+ φ) and D7 = −(ρ + µ)

L4 =

(

S − S∗ + S∗ln
S∗

S

)

+

(

Ip − Ip
∗ + Ip

∗ln
Ip

∗

Ip

)

+

(

Vp − Vp
∗ + Vp

∗ln
Vp

∗

Vp

)

+

(

R − R∗ + R∗ln
R∗

R

)

dL4

dt
=

(

S − S∗

S

)

dS

dt
+

(

Ip − Ip
∗

Ip

)

dIp

dt
+

(

Vp − V
p
∗

Vp

)

dVp

dt
+

(

R − R∗

R

)

dR

dt
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Positivity of solutions of the model.  In order to be the stated dynamical systems are epidemiologically meaning-
ful and posed, it is needed to prove that all the state variables of dynamical systems are nonnegative.

Theorem 13  All the populations of the system with positive initial conditions are nonnegative.
Assume S(0) > 0, Im(0) > 0, Ip(0) > 0, Imp(0) > 0,TmP(0) > 0,Vmp(0) > 0 and R(0) > 0 are positive for time 

t > 0 for all non-negative parameters.

Proof  First, let us take T = sup{t > 0 such that S
(

t′
)

> 0, Im
(

t′
)

> 0, Ip
(

t′
)

> 0, Imp

(

t′
)

> 0,TmP

(

t′
)

> 0,Vmp

(

t′
)

> 0 
and R

(

t ′
)

> 0, t ′ ∈ [0, t]}.
From the initial condition, all the state variables are non-negative at the initial time; then, T > 0.
From first equation of system (1); dSdt +

(

f1 + f2 + µ
)

S = (1− π)�+ ρR + φVmp , Integrated by using the 
integrating factor IF = e

∫ T
0 (f1+f2+µ)dt′

Let r1 = e−
∫ T
0 (f1+f2+µ)dt′ , which is nonnegative because the exponential function cannot be negative. Thus 

S(t) = r1S(0)+ r1

[

∫ T
0 e

∫ T
0 (f1+f2+µ)dt′ [(1− π)�+ ρR + φVmp]dt

]

> 0

⇒ S(t) > 0 , in the same procedure we have
Ip(t) > 0 ,  Im(t) > 0 , Imp(t) > 0 , Tmp(t) > 0 , Vmp(t) > 0 and R(t) > 0.
Therefore, from the above proof, we can conclude that whenever the initial values of the systems are all non-

negative, then all the solutions of our dynamical system are positive.

Invariant region.  Theorem 14  The dynamic system (1) is positively invariant in the closed invariant set

Proof  To obtain an invariant region that shows that the solution is bounded, we have

Since all the parameters are nonnegative, dNdt ≤ �− µN

Then, multiplying both sides using an integrating factor of IF = e
∫

µdt = eµt

eµt
[

dN
dt + µN

]

≤ eµt�  ⇒ N(t) ≤ N0e
−µt + �

µ
 ⇒ lim

t→∞
N(t) ≤ �

µ
  Thus, 0 ≤ N(t) ≤ �

µ

There for the dynamical system is bounded.

Existence of the disease‑free equilibrium point of the meningitis and pneumonia coinfections model.  The disease-
free equilibrium point of the system is determined by making all the equations in system (1) equal to zero, pro-
viding that {Ip = Im = Imp = 0} and become

Reproduction number.  To compute the reproduction number, it is important to distinguish new infectious 
from all other changes in the host population. Let Fi(x) : be the rate of appearance of new infectious in the 
compartment i and V+

i(x) : be the rate of transfer of individuals in to the compartment i, V−
i(x) : be the rate of 

transfer of individuals out of compartment i.
Then Vi(x) = V−

i(x)− V+
i but F =

[

∂Fi
∂Xj

(Xo)

]

  and V =

[

∂Vi
∂Xj

(Xo)

]

 , where F and V  are mxm matrices with 

m being the number of infected compartment. Fv−1 is the next generation matrix, and the spectral radius of the 
next generation matrix is the needed reproduction number.

Thus, from our system we do have the following

At disease free N = S + Vmp and the infected compartment are 
(

Ip, Im, Imp

)

S(t) = S(0)e−
∫ T
0 (f1+f2+µ)dt′ +e−

∫ T
0 (f1+f2+µ)dt′

[
∫ T

0
e
∫ T
0 (f1+f2+µ)dt′ [(1− π)�+ ρR + φVmp]dt

]

� =

{

(

S, Ip, Im,Imp,Tmp,Vmp,R
)

ǫR7
+ : N ≤

�

µ

}

.

N = S + Ip + Im + Imp + Tmp + Vmp + R ⇒
dN

dt
= �− µN −

(

δ1Im + δ2Ip + δ3Imp

)

EOmp =
(

SO ,Vmp,
OIp

O , Im,
OImp

O ,Tmp
O ,RO

)

=

(

�

µ

[

(1− π)(µ+ φ)+ πφ

(µ+ φ)

]

,
π�

(µ+ φ)
, 0, 0, 0, 0, 0

)

Fi(x) =

















0
0
f2S
f1S
0
0
0

















and Vi(x) =



















�

f1 + f2 + µ
�

S − (1− π)�− ρR − φVmp

(µ+ φ)Vmp − π�
�

ωf1 + τ3 + δ2 + µ
�

Ip
�

�f 2 + τ1 + δ1 + µ
�

Im
−ωf 1Ip −�f 2Im − (τ2 + µ+ δ3)Imp

(β + µ)Tmp − τ2Imp

(ρ + µ)R − βTmp − τ1Im − τ3IP





















11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2639  | https://doi.org/10.1038/s41598-022-06253-0

www.nature.com/scientificreports/

Thus, N = S + Vmp =
�

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

+ π�
(µ+φ)

=
�((1−π)(µ+φ)+πφ)+µπ�

µ(µ+φ)
= �

µ

Thus F =









α1
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

0 α1
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

0 α2
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

α2
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

0 0 0









Then FV−1 =









α1
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

0 α1
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

0 α2
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

α2
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)

�

0 0 0















1
τ3+δ2+µ

0 0

0 1
τ1+δ1+µ

0

0 0 1
τ2+µ+δ3







Then, the corresponding eigenvalues of the next generation matrix G are

Therefore, the effective reproduction number is

The basic reproduction number that manipulated in the absence of an intervention is given by 
Rmp = max

{

�α1
µ(τ3+δ2+µ)

, �α2
µ(τ1+δ1+µ)

}

Local stability of the disease‑ free equilibrium point of the meningitis and pneumonia coinfection model.  Theo-
rem 15  The disease-free equilibrium point EOmp =

(

�

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

, π�
(µ+φ)

, 0, 0, 0, 0, 0
)

 of the model in sys‑
tem (1) is locally asymptotically stable if the effective reproduction number Reff < 1 and unstable if Reff > 1.

Proof  The Jacobean matrix J
(

EOmp

)

 of the model (1) at the disease-free equilibrium point is

Then, the corresponding characteristic equation is given by

T h u s ,  
∧

1
= −µ or

∧

2
= −(µ+ φ) or

∧

3
= −(α1n1 − n2) or

∧

4
= −(α2n1 − n3) or

∧

5
= −n4 or

∧

6
= −(β + µ) or

∧

7
= −(ρ + µ) Where n1 = �

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

, n2 = (τ3 + δ2 + µ), n3 = (τ1 + δ1 + µ) 

and n4 = (τ2 + µ+ δ3) , which are positive terms, all parameters are nonnegative, and π is the proportion. 

Assuming that R1 = α1
�

µ

(

(1−π)(µ+φ)+πφ
(τ3+δ2+µ)(µ+φ)

)

 and R2 = α2
�

µ

(

(1−π)(µ+φ)+πφ
(µ+φ)(τ1+δ1+µ)

)

 and by rearranging the term using 

the above assumption, we do have the following 
∧

3 = (τ3 + δ2 + µ)(R1 − 1) and
∧

4 = (τ1 + δ1 + µ)(R2 − 1).
The roots 

∧

1,
∧

2,
∧

5,
∧

6 and
∧

7 are all less than zero. However the roots 
∧

3 = (τ3 + δ2 + µ)(R1 − 1) and 
∧

4 = (τ1 + δ1 + µ)(R2 − 1) are negative if and only if R1 < 1 and R2 < 1. Therefore, disease-free equilibrium 
point that is locally asymptotically stable if and only if Reff = max{R1,R2} < 1 and it is unstable if Reff > 1.

N =
�

µ
and

S

N
=

(1− π)(µ+ φ)+ πφ

(µ+ φ)

V =

[

τ3 + δ2 + µ 0 0
0 τ1 + δ1 + µ 0
0 0 τ2 + µ+ δ3

]

G =









α1
�

µ

�

(1−π)(µ+φ)+πφ
(τ3+δ2+µ)(µ+φ)

�

0 α1
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)(τ2+µ+δ3)

�

0 α2
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)(τ1+δ1+µ)

�

α2
�

µ

�

(1−π)(µ+φ)+πφ
(µ+φ)(τ2+µ+δ3)

�

0 0 0









�1 = α1
�

µ

(

(1− π)(µ+ φ)+ πφ

(τ3 + δ2 + µ)(µ+ φ)

)

, �2 =

(

α2
�

µ

(

(1− π)(µ+ φ)+ πφ

(µ+ φ)(τ1 + δ1 + µ)

))

, �3 = 0

Reff = max

{

α1
�

µ

(

(1− π)(µ+ φ)+ πφ

(τ3 + δ2 + µ)(µ+ φ)

)

,

(

α2
�

µ

(

(1− π)(µ+ φ)+ πφ

(µ+ φ)(τ1 + δ1 + µ)

))}

.

J
�

EOmp

�

=

















−µ φ −α1n1 −α2n1 −(α1 + α2)n1 0 ρ

0 −(µ+ φ) 0 0 0 0 0
0 0 α1n1 − n2 0 α1n1 0 0
0 0 0 α1n1 − n3 α2n1 0 0
0 0 0 0 −n4 0 0
0 0 0 0 τ2 −(β + µ) 0
0 0 τ3 τ1 0 β −(ρ + µ)

















(

−
∧

6
− (β + µ)

)(

−
∧

2
− (µ+ φ)

)(

−
∧

3
+ (α1n1 − n2)

)

(

−
∧

4
+ (α2n1 − n3)

)(

−
∧

5
− n4

)

(−µ−
∧

1
)(−(ρ + µ)−

∧

7
) = 0
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Global stability of the disease‑free equilibrium point of the meningitis and pneumonia coinfection only model.  The-
orem 16  The disease-free equilibrium is globally asymptotically stable if Reff = max{R1,R2} < 1.

Proof  To prove the global asymptotic stability (G A S) of the disease- free equilibrium point, we used the Lya-
punov function method. We defined a Lyapunov function assuming the coefficient of co-infected compartment 
is equal to zero as L = aIm + bIm where  a = 1

τ1+δ1+µ
, b = 1

τ3+δ2+µ
  and then differentiating L with respect to t

⇒  dLdt =
f1S

τ1+δ1+µ
+

f2S
τ3+δ2+µ

− Ip − Im . Then, by substituting the value of f1 = α2Im, f2 = α1Ip and 
N = S + Vmp =

�

µ

dL
dt = (R2 − 1)Im + (R1 − 1)Ip So dLdt ≤ 0 if Reff ≤ 1 and furthermore, dLdt = 0 if Im = 0 and Ip = 0.  Holding 

t hes e ,  we  can  s e e  t hat  
(

�

µ

[

(1−π)(µ+φ)+πφ
(µ+φ)

]

, π�
(µ+φ)

, 0, 0, 0, 0, 0
)

 i s  t he  on ly  s ing le ton  in 

{
(

S,Vm, Im, Ip,Imp,Tmp,R
)

∈ � : dL
dt = 0} . Therefore, by the principle of (LaSalle, 1976), DFE is globally asymp-

totically stable if Reff < 1.

Existence of the endemic equilibrium point of the meningitis and pneumonia coinfection model.  The endemic 
equilibrium point E∗mp =

(

S∗, Ip
∗, Im,

∗Imp
∗,Tmp

∗,Vmp,
∗,R∗

)

 exists when the disease persists in the community. 
From the analysis of the sub-model of meningitis only sub-model and the pneumonia only sub-model, we have 
shown that there is no endemic equilibrium point if Reff < 1.

To find conditions necessary for the existence of the endemic equilibrium for Reff > 1 , the system of equa-
tions is equated to zero and solved equilibrium points in terms of the force of infections. After some algebraic 
manipulation, we do have an endemic equilibrium point

where; a = (β + µ)(µ+ ρ)(µ+ δ3 + τ2)
(

µ+ δ1 +�f 2 + τ1
)(

µ+ δ3 + τ2 + ωf 1
)

Local stability of the endemic equilibrium point of the meningitis and pneumonia coinfection model.  Theo-
rem 17  The endemic equilibrium point E∗pm =

(

S∗, Ip
∗, Im,

∗Imp
∗,Tmp

∗,Vmp,
∗,R∗

)

 is locally stable when the effec‑
tive reproduction number Reff > 1.

dL

dt
=

[

((1− π)(µ+ φ)+ πφ)α2

(τ1 + δ1 + µ)(µ+ φ)
− 1

]

Im +

[

α1((1− π)(µ+ φ)+ πφ)

(τ 3 + δ2 + µ)(µ+ φ)
− 1

]

Ip

E∗pm =
(

S∗, Ip
∗, Im,

∗Imp
∗,Tmp

∗,Vmp,
∗,R∗

)

S∗ =
(π − 1)�(µ+ φ)− φ��

(µ+ φ)

[

a

ρ
(

ωβf 1f2τ2c +�βf 1f2τ2b+ (β + µ)(µ+ δ3 + τ2)(f2τ3c + f1τ2b)
)

− a
(

f1 + f2 + µ
)

]

Ip
∗ =

(

f2
(

ωf1 + τ3 + δ2 + µ
)

)

S∗

Im
∗ =

f1S
∗

(

�f 2 + τ1 + δ1 + µ
)

Imp
∗ =

(

ω
(

ωf1 + τ3 + δ2 + µ
) +

�
(

�f 2 + τ1 + δ1 + µ
)

)

f2f1S
∗

(τ2 + µ+ δ3)

Tmp
∗ =

τ2

(β + µ)

(

ω
(

ωf1 + τ3 + δ2 + µ
) +

�
(

�f 2 + τ1 + δ1 + µ
)

)

f2f1S
∗

(τ2 + µ+ δ3)

Vmp
∗ =

��

(µ+ φ)

R∗ =
βτ2f2f1S

∗

(ρ + µ)(β + µ)(τ2 + µ+ δ3)

(

ω
(

ωf1 + τ3 + δ2 + µ
) +

�
(

�f 2 + τ1 + δ1 + µ
)

)

+
τ1f1S

∗

(ρ + µ)
(

�f 2 + τ1 + δ1 + µ
) +

τ3f2S
∗

(ρ + µ)
(

ωf1 + τ3 + δ2 + µ
)

b = µ+ δ3 + τ2 + ωf 1, c = µ+ δ1 +�f 2 + τ1
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Proof  To show the local stability of the endemic equilibrium point, we use the Jacobian matrix and Routh Hur-
witz stability criteria. Then, the Jacobian matrix of the dynamical system (1) is

w h e r e  A1 = −
(

f1 + f2 + µ
)

,A2 = −α2S
∗
,A3 = α1S

∗ −
(

ωf1 + τ3 + δ2 + µ
)

,A4 = −α1S
∗
, A5 = −(α1+

α2)S
∗
,A6 = −ωα2Ip

∗
,A7 = α1S

∗−ωα2Ip
∗
,A8 = −α1�Im

∗
,A9 = α2S

∗−
(

�f
2
+ τ1 + δ1 + µ

)

, A10 = α2S
∗

−α1�Im
∗
,B1 = ωα2Ip + α1�Im − (τ2 + µ+ δ3),B2 = −(β + µ),B3 = −(µ+ φ),B4 = −(ρ + µ)

Then, the corresponding characteristic equation is given by

where

J(X) =

















A1 A2 A4 A5 0 φ ρ

f2 A3 A6 A7 0 0 0
f1 A8 A9 A10 0 0 0
0 0 0 B1 0 0 0
0 ωf1 �f 2 τ2 B2 0 0
0 0 0 0 0 B3 0
0 τ3 τ1 0 β 0 B4

















a8�
8 + a7�

7 + a6�
6 + a5�

5 + a4�
4 + a3�

3 + a2�
2 + a1�+ a0 = 0

a8 = 1, a7 = (−A1 − A3 − 2A9 − B1 − B2 − B3 − B4)

a6 =
(

A1A3 + 2A1A9 + 2A3A9 + A2
9 + A1B1 + A3B1 + 2A9B1 + A1B2 + A3B2 + 2A9B2 + B1B2 + A1B3

+A3B3 + 2A9B3 − B1B3 − B2B3 + A1B4 + A3B4 + 2A9B4 + B1B4 + B2B4 + B3B4
)

a5 =
(

A2f2 − 2A1A3A9 − A1A
2
9 − A3A

2
9 − A1A3B1 − 2A1A9B1 − 2A3A9B1 − A2

9B1 − A1A3B2

−2A1A9B2 − 2A3A9B2 − A2
9B2 − A1B1B2 − A3B1B2 − 2A9B1B2 − A1A3B3 − 2A1A9B3+

+2A3A9B3 − A2
9B3 − A1B1B3 − A3B1B3 − 2A9B1B3 − A1B2B3 − A3B2B3 − 2A9B2B3

−B1B2B3 − A1A3B4 − 2A1A9B4 − 2A3A9B4 − A2
9B4 − A1B1B4 − A3B1B4 − 2A9B1B4

−A1B2B4 − A3B2B4 − 2A9B2B4 − B1B2B4−A1B3B4 − A3B3B4 − 2A9B3B4 − B1B3B4�
5 − B2B3B4 + 1

)

a4 =
(

A1A3A
2
9 + 2A1A3A9B1 + A1A

2
9B1 + A3A

2
9B1 + 2A1A3A9B2 + A1A

2
9B2

+A3A
2
9B2 + A1A3B1B2 + 2A1A9B1B2 + 2A3A9B1B2 + A2

9B1B2 + 2A1A3A9B3

+A1A
2
9B3 + A3A

2
9B3 + A1A3B1B3 + 2A1A9B1B3 + 2A3A9B1B3 + A2

9B1B3

+A1A3B2B3 + 2A1A9B2B3 + 2A3A9B2B3 + A2
9B2B3 + A1B1B2B3 + A3B1B2B3

+2A9B1B2B3 + 2A1A3A9B4 + A1A
2
9B4 + A3A

2
9B4 + A1A3B1B4 + 2A1A9B1B4

+2A3A9B1B4 + A2
9B1B4 + A1A3B2B4 + 2A1A9B2B4 + 2A3A9B2B4 + A2

9B2B4

+A1B1B2B4 + A3B1B2B4 + 2A9B1B2B4 + A1A3B3B4 + 2A1A9B3B4 + 2A3A9B3B4

+A2
9B3B4 + A1B1B3B4 + A3B1B3B4 + 2A9B1B3B4 + A1B2B3B4 + A3B2B3B4

+2A9B2B3B4 + B1B2B3B4 − A2A9f2 − A2B1f2 − A2B2f2 − A2B3f2 − A2B4f2

−A2A6f1 − A3 − B1 − B2 − B3 − B4 + A2
4A8f1f2

)

a3 = [2A1A3A9B1B4 − A1A3A
2
9B2 − 2A1A3A9B1B2 − A1A

2
9B1B2 − A3A

2
9B1B2

− A1A3A
2
9B1 − A1A3A

2
9B3 − 2A1A3A9B1B3 − A1A

2
9B1B3 − A3A

2
9B1B3

− 2A1A3A9B2B3 − A1A
2
9B2B3 − A3A

2
9B2B3 − A1A3B1B2B3 − 2A1A9B1B2B3

− 2A3A9B1B2B3 − A2
9B1B2B3 − A1A3A

2
9B4 − A1A

2
9B1B4 − A3A

2
9B1B4

− 2A1A3A9B2B4 − A1A
2
9B2B4 − A3A

2
9B2B4 − A1A3B1B2B4 − 2A1A9B1B2B4

− 2A3A9B1B2B4 − A2
9B1B2B4 − 2A1A3A9B3B4 − A1A

2
9B3B4 − A3A

2
9B3B4

− A1A3B1B3B4 − 2A1A9B1B3B4 − 2A3A9B1B3B4 − A2
9B1B3B4 − A1A3B2B3B4

− 2A1A9B2B3B4 − 2A3A9B2B3B4 − A2
9B2B3B4 − A1B1B2B3B4 − A3B1B2B3B4

− 2A9B1B2B3B4 + A2A9B1f2 + A2A9B2f2 + A2B1B2f2 + A2A9B3f2 + A2B1B3f2

+ A2B2B3f2 + A2A9B4f2 + A2B1B4f2 + A2B2B4f2 + A2B3B4f2 − A2A6B1f1

− A2A6B2f1 − A2A6B3f1 − A2A6B4f1 + A3B1 + A3B2 + B1B2 + A3B3 + B1B3

+ B2B3 + A3B4 + B1B4 + B2B4 + B3B4 − A2
4A8B1f1f2 − A2

4A8B2f1f2

− A2
4A8B3f1f2 − A2

4A8B4f1f2
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a2 = [A1A3A
2
9B1B2 + A1A3A

2
9B1B3 + A1A3A

2
9B2B3 + 2A1A3A9B1B2B3 + A1A

2
9B1B2B3

+ A3A
2
9B1B2B3 + A1A3A

2
9B1B4 + A1A3A

2
9B2B4 + 2A1A3A9B1B2B4 + A1A

2
9B1B2B4

+ A3A
2
9B1B2B4 + A1A3A

2
9B3B4 + 2A1A3A9B1B3B4 + A1A

2
9B1B3B4 + A3A

2
9B1B3B4

+ 2A1A3A9B2B3B4 + A1A
2
9B2B3B4 + A3A

2
9B2B3B4 + A1A3B1B2B3B4 + 2A1A9B1B2B3B4

+ 2A3A9B1B2B3B4 + A2
9B1B2B3B4 + A2A9B1B2f2 + A2A9B1B3f2 + A2A9B2B3f2

+ A2B1B2B3f2 + A2A9B1B4f2 + A2A9B2B4f2 + A2B1B2B4f2 + A2A9B3B4f2

+ A2B1B3B4f2 + A2B2B3B4f2 − A2A6B1B2f1 − A2A6B1B3f1 − A2A6B2B3f1 − A2A6B1B4f1

− A2A6B2B4f1 − A2A6B3B4f1 − A3B1B2 − A3B1B3 − A3B2B3 − B1B2B3 − A3B1B4

− A3B2B4 − B1B2B4 − A3B3B4 − B1B3B4 − B2B3B4 + A2
4A8B1B2f1f2 + A2

4A8B1B3f1f2

+ A2
4A8B2B3f1f2 + A2

4A8B1B4f1f2 + A2
4A8B2B4f1f2 + A2

4A8B3B4f1f2]

Table 2.   Parameter values (NB: WHO’s 2019 relevant demographic data about Ethiopia are used). The 
parameter’s values from different articles and WHO.

No Parameter Parameter’s description Value Unit Source

1 τ1 The rate at which meningitis infected individual are recovered naturally 0.02 Time−1 23

2 τ3 The rate at which pneumonia infected individual are recovered naturally 0.0115 Time−1 23

3 τ2 The rate at which meningitis and pneumonia co infected individual treated and inter to treated class 0.3102 Time−1 24

4 β
The rate at which meningitis and pneumonia co infected individual are recovered after treatment (temporarily 
immunity to pneumonia and meningitis after treatment) 0.1 Time−1 25

5 µ Natural death rate 0.01 Time−1 26

6 δ1 Meningitis only caused death rate 0.002–0.2 Time−1 15

7 δ2 Pneumonia only caused death rate 0.006–0.5 Time−1 26,27

8 δ3 Meningitis and pneumonia coinfection caused death rate 0.008–0.7 Time−1 26

9 ω Modification parameter and ω ≥ 1 1 Time−1 Assumed

10 � The modification parameter and � ≥ 1 1 Time−1 Assumed

11 ρ Rate of loss of immunity 0.00735–0.363 Time−1 15

12 π The portion of vaccinated new born 0.105 24,28

13 � Recruitment rate 0.0413* N0 Size * time−1 WHO 2019

14 α2 Meningitis contact rate 0.9 Size−1 * time−1 27

15 α1 Pneumonia contract rate 0.007–0.6 Size−1 *time−1 29

16 φ Vaccine wanes rate 0.263 Time−1 28,30

Table 3.   Sensitivity indices of Reff (p).

Sensitivity index Value

SI(φ) 0.003705

SI(α1) 0.99614

SI(�) 0.99613

SI(π) − 0.105

SI(µ) 0.0077899

SI(τ3) − 0.0010599

SI(δ2) − 0.001063

Table 4.   Sensitivity indices of Reff (m).

Sensitivity index Value

SI(α2) 0.9961538

SI(µ) − 0.8104

SI(τ1) 0.00067738

SI(δ1) − 0.00099615
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Hence, all the coefficients of the characteristic’s polynomial are positives if Reff > 1.
By using the Routh-Hurwitz method, we obtained a Routh-Hurwitz array that had no sign change.
Therefore, the endemic equilibrium point of the meningitis and pneumonia co-dynamical system (1) is locally 

asymptotically stable.

Global stability of the endemic equilibrium point of the meningitis and pneumonia coinfection model.  Theo-
rem 18   If Reff > 1 , the endemic equilibrium of the model  (1)  is globally asymptotically stable.

Proof  Systematically, we define an appropriate Lyapunov function L′ such that;

a1 =
(

A1A3A
2
9B1B2B4 − A1A3A

2
9B1B2B3 +−A1A3A

2
9B1B3B4 − A1A3A

2
9B2B3B4

−2A1A3A9B1B2B3B4 − A1A
2
9B1B2B3B4 − A3A

2
9B1B2B3B4 − A2A9B1B2B3f2

−A2A9B1B2B4f2 − A2A9B1B3B4f2 − A2A9B2B3B4f2 − A2B1B2B3B4f2

+A3B1B2B4 + A3B1B3B4 + A3B2B3B4 + B1B2B3B4 − A2
4A8B1B2B3f1f2

−A2
4A8B1B2B4f1f2 − A2

4A8B1B3B4f1f2 − A2
4A8B2B3B4f1f2

−A2A6B1B2B3f1 − A2A6B1B2B4f1 − A2A6B1B3B4f1 − A2A6B2B3B4f1
)

a0 = A1A3A
2
9B1B2B3B4−A2A6B1B2B3B4f1+A2A9B1B2B3B4f2+�A3B1B2B3−A3B1B2B3B4+A2

4A8B1B2B3B4f1f2

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time In Years

In
tit

ia
l P

op
ul

at
io

n

Stability of disease free  Equilibrium point of The full meningitis and pneumonia co-infection model

S
Ip
Im
Imp
Tmp
Vmp
R
N

Figure 2.   The stability of the disease-free equilibrium point (DFE).
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Then, after differentiating L′ with respect to time t  and simplification

⇒ dL′

dt = Z1 − Z2 Where Z1 = �+
(

�f
2
+ τ1 + δ1 + µ

)

Im
∗ +

(

ωf1 + τ3 + δ2 + µ
)

Ip
∗ + (τ2 + µ+ δ3)Imp

∗

+(β + µ)Tmp
∗ + (µ+ φ)Vmp

∗ + (ρ + µ)R∗

Z2 =
(

Sµ+ Impµ+ Tmpµ+ Imµ+ Ipµ+ Vmpµ+ Rµ+ Impδ3 + Imδ1 + Ipδ2 +
(

f1 + f2 + µ
)

S∗

+
[(1−π)�+ρR+φVmp]S

∗

S +
f1SIm

∗

Im
+

[ωf 1Ip+�f
2
Im]Imp

∗

Imp
+

f2SIp
∗

Ip
+

[τ2Imp]Tmp
∗

Tmp
+

[π�]Vmp
∗

Vmp
+

[βTmp+τ1Im+τ3IP]R
∗

R

)

. 

Thus, if Z1 < Z2, then dLdt ≤ 0 , and dLdt = 0 if and only if S = S∗, Im = Im
∗
, Ip = Ip

∗
, Imp = Imp

∗
,Tmp = Tmp

∗
,

Vm = Vm
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Figure 6.    Effect of vaccination on meningitis and pneumonia effective reproduction number.

Figure 7.    Effect of contact rate on meningitis and pneumonia effective reproduction number.

Figure 8.    Effect of treatment of co-infected class on meningitis and pneumonia co-infected class.
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Figure 9.    Effect of vaccination wanes on susceptible class.

Figure 10.    Effect of vaccination rate on meningitis and pneumonia reproduction number.

Figure 11.    Effect of portion of vaccination on co-infected class.
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From this, we see that E∗mp =
(

S∗, Im
∗, Ip

∗, Imp
∗,Tmp

∗,Vm
∗,R∗

)

 is the largest compact invariant singleton 

set in 
{

(

S∗, Im
∗, Ip

∗, Imp
∗,Tmp

∗,Vm
∗,R∗

)

ǫ� : dL′

dt = 0
}

Therefore, by the principle of (LaSalle, 1976), the endemic equilibrium (E∗mp) is globally asymptotically stable 
in the invariant region if Z1 < Z2.

Sensitivity analysis of the model’s parameters
We carried out a sensitivity analysis to determine the model robustness to corresponding parameters values. If 
a variable is a differentiable function of the parameters, the sensitivity index may be alternatively defined using 
partial derivatives. Based on the definition of sensitivity analysis, we derive an analytical expression for the 
sensitivity of (Reff ) as 

∧

pReff =

(

∂Reff
∂p

)(

p
Ro

)

 to each of the parameters involved in (Reff ) . The most sensitive 
parameter are those whose sensitivity index magnitude larger than that of all other parameters. The sensitivity 
indices in terms of Reff (p) = α1

�

µ

(

(1−π)(µ+φ)+πφ
(τ3+δ2+µ)(µ+φ)

)

 with Rop = �α1
(τ3+δ2+µ)µ

 are stated in the Table:3 below.
In this study, we used the parameter values in Table 2 above and obtained Reff (p) = 11 at α1 = 0.959878 . 

The recruitment rate and pneumonia contract rate parameters has the highest impact on the basic reproduction 
number of pneumonia with absolute (0.99613 and 0.99614) respectively. The rate at which pneumonia infected 
individuals recovered naturally and pneumonia only caused death rate parameters are the least sensitive param-
eters. Here, sensitivity analysis shows that the most sensitive parameters are the pneumonia effective contact rate 
( α1 ), the recruitment rate ( � ). Moreover, the portion of vaccinated newborns ( π ) is the most negative sensitive 
parameter.

Using the parameter values in the Table 2, the sensitivity indices are stated for Reff (m) in the table below 
(Table 4).

The sensitivity analysis shown in Table 4 elucidate that the most sensitive positive parameters is the meningitis 
contact rate (α2) and that the most sensitive negative parameter is the natural death rate ( µ ) and the meningitis 
disease induced death rate ( δ1 ). These parameters have inverse relationships with the reproduction number, 
which means that smaller increases in these parameters will lead to a greater reduction in the basic reproduc-
tion number. Moreover, reduction in a smaller number of these parameters will cause a significant increase in 
the basic reproduction number.

Generally, the sign of each of the sensitive index values in Tables 3 and 4 indicates that a slight change in 
the parameters leads to change in the value of Reff (mp) . The Reff (mp) = max{Reff (p),Reff (m)} increases when 
sensitivity indices with positive signs increase, while Reff (mp) = max{Reff (p),Reff (m)} decreases when sensitivity 
indices with negative signs increase and vice versa.

Biologically, the most sensitive parameters to Reff (p) and Reff (m) are found to be  α1 and α2 respectively. These 
sensitive parameters can be controlled by means of interventions and preventions. Most specifically, the sensitiv-
ity indices SI(α1) = 0.99614 and SI(α1) = 0.9961538 mean that Reff (p) or Reff (m) approximately decreases by 
0.99614 % and 0.9961538 % when α1 and α2 are decreased. This result will tell us, decrease in α1 and α2 is a possible 
intervention strategy for the reduction of Reff (mp) . A detail discussion on the changes in parameters α1 and α2 
with their effects on Reff (p) and Reff (m) are held in the “Numerical simulation” section.

Numerical simulations
The motivation behand consideration of numerical simulations are to study the behavior and rationality of 
mathematical models, which are too complex to provide analytical solutions, as in most nonlinear systems. The 
numerical results are manipulated for the dynamical system of the full meningitis and pneumonia coinfection 
model using the MATLAB numerical solver (ODE45). Since the accuracy and the speed at which the result of 
numerical computation of complicated system returned is faster, we were chosen ODE45. These simulations are 
done by using a set of parameter values in Table 2 above.

The simulations of threshold.  Mathematical models are constructed using the parameters that have bio-
logical representation and real-life situation. Additionally, the reproduction numbers that determine the stability 
of an equilibrium point are functions of these parameters. As the values of these parameters changes, there are 
Nemours biological changes and implications. In this part of our study, we simulated the dynamical system of 
the full model for various values of the associated reproduction thresholds Reff (m) and Reff (p).

Case 1  For max
{

Ref f (m),Ref f (p)

}

< 1 , (that is Ref f < 1 ), the solution curves of the full meningitis and 
pneumonia coinfection model converge to the disease-free equilibrium point (DFE). This implies that the disease-
free equilibrium point is locally asymptotically stable whenever the max{Ref f (m) ,Ref f (p)} < 1.

Figure 2 above is plotted using the MATLAB ode45 program under consideration of reproduction numbers less 
than one. We can observe that all the solution curves of the system converge toward the disease-free equilibrium 
point. We obtained these results when the effective contact rate for pneumonia and meningitis are α1 = 0.0001298 
and α2 = 0.0001269 which led to the effective reproduction number Reff (p) = 0.37 and Reff (m) = 0.35 . At the 
disease-free equilibrium point, all the solution curves of the infection classes converge zero, while the susceptible 
and vaccinated classes increase exponentially for a long time, which indicates that the disease-free equilibrium 
point of the full pneumonia and meningitis coinfection model is globally asymptotically stable.
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From Fig. 3 shown above, we can see the behavior of the infectious classes for the full meningitis and pneu-
monia coinfection model when Reff (m) < 1 and Reff (p) < 1 that is all the infectious classes converge to the 
disease-free equilibrium point.

Figure 4 elucidate the physical properties of the solutions curves of the infectious classes of the full meningitis 
and pneumonia coinfection model for  Reff (m) > 1 and Reff (p) > 1 which shows that all the solution curves are 
converge to the endemic equilibrium point.

Case 2  For max
{

Ref f (m),Ref f (p)

}

> 1 (that is Ref f > 1 ), the solution curves of the full meningitis and pneu-
monia coinfection model converge to the endemic equilibrium point (EE). This implies that the endemic equi-
librium point (EE) is locally asymptotically stable whenever max{Ref f (m) ,Ref f (p)} > 1.

Figure 5 was plotted using the values of  Reff (m) = 12.82 with α1 = 0.0001349 and Reff (p) = 12.72 with 
α2 = 0.0001369 which shows the stability of the endemic equilibrium point of the full meningitis and pneumonia 
coinfection model.

Additionally, we can observe that the effective reproduction number for pneumonia only infection is greater 
than the effective reproduction number of meningitis only infection. The plot shows that the endemic equilibrium 
point of the full meningitis and pneumonia coinfection model is globally asymptotically stable.

Simulations of parameters with respect to the reproduction numbers.  Figure 6 illustrated that 
pneumonia effective reproduction and meningitis effective reproduction number simulation at variable portion 
of vaccination and from the graph.

Biologically, we see that Pneumonia and meningitis infection dies out from the community when we apply 
the portion of vaccination with the rate π > 0.501 and π > 0.521f  or pneumonia and meningitis respectively.

Figure 7 describe that pneumonia and meningitis infections die out from the community whenever the effec-
tive contact rate α1 < 0.0074 and α2 < 0.0075 , respectively.

Figure 8 shows the effective reproduction number of pneumonia and meningitis for different effective con-
tact rates. Biologically, the plot describe how variations in treatment rates affect individuals who are co-infected 
with pneumonia and meningitis. The co-infected class decreased whenever the treatment rate increased, and 
the co-infected class increased as the treatment rate decreased. From Fig. 9 we can observe that as vaccine wanes 
increase, the susceptible populations also increase and vice versa.

Figure 10 shows that as the portion of vaccination of newly born individuals increases, the reproduction 
number of both diseases decreases. Figure 11 shows that as the portion of vaccination of newly born increases, 
the number of co-infected class decreases.

Results and discussions
In this study, we formulated a mathematical model of seven nonlinear differential equations for the pneumonia 
and meningitis coinfection with PCV vaccination for a newly born population and treatment for co-infected 
class. We have considered the vaccination given for newborns called PCV13 (pneumococcal conjugate vac-
cine), which protects against numerous types of pneumococcal bacteria that can cause the most serious types of 
pneumococcal disease, including pneumonia and meningitis. We have also investigated the effect of treatment 
on the infection provided for the pneumonia and meningitis co-infected class. We have shown the positivity 
and boundedness of each sub model and fully pneumonia and meningitis coinfection model. The existence and 
uniqueness of disease free equilibrium point of each model, local stability and global stability of the disease free 
equilibrium points of the sub model and the full model are also investigated. We also analyzed the existence and 
uniqueness of the endemic equilibrium point of each model as well as the local stability and global stability of 
the endemic equilibrium points of each model. Our numerical simulation has shown that vaccination against 
those diseases, reducing contact with infectious persons and treatment have the great effect on reduction of these 
silent killer diseases from the communities.

Sub-Saharan Africa (i.e. which commonly known as Meningitis belt) including Ethiopia, are the region in 
trouble with meningitis disease. Most importantly meningitis, disease is a risk factor for pneumonia disease 
and vice versa. From these facts, we can say that the prevalence of pneumonia disease in this meningitis belt 
area is high.

Conclusions and recommendations
Globally, all diseases, including meningitis and pneumonia require careful, continuous and constant nursing 
and medical attentions. One of the best and effective ways to control a pneumonia and meningitis diseases is to 
reduce contacts.

However, in our homeland Ethiopia with behavior and cultural value, a reduction in contact is not a successful 
prevention method. Vaccines and drugs are also common and recommendable ways that can potentially reduce 
the transmission of these diseases, which was the finding of our study. Additionally, hygiene has an important and 
mandatory role in the prevention of cerebrospinal meningitis (CSM) and pneumonia. Thus, persons should cover 
their noses and mouths while sneezing or coughing and discard used tissues promptly. Everyone should avoid 
smoking and exposure to secondhand smoke, which are risk factors for meningococcal disease. A person who 
closes contact with someone who has been diagnosed with these diseases may also need to take antibiotics, and 
symptoms relating to CSM and pneumonia should immediately be reported to the hospital for early treatment.

Our current results have some limitations, as they depend on the basic assumptions and there was a lack 
of literatures about meningitis and pneumonia co infection model. For further research, we recommended the 
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development of a model that considers and holds additional protection and treatment that incorporates the 
awareness of our community.
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