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abstract

PURPOSE Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) show efficacy in treating
patients with lung adenocarcinoma with EGFR-activating mutations. However, a significant subset of targeted
patients fail to respond. Unlike acquired resistance (AR), intrinsic resistance (IR) remains poorly understood. We
investigated whether epigenomic factors contribute to patient-to-patient heterogeneity in the EGFR-TKI re-
sponse and aimed to characterize the IR subpopulation that obtains no benefit from EGFR-TKIs.

PATIENTS AND METHODS We conducted genome-wide DNA methylation profiling of 79 tumors sampled from
patients with advanced lung adenocarcinoma before they received EGFR-TKI treatment and analyzed the patient
responses. Pyrosequencing was performed in a validation cohort of 163 patients with EGFR-activatingmutations.

RESULTS A DNA methylation landscape of 216 CpG sites with differential methylation was established to
elucidate the association of DNA methylation with the characteristics and EGFR-TKI response status of the
patients. Functional analysis of 37 transcription-repressive sites identified the enrichment of transcription
factors, notably homeobox (HOX) genes. DNA methylation of HOXB9 (cg13643585) in the enhancer region
yielded 88% sensitivity for predicting drug response (odds ratio [OR], 6.64; 95% CI, 1.98 to 25.23; P = .0009).
Pyrosequencing validated that HOXB9 gained methylation in patients with a poor EGFR-TKI response (OR,
3.06; 95% CI, 1.13 to 8.19; P = .019).

CONCLUSIONOur data suggest that homeobox DNAmethylation could be a novel tumor cellular state that can aid
the precise categorization of tumor heterogeneity in the study of IR to EGFR-TKIs. We identified, for the first time,
an epigenomic factor that can potentially complement DNA mutation status in discriminating patients with lung
adenocarcinoma who are less likely to benefit from EGFR-TKI treatment, thereby leading to improved patient
management in precision medicine.
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INTRODUCTION

Adenocarcinoma is the most common subtype of
non–small-cell lung cancer (NSCLC), which has the
highest cancer mortality worldwide.1 High intratumor
heterogeneity of lung adenocarcinoma has been
documented, and several targetable oncogenic
mutations2-9 have been characterized. Inhibition of
epidermal growth factor receptor (EGFR) kinase ac-
tivity by EGFR-tyrosine kinase inhibitors (TKIs), such
as erlotinib, gefitinib, and afatinib, was effective in
patients with NSCLC with EGFR-activating mutations.
However, despite the remarkable clinical success, the
treatment efficacy was still limited to 50%-80%.10,11

The sizable percentage of nonresponders (20%-30%)
suggested intrinsic TKI resistance and substantial

heterogeneity among tumors, even among EGFR-
mutant tumors, highlighting the need for reliable
predictive biomarkers.

The comprehensive molecular profiling of pretreat-
ment lung adenocarcinoma to identify inherently TKI-
resistant cases can aid the development of potential
strategies to manage such cases. Recently, genomic
profiling of advanced NSCLC with EGFR mutations at
baseline has identified multiple genetic, phenotypic,
and functional mechanisms that may contribute to
intrinsic resistance (IR).12 Whole-exome sequencing
on untreated EGFR-mutant NSCLC tumors13 and the
detection of co-occurring genetic alternations, such as
MET, PIK3KA, CDK4, CDK6, and NF1, in the cfDNA
of advanced-stage patients before treatment with
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EGFR-TKI14 suggest many DNA-based biomarkers for IR
prediction. On the other hand, tumor suppressor genes
involved in the alternative mechanisms of IR may be
inactivated by epigenetic mechanisms that result in phe-
notypic or functional changes.15 However, although studies
have reported that epigenetic changes in tumor participate
in the evolution of acquired drug resistance through regu-
lating gene expression patterns,16 epigenomic data asso-
ciated with IR to TKI are lacking. Modification of methylation
on DNA is stable and abnormal methylation represents an
early event for cancer diagnosis, making methylation ab-
errations equally suitable candidates for recurrence de-
tection and prediction of patient survival.17-21 Therefore, we
undertook a genome-wide approach to investigate DNA
methylation patterns associated with IR to TKI.

DNA methylation that occurs at cytosines of CpG dinucle-
otides, especially within CpG islands in the promoter region,
can lock genes in off status, resulting in a transcriptionally
silent state.22,23 Although DNA methylation is an important
mechanism for maintaining normal development and cel-
lular homeostasis, aberrant DNA methylation–mediated
silencing of tumor suppressor genes has been reported to
be associated with cell survival and progression in cancer.24

DNA methylation profiling of tumors, including those of
glioma, acute myeloid leukemia, and colorectal and lung
cancers, has aided the identification of cancer subtypes
correlated with clinical outcomes.25-29

In this study, we aimed to identify epigenetic markers for
predicting drug efficacy in patients with lung adenocarci-
noma. We conducted genome-wide DNA methylation
profiling of tumors from patients before their EGFR-TKI
therapy and established a DNA methylation landscape to
elucidate the association of DNA methylation with the
EGFR-TKI response status of patients via a pipeline of
statistical analysis, gene ontology (GO), and bioinformatics
analysis. Our study identified a DNAmethylation marker for

predicting drug response in lung adenocarcinoma and
provides insight into the epigenetic regulation of IR to
EGFR-TKIs.

PATIENTS AND METHODS

Tumor samples were obtained from two cohorts of patients
with lung adenocarcinoma before EGFR-TKI therapy. De-
tailed accounts of sample collection and protocols for DNA
extraction, bisulfite conversion, DNA methylation analysis,
pyrosequencing along with statistical analysis, bio-
informatics analysis, and data availability are presented in
the Data Supplement.

RESULTS

Clinicopathologic Features of the Patients

Table 1 lists the clinicopathologic features of the two co-
horts. Patients in the discovery cohort were at the advanced
stage (IIIB or IV), and most EGFR mutations were L858R
point mutations and exon 19 deletions. No significant
differences were found in the distribution of tumor stage,
sex, or smoking behavior between EGFRmutant and EGFR
wild type. The validation cohort consisted of 163 EGFR-
mutant patients and themajority (85.28%) were at stage IV.
The TKI response assessment—progressive disease (PD),
stable disease (SD), partial response (PR), or complete
response (CR)—was determined according to the RECIST
guidelines.30 The PD group, defined at the first scan done at
8 weeks following the start of EGFR-TKI, is considered as
patients with IR. We determined the disease control rate
(DCR) by comparing the number of patients with SD, PR, or
CR with those with PD to study intrinsic drug resistance.

Differential DNA Methylation Sites Associated With

EGFR-TKI Response Heterogeneity Were Enriched in

Transcription Factors

Following the flowchart in Figure 1, the DNA methylation
profiles of the 79 tumors in the discovery cohort were

CONTEXT

Key Objective
A sizable portion (20%-30%) of patients with epidermal growth factor receptor (EGFR)–mutant non–small-cell lung cancer

have no good initial clinical response to EGFR-tyrosine kinase inhibitors (TKIs), and how to predict intrinsic drug resistance
accurately is challenging. Global DNAmethylation landscape of tumors from patients with lung adenocarcinoma before TKI
treatment was analyzed to investigate the association with EGFR-TKI responses.

Knowledge Generated
A total of 216 TKI response–associated methylated sites were identified, and functional analysis revealed the enrichment of

homeobox genes. In particular, increased methylation of HOXB9 correlated with higher rate of intrinsic resistance (IR) to
EGFR-TKI.

Relevance
DNA methylation provides a different dimension to complement the DNA mutation–based markers for understanding the

mechanism of IR. Evaluation of the methylation level on HOXB9 may be incorporated in the management of lung ad-
enocarcinoma to aid the prediction of EGFR-TKI response.
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TABLE 1. Clinicopathologic Characteristics of the Patients with Lung Adenocarcinoma

Features

Discovery Cohort (n = 79) Validation Cohort (n = 163)

Total
EGFR-Activating

Mutation EGFR Wild Type

Total (EGFR-
Activating
Mutation)

n % n % n % P a Features n %

Patient 79 100 50 100 29 100 Patient 163 100

Age, years .37b Age, years

Mean 58.56 57.46 60.48 Mean 62.85

SD 12.90 10.52 16.25 SD 11.71

Sex .24c Sex

Male 33 42.77 18 36.00 15 51.72 Male 58 35.58

Female 46 58.23 32 64.00 14 48.29 Female 105 64.42

Stage .23c Staged

IIIB 3 3.80 2 4.00 1 3.45 I 8 4.91

IV 76 96.20 48 96.00 28 96.55 II 6 3.68

Smoking status .31c IIIA 7 4.29

Never smoker 55 69.62 37 74.00 18 62.07 IIIB 3 1.84

Current smoker or ex-smoker 24 30.38 13 26.00 11 37.93 IV 139 85.28

EGFR status EGFR status

Wild type 29 36.71 29 100.00 Wild type 0 0

L858R 27 34.18 27 54.00 L858R 86 52.76

G719X/L861Q 3 3.79 3 6.00 G719X/L861Q 2 1.23

Exon-19-del 20 25.32 20 40.00 Exon-19-del 75 46.01

Exon-19-del subtype Exon-19-del subtype

E746-A750 16 80.00 16 80.00 E746-A750 63 84.00

D770-N771 ins PPH 1 5.00 1 5.00 D770-N771 ins PPH 0 0.00

L747-A750 ins P 2 10.00 2 10.00 L747-A750 ins P 1 1.33

L747-T751 1 5.00 1 5.00 L747-T751 2 2.67

L747-T751 ins P 0 0.00 0 0.00 L747-T751 ins P 3 4.00

E746-S752 ins V 0 0.00 0 0.00 E746-S752 ins V 2 2.67

L747-P753 ins S 0 0.00 0 0.00 L747-P753 ins S 4 5.33

EGFR-TKIe .36c EGFR-TKIe

Gefitinib 64 81.01 42 84.00 22 75.86 Gefitinib 159 97.54

Erlotinib 14 17.72 7 14.00 7 14.14 Erlotinib 2 1.23

Gefitinib + erlotinib 1 1.27 1 2.00 0 0 Gefitinib + erlotinib 2 1.23

EGFR-TKI response EGFR-TKI response

CR 0 0.00 0 0.00 0 0.00 1.19 × 10−5c CR 3 1.84

PR 40 50.63 35 70.00 5 17.24 PR 85 52.15

Stable disease 10 12.66 5 10.00 5 17.24 Stable disease 50 30.67

PD 29 36.71 10 20.00 19 65.52 PD 25 15.34

Abbreviations: CR, complete response; EGFR, epidermal growth factor receptor; PD, progressive disease; PR, partial response; SD, standard deviation;
TKI, tyrosine kinase inhibitor.

aP value for comparison between EGFR-activating mutation and EGFR wild type by performing bStudent’s t-test or cFisher’s exact test.
dInitial stage at diagnosis.
eEGFR-TKI as first-line therapy.
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FIG 1. Flowchart of the study design and discovery cohort analysis. Whole-genome DNAmethylation analysis was conducted in 79 patients
to investigate the association of DNAmethylation with EGFR-TKI response. Starting from a total of 482,421 CpG probes, a series of statistical
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assessed. Only probes showing a high variation across
tumors were retained. Using the top 5% coefficient of
variation as the cutoff, 24,121 probes with the greatest
variability were analyzed, and 391 probes were found
correlated with EGFR-TKI response. To identify the sub-
population of intrinsic drug-resistant patients obtaining no
benefit from TKIs, we further analyzed DCR by univariate
and multivariate logistic regression. Of 391 probes, 216
were found significant (Data Supplement). Interestingly, 30
of the 216 probes (13.88%) were annotated to transcription
factors (TFs). Comparison with the percentage of probes in
the Illumina Infinium HumanMethylation450 BeadChip
annotated to TFs (34,129/482,421; 7.07%) revealed that
the enrichment was highly significant (binomial P = .0001).

DNA Methylation Landscape of 216 Probes Associated

With Differential EGFR-TKI Responses

The patient DNA methylation profiles with the 216 TKI
response–associated methylated probes were established
(Fig 2A). The majority of the probes (203) had higher DNA
methylation in patients with a poor response than in those
with a favorable response; hypermethylation correlated with
poor response. Only a group of 13 probes (bottom of the
plot) showed the opposite trend; hypomethylation corre-
lated with poor response. The probes were grouped by their
locations relative to the CpG island content and by the
chromosome content relative to the transcription start site.
We also rearranged this plot according to patient charac-
teristics (Data Supplement) and conducted a correlation
analysis by linear regression to find the significantly cor-
related probes (P , .05). We found 11 probes correlated
with EGFR status, 54 probes with sex, and 32 probes with
smoking behavior. A global view of the DNA methylation
distribution contrasting the patients with PD against those
with PR showed that all but 13 probes were located above
the diagonal line, elucidating a clear pattern of methylation
gain in patients with PD (Fig 2B-D). The tumors of patients
who weremore likely to be resistant to EGFR-TKIs tended to
have higher pretreatment methylation levels.

Chromosomal Context Analysis of Candidate CpG Sites

Showed Enrichment in CpG Islands and Gene

Promoter Regions

The CpG sites were assigned to the annotated categories
according to their chromosomepositions relative to the nearby
transcription start sites and the closest CpG islands (Data
Supplement). We examined the changes in the proportion of
each category during our probe selection and found an in-
creasing trend in CpG islands and the gene promoter region

TSS1500 (between 1,500 bp and 200 bp upstream of the
transcription start site). The 216 EGFR-TKI response pre-
diction sites were highly enriched in CpG islands (81.94%)
compared with only 31.15% sites initially in CpG islands.
Similarly, the percentage of sites in the TSS1500 region in-
creased from 11.65% to 18.06%. In addition, the proportion
of probes in the open sea region decreased sharply from
35.89% to 5.56%. For the 37 transcription-repressive sites,
the enrichment pattern in CpG islands was retained and that
in TSS1500 was increased to 27.03% (Fig 2E).

Identification of Transcription-Repressive

Methylation Sites

We investigated the potential of the 216 methylation sites in
cis-regulation of gene expression by correlating publicly
accessible mRNA gene expression data (GSE60644) with
DNA methylation data (GSE56044) in lung adenocarci-
noma (Data Supplement). We computed the Spearman
rank correlation between DNA methylation and gene ex-
pression to select the methylation sites that showed evi-
dence of repressing downstream transcript expression. A
total of 37 sites were identified as transcription-repressive
sites (Data Supplement).

Functional Enrichment Analysis of Transcript-Linked

Methylation Showed Eight Probes Linked to TFs

To evaluate the molecular function of the genes mapped by
the 37 transcription-repressive sites, GO enrichment
analysis was conducted. Three top significant molecular
function categories of GO slim terms, nucleic acid binding
(GO:0003676), DNA binding (GO:0003677), and
sequence-specific DNA binding TF activity (GO:0003700),
were all related to TFs (Fig 2F and Data Supplement).
Comparisons of the percentage of TFs in the 37
transcription-repressive sites (21.62%; 8/37) with that in all
probes (7.07%; 34,129/482,421) and in the most variable
probes (11.59%; 2,796/24,121) revealed significant en-
richment (P values = .0025 and .036, respectively; Data
Supplement). Furthermore, using Animal Transcription
Factor Database (AnimalTFDB), we found that eight of the
37 sites were annotated to five TFs: IKZF1, HOXB9, SP8,
LASS4, and VAX2 (Table 2 and Data Supplement).
Figure 2G shows the F statistic and the corresponding
P value from analysis of variance for each of the eight sites,
along with the location and chromosome context infor-
mation. We found that seven of the eight TF-linked sites are
located in the context of CpG islands and five in the
transcription start site (TSS) region (Table 2). Sites located
in the TSS region were what we focused on next.

and bioinformatic procedures were conducted to filter out the less-relevant probes. The numbers show the number of CpG
probes remaining after passing each selection procedure. Statistical tests are shown in the blocks with black borders. Publicly
available databases are shown in the ovals in the diagram. ANOVA, analysis of variance; DCR, disease control rate; EGFR,
epidermal growth factor receptor; HSD, honestly significant difference; PD, progressive disease; PR, partial response; SD,
stable disease; TKI, tyrosine kinase inhibitor.
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Identification of the DNA Methylation Site cg13643585

(HOXB9) With Predictive Ability Regarding EGFR-

TKI Response

Among the five sites in the TSS region, three sites,
cg13643585 (HOXB9), cg07300178 (VAX2), and
cg23885415 (VAX2), are located in enhancer regions an-
notated by the Encyclopedia of DNA Elements (ENCODE)
Consortium. The DNA methylation levels of cg13643585,
cg07300178, and cg23885415 were the highest in the
group of patients with PD (Fig 3A and Data Supplement).
HOXB9 methylation (cutoff beta value = .15) predicted
disease control by EGFR-TKIs with 88% sensitivity (area
under the receiver operating characteristic curve [AUROC],
0.6917; odds ratio [OR], 6.64; 95% CI, 1.98 to 25.23; P =
.0009) (Figs 3B and 3C). The two VAX2 methylation sites
also showed a moderate ability to predict the EGFR-TKI
response (Data Supplement).

We further performed stratification analysis by classifying
patients as those with EGFR-activating mutations and those
without (Figs 3D-F). Increased methylation of HOXB9
(cg13643585) was observed in PD patients. The OR (6.63)
between disease control and progression in the EGFR
mutation group was significant (P = .018, Fig 3D). For the
EGFR wild-type group, the OR (7.59) was comparable, but
the P value was .09, likely because of the small sample size
(Fig 3E). On the other hand, DNA methylation of VAX2
(Data Supplement) exhibited no discriminatory power in the
EGFRmutation group (OR, 2.29 and 2.27; P = .31 and .17
for cg07300178 and cg23885415, respectively; Data
Supplement) but performed better in the wild-type group
(OR, 11.07 and 6.06; P = .011 and .046, respectively; Data
Supplement).

Validation of HOXB9 as a DNA Methylation Marker

We conducted pyrosequencing to quantify the DNA
methylation level of HOXB9 (cg13643585) in an inde-
pendent cohort of 163 patients with EGFR-activating

mutations who were receiving EGFR-TKI therapy. Tumor
DNA was obtained before treatment. The data in Table 3
confirmed the pattern of increased HOXB9 methylation in
the EGFR-TKI–resistant (PD) group compared with the
disease control group (CR, PR, or SD). The PD group was
ranked first in each quartile, and the one-sided rank-sum
test for between-group differences indicated a significant
difference (P = .036) (Data Supplement). In addition,
analysis of the AUROC showed that HOXB9 methylation
statistically significantly increased the predictive precision
of EGFR-TKI resistance for the DCR (Table 3). Overall, the
ratio of disease control to PD was approximately 5.5:1. For
patients with lower HOXB9 methylation levels (, 4.5), the
ratio of disease control to PD increased to approximately 8:
1. In contrast, for patients with higher HOXB9 methylation
levels (. 4.5), the ratio was greatly reduced—only ap-
proximately 2.5:1 (OR, 3.06; 95%CI, 1.13 to 8.19; P = .02).
This result confirmed the benefit of using epigenomic
markers complementing DNA markers to identify sub-
populations of patients with higher-than-average suscep-
tibility to intrinsic EGFR-TKI resistance (Fig 3G).

DISCUSSION

The paradigm shift in treating lung adenocarcinoma with
EGFR-targeted therapy is a major success in precision
medicine. However, drug resistance remains a pertinent
issue that hinders further improvement in the management
of EGFR-targeted therapy. Although significant advances
have been made in understanding acquired resistance
(AR), the causes of IR remain unclear.12 In addition to being
classified as AR versus IR, resistance mechanisms can be
classified in terms of on-target versus off-target,31 sug-
gesting the activation of collateral signaling. T790M mu-
tation in exon 20 of EGFR is the most common mechanism
for resistance to first- and second-generation EGFR-TKI.
Several third-generation EGFR-mutant selective TKIs such
as AZD9291 (osimertinib) have been approved for EGFR

FIG 2. DNA methylation landscape of 79 patients with lung adenocarcinoma with different EGFR-TKI responses. (A) DNA
methylation heatmap of 216 EGFR-TKI response–associated sites for DCR prediction. The color-coded beta value at each selected
probe ranged between 0 (blue) and 1 (red). The patients’ characteristics, smoking behavior (P1), sex (P2), EGFR status (P3), and
EGFR-TKI response (P4), are shown by the bars at the top of the heatmap. Probes were grouped by CpG island content (left bar) and
by chromosome content (right bar). (B-D) DNA methylation density for PD versus PR. For each CpG probe, the average beta value
across patients with PD was plotted against that across patients with PR and is shown as a smooth kernel scatter plot. The set of
probes used is indicated at the top of each plot, along with the number of probes. In the gradient scale, red represents the densest
region, whereas purple represents the sparsest region; PR (red), SD (yellow), and PD (blue). (E) Genomic context distributions of CpG
methylation sites. The probe distributions in the CpG context and the gene context are shown on the left and right, respectively, for all
probes in the array (top), for the most variably methylated probes (upper middle), for the TKI response–associated methylation sites
(lower middle), and for the transcription-repressive sites (bottom). (F) Functional enrichment analysis of genes linked to the 37
transcription-repressive sites. All 186 molecular function categories in GO-slim were evaluated, and the top 5 most enriched
categories are shown, along with fold changes and P values. The GO terms involving transcription factors were GO:0003676, GO:
0003677, and GO:0003700. (G) F value of ANOVA for the eight TF-linked sites. *P, .05; **P, .01; $enhancer (ENCODE). ANOVA,
analysis of variance; DCR, disease control rate; EGFR, epidermal growth factor receptor; ENCODE, Encyclopedia of DNA Elements;
GO, gene ontology; PD, progressive disease; PR, partial response; SD, stable disease; TF, transcription factor; TKI, tyrosine kinase
inhibitor.
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TABLE 2. Transcription Factor–Linked Methylation Sites

Locus

Annotation ANOVA Correlation Analysis Univariate Logistic Regression Multivariate Logistic Regression

Hg19 Site CpG F (P)b Post hocb Illumina ID Rho (P)c ORd 95% CId Pd OR 95% CI P

HOXB9 (cg13643585)a chr17:
46704004

TSS200 Island 5.07 (.009) 0.07 (0.006) ILMN_
1720406

−0.24 (.0348) 1.04 × 103 7.25 × 105 to
3.58 × 105

.01 4.18 × 103 8.17 × 106 to
7.84 × 106

.015

VAX2 (cg23885415)a chr2:71127255 TSS1500 Island 4.11 (.020) 0.07 (0.020) ILMN_
1760047

−0.30 (.0082) 5.59 × 102 5.95 × 105 to
1.33 × 105

.012 5.11 × 103 1.76 × 101 to
5.98 × 106

.008

VAX2 (cg07300178)a chr2:71127304 TSS1500 Island 3.97 (.023) 0.05 (0.031) ILMN_
1760047

−0.33 (.0036) 8.65 × 103 1.13 × 101 to
1.93 × 107

.012 5.50 × 104 3.71 × 101 to
2.64 × 108

.006

SP8 (cg15427906) chr7:20825216 Body Island 3.17 (.048) 0.07 (0.037) ILMN_
2306630

−0.35 (.0020) 1.19 × 102 2.27 × 103 to
8.56 × 103

.021 1.98 × 102 1.62 × 104 to
3.36 × 104

.034

SP8 (cg16544956) chr7:20825634 5’UTR; body Island 6.83 (.002) 0.07 (0.001) ILMN_
2306630

−0.41 (.0002) 2.05 × 104 3.11 × 101 to
8.05 × 107

.008 3.87 × 103 7.23 × 107 to
1.46 × 107

.021

SP8 (cg07148296) chr7:20826345 5’UTR; body S shore 4.03 (.022) 0.07 (0.021) ILMN_
2306630

−0.36 (.0012) 5.89 × 102 5.81 × 105 to
1.52 × 105

.013 4.95 × 102 2.29 × 105 to
2.37 × 105

.034

IKZF1 (cg07589773) chr7:50343883 TSS1500 Island 4.30 (.017) 0.13 (0.012) ILMN_
1676575

−0.25 (.0281) 3.14 × 101 2.49 × 102 to
4.71 × 102

.009 6.96 × 101 3.25 × 103 to
2.03 × 103

.009

LASS4 (cg22162404) chr19:8273842 TSS1500 Island 4.71 (.012) 0.04 (0.012) ILMN_
1748057

−0.24 (.0379) 2.25 × 1012 6.79 × 103 to
2.71 × 1024

.02 2.98 × 1015 1.44 × 104 to
7.11 × 1029

.018

Abbreviations: ANOVA, analysis of variance; ENCODE, Encyclopedia of DNA Elements; GEO, gene expression omnibus; HSD, honestly significant difference; OR, odds ratio; PD, progressive disease.
aEnhancer: predicted enhancer elements determined by the ENCODE Consortium on the basis of the ChIP-seq experiments annotated in GPL13534, the extended Illumina annotation manifest (v1.2) for

HM450K array, from GEO.
bF value and P value of ANOVA. Tukey’s HSD is performed as the post hoc test of ANOVA (PD v PR).
cRho and P value of the Spearman rank correlation analysis.
dOR; 95% CI; P value of the logistic regression analysis.
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FIG 3. DNA methylation of HOXB9 (cg13643585) was correlated with EGFR-TKI response. (A) The HOXB9 beta values of 79 patients with NSCLC with
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T790M–positive NSCLC treatment.12 As Oxnard32 sum-
marized, the well-known EGFR T790M erlotinib-resistance
mutation occurs both as the result of subclonal presence of
T790M followed by outgrowth and as a de novo conse-
quence of mutation in persister cells. Existence of any
subclonal variation of methylation for either AR or IR posts
an interesting issue to explore further. Moreover, where
genomic resistance has been found, epigenomic modu-
lation has been proposed as the potential mechanism.
Changes in resistant phenotypes, including epithelial-
mesenchymal transition (EMT) and cancer stemness
shift, have been found to be driven by epigenetic remod-
eling. TKI-induced DNA methylation changes have been
reported in advanced EGFR-mutated lung cancer.33 Dec-
itabine, the DNAmethyl transferase inhibitor, could reverse
the sensitivity of EGFR-TKI–resistant NSCLC cell line PC9/
GR through demethylation of RASSF1A and GADD45β.34

The combination of TKIs with epigenetic drugs has shown
promise as a treatment in preclinical and clinical
studies.33-35

In this study, we conducted clinical oncological investi-
gation on the potential role of DNAmethylation in mediating
IR to EGFR-TKI treatment in patients with advanced lung
adenocarcinoma. Aberrant DNA methylation is one of the
most classical events that occurs during lung cancer
development.36 Many studies have shown altered meth-
ylation patterns in lung cancer, indicating roles of epige-
netic biomarkers and therapeutic targets.37-39 Earlier study
by Zhu et al40 focused on the methylation patterns of Wnt
antagonists, showing the association of methylated SFRP5
with shortened progression-free survival under EGFR-TKI
treatment, but not with IR to TKI. Epigenome-wide analysis
has demonstrated that homeobox genes can act as po-
tential DNA methylation markers for the early diagnosis of
lung cancer.41 Moreover, Sandoval et al42 identified a
hypermethylated five-gene signature associated with
shorter relapse-free survival times of patients with stage I
NSCLC without adjuvant chemotherapy. Interestingly, two

of those five genes, AXL1 and HOXA9, are homeobox TFs.
Our pursuit of the primary EGFR-TKI–resistant methylation
markers also identified enrichment of homeobox genes.
Among the 30 TKI-associated methylation probes anno-
tated to TFs, 11 accounted for nine homeobox genes (Data
Supplement).

We identified and confirmed the correlation ofHOXB9 DNA
methylation with an increased rate of IR to EGFR-TKIs.
HOXB9 is involved in cell development and proliferation43

and is suggested to function as a TF that can induce the
expression of EMT genes and several angiogenic factors,
such as VEGF, IL-8, and TGFβ, resulting in the activation of
EGFR and ERBB2.44-46 EGFR signaling is connected to the
NF-κB pathway, giving the role in IR or AR to EGFR
inhibitors.47 However, the molecular mechanisms by which
HOXB9 contributes to carcinogenesis are debated.48,49 The
overexpression of HOXB9 can suppress the AKT/NF-κB/
Snail pathway and inhibit the proliferation of gastric car-
cinoma cells.50 We analyzed the correlation between EGFR
signaling and NF-κB–dependent pathways (GSE60644)
and found that expression of HOXB9 negatively associated
with that of KIAA1199 (Cell migration–inducing hyaluron-
idase 1; Data Supplement). Through protein-protein in-
teraction (PPI) analysis, we found that HOXB9 might cross
talk with both IR and AR to EGFR-TKI through EZH2,
SIRT1, and EGR2 (Data Supplement). Therefore, the
regulation of HOXB9 is crucial in the cooperated oncogenic
loops.12 Our data suggested that HOXB9 hypermethylation
may be a novel tumor cellular state that is useful for precise
categorization of tumor heterogeneity in the study of in-
trinsic EGFR-TKI resistance via off-target effects such as
redundant or compensating signaling. In addition, the
pattern was consistent between patients with EGFR-acti-
vating mutations and patients with wild-type EGFR, im-
plying that the regulatory effect of DNA methylation of
HOXB9 may be independent of EGFR activity.

DNA methylation changes can be accurately detected in
tumors and liquid biopsies. Such detection is promising for
the development of biomarkers for cancer screening.51

DNA methylation in distal regulatory sites, such as en-
hancer regions, plays important roles in gene regulation
through the binding of cell type–specific TFs and inter-
action with promoters.52-54

We validated a DNAmethylation site in the enhancer region
of HOXB9 that can help the prediction of nonresponse to
EGFR-TKI. In cancer, aberrant DNA methylation at en-
hancers couples with recruitment of coactivators or core-
pressors, forming networks of cancer-associated TFs and
their targeted genes.55-57 Stone et al58 defined hyper-
methylation enhancers that correlate with sensitivity to
endocrine therapy, suggesting the impact of enhancer
status on the drug treatment response. Therefore, DNA
methylation at enhancers could regulate downstream gene
expression, although the underlying mechanisms require
further study.

TABLE 3. HOXB9 as a DNAMethylationMarker for the EGFR-TKI Responses in the
Validation Cohort (n = 163)
Group 75th Percentile Median 25th Percentile

CR/PR/SD (n = 136) 4.25 2.95 2.17

PD (n = 27) 7.03 3.3 2.61

NOTE. One-sided Wilcoxon rank-sum test: P = .03587.

DNA Methylation CR/PR/SD PD Total

HOXB9 , 4.5 110 14 124

HOXB9 . 4.5 28 11 39

Total 138 25 163

NOTE. Fisher’s exact test: OR = 3.06, 95% CI = 1.13 to 8.19, P = .0197*.
Abbreviations: CR, complete response; EGFR, epidermal growth factor receptor;

OR, odds ratio; PD, progressive disease; SD, stable disease; TKI, tyrosine kinase
inhibitor.
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The combination of genetic aberrations, gene expression,
and DNAmethylation highlights the potential of the identified
candidates in the development of biomarkers for tumor
diagnosis or prognosis. Additionally, clinical applications of
biomarkers in public health, including the effect size,
therapeutic drugs, or measurable signals, need to be con-
sidered. In this study, with a focus on medical actionability,
we discovered that HOXB9 methylation could be a bio-
marker useful for discriminating patients with TKI resistance
from those with TKI sensitivity, especially patients whose
tumors harbor EGFR-activating mutations. Although im-
proving the sensitivity and specificity of HOXB9 methylation

is recommended, our work provided a preliminary proof of
concept on the usefulness of HOXB9 methylation for open-
ing up more clinical options to manage lung adenocarci-
noma. For example, in accordance with the current clinical
standard of treating EGFR-mutant patients with EGFR-TKI,
for patients with HOXB9 hypermethylation, combination
treatment such as EGFR-TKI plus antiangiogenic therapy59 or
EGFR-TKI plus chemotherapy60 may be another option to
overcome the resistance and improve the response rate. A
larger cohort study with the inclusion of HOXB9 methylation
in addition to other genomic aberrations may be designed to
investigate how to select patients for combination treatment.
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